JPH0377656B2 - - Google Patents

Info

Publication number
JPH0377656B2
JPH0377656B2 JP58138564A JP13856483A JPH0377656B2 JP H0377656 B2 JPH0377656 B2 JP H0377656B2 JP 58138564 A JP58138564 A JP 58138564A JP 13856483 A JP13856483 A JP 13856483A JP H0377656 B2 JPH0377656 B2 JP H0377656B2
Authority
JP
Japan
Prior art keywords
electrode
grid
grid electrode
electrodes
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58138564A
Other languages
Japanese (ja)
Other versions
JPS6030123A (en
Inventor
Osamu Nabeta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP58138564A priority Critical patent/JPS6030123A/en
Publication of JPS6030123A publication Critical patent/JPS6030123A/en
Publication of JPH0377656B2 publication Critical patent/JPH0377656B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 対向する1対の放電電極および両極間に設けら
れた格子電極を有する薄膜半導体生成装置の構造
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to the structure of a thin film semiconductor production device having a pair of opposing discharge electrodes and a grid electrode provided between the two electrodes.

〔従来技術とその問題点〕[Prior art and its problems]

プラズマCVD法を用いてa−Si太陽電池を製
作する場合、量産性の点から容量結合方式が広く
用いられている。第1図にその構造概念図を示
す。ガス回路系15から送られた原料ガスは、排
気系16に接続された反応炉17内の上下1対の
放電電極11,12間で電源18から供給される
直流または高周波電界によつてグロー放電分解さ
れ、a−Si膜が下部電極上に置かれた基板13上
に堆積される。したがつて、プラズマによる分解
過程、および基板上への堆積過程の2つの過程に
よつて形成されるものであり、両過程の十分な検
討とそれに基づく成膜方法の改良がa−Si膜の膜
質向上およびこれを用いた太陽電池の性能向上の
ための必要不可欠条件である。現在その一つとし
て、両電極間に第3の電極としてメツシユ状の格
子電極を設けてa−Si膜を成長させる方法が用い
られている。典型的な例として第2図に構成概念
図を示す。前記容量結合方式プラズマCVD法a
−Si膜生成装置の上下両電極21,22の間にメ
ツシユ状の格子電極24を設け、導電性の格子支
持体25を用いて下部電極と同電位にも、下部電
極上に基板23をセツトする。
When manufacturing a-Si solar cells using the plasma CVD method, a capacitive coupling method is widely used from the viewpoint of mass production. Figure 1 shows a conceptual diagram of its structure. The raw material gas sent from the gas circuit system 15 is glow-discharged between a pair of upper and lower discharge electrodes 11 and 12 in a reactor 17 connected to an exhaust system 16 by a DC or high-frequency electric field supplied from a power source 18. Decomposed, an a-Si film is deposited on the substrate 13 placed on the bottom electrode. Therefore, it is formed through two processes: decomposition process by plasma and deposition process on the substrate, and it is necessary to thoroughly study both processes and improve the film formation method based on this. This is an essential condition for improving film quality and improving the performance of solar cells using it. One of the methods currently used is a method in which an a-Si film is grown by providing a mesh-like lattice electrode as a third electrode between both electrodes. A conceptual diagram of the structure is shown in FIG. 2 as a typical example. The capacitively coupled plasma CVD method a
- A mesh-shaped grid electrode 24 is provided between the upper and lower electrodes 21 and 22 of the Si film generation device, and the substrate 23 is set on the lower electrode using a conductive grid support 25 at the same potential as the lower electrode. do.

直流グロー放電法を用いた場合、グロー放電分
解によつて生成されるプラズマ種は、格子電極を
通過する際、それ自身の持つエネルギーが減少し
基板上へのイオンによる衝撃が弱まる。このた
め、基板上への堆積過程は大きく異なり、SiH4
ガスの直流グロー放電分解の場合、SiH+
SiH2 +等の正イオンの衝撃が低下することによつ
て膜中に組み込まれる水素量は減少し、膜の光導
電率は1桁程度向上する。また、高周波電界によ
るグロー放電分解の場合も、同様に、格子電極に
よる正イオンの衝撃低下に伴い膜質は向上する。
第3図は、基板33を上部電極31の上にセツト
し、上部電極31と同電位になる様に導電性格子
支持体35を使つて格子電極34を設置した構造
を示す。この場合も、基板上へのイオン衝撃は弱
まり、膜質は向上する。また、第4図に示す様に
絶縁性格子支持体45を使つて格子電極44と絶
縁性支持台46上の下部電極42を絶縁し、両者
間に直流バイアスを数V印加し、上下両電極4
1,42の間でグロー放電プラズマをつくり、生
成されるプラズマ種を下部電極上の基板43の上
に選択的に取りこめるように制御する方法があ
る。
When the DC glow discharge method is used, the plasma species generated by glow discharge decomposition have their own energy reduced when they pass through the grid electrode, and the impact of ions on the substrate is weakened. For this reason, the deposition process on the substrate is very different, and SiH 4
In the case of DC glow discharge decomposition of gases, SiH + ,
By reducing the impact of positive ions such as SiH 2 + , the amount of hydrogen incorporated into the film is reduced, and the photoconductivity of the film is improved by about one order of magnitude. Furthermore, in the case of glow discharge decomposition using a high-frequency electric field, the film quality is similarly improved as the impact of positive ions by the grid electrode is reduced.
FIG. 3 shows a structure in which a substrate 33 is set on top of the upper electrode 31, and a grid electrode 34 is installed using a conductive grid support 35 so as to have the same potential as the top electrode 31. In this case as well, the ion bombardment onto the substrate is weakened and the film quality is improved. Further, as shown in FIG. 4, the grid electrode 44 and the lower electrode 42 on the insulating support 46 are insulated using an insulating grid support 45, and a DC bias of several volts is applied between them, and both the upper and lower electrodes are 4
There is a method in which glow discharge plasma is created between 1 and 42, and the generated plasma species are controlled so as to be selectively captured onto the substrate 43 on the lower electrode.

しかるに、この種の格子電極を有するグロー放
電分解a−Si生成装置を使つてpinまたはnip構造
太陽電池を製造する場合、グロー放電時に、格子
電極に放電残留物が付着し、数回放電をくり返す
うちにそれがスパツタされ膜中にくみこまれ、ピ
ンホール発生の原因となる。したがつて、しばし
ば反応炉内の真空を破り、格子電極を新しい清浄
なものに取りかえる必要がある。このため、作業
効率は大きく低下し量産化するうえで問題とな
る。
However, when producing a pin or nip structure solar cell using a glow discharge decomposition a-Si generation device having this type of grid electrode, discharge residue adheres to the grid electrode during glow discharge, resulting in repeated discharges several times. While returning it, it sputters and becomes embedded in the film, causing pinholes. Therefore, it is often necessary to break the vacuum in the reactor and replace the grid electrode with a new, clean one. For this reason, work efficiency is greatly reduced, which poses a problem in mass production.

さらに、格子電極を用いたプラズマCVD法a
−Si生成装置のその他の例として、第5図a,b
に分離形成装置の構成概念図を示す。この装置は
3個のa−Si膜生成室512,513,514と
基板をセツトする前室511、取り出すための後
室515で構成されており、各部屋ごとにバルブ
501,502,503,504,505を通し
て排気系に接続されている。上部電極用サセプタ
57上に基板58はセツトされ、これを取り付け
たサセプタは車輪56によつてコンベア59上を
移動し、各部屋での工程が終了すると次室とのし
きい51,52,53,54が自動的に開き、次
室へ運ばれる。したがつて、前室511で基板を
セツトすれば、p、i、nまたはn、i、p層が
順次、別室でしかも真空を破らず後室515に運
ばれ取り出されることになる。しかるに、この装
置の各生成室512,513,514に格子電極
542,543,544をそれぞれ設置した場
合、一工程が終了した後次工程にうつる際に格子
電極542〜544は放電残留物が付着しており
新しい清浄なものと取り換える必要がある。した
がつて各部屋の真空を破り、格子電極の取り換え
作業を行つてから、新たに基板をセツトすること
になり、作業効率は大幅に低下する。
Furthermore, plasma CVD method using grid electrode a
- As other examples of Si generation equipment, Fig. 5 a, b
Figure 2 shows a conceptual diagram of the separation and formation apparatus. This device consists of three a-Si film generation chambers 512, 513, 514, a front chamber 511 for setting the substrate, and a rear chamber 515 for taking out the substrate. , 505 to the exhaust system. The substrate 58 is set on the susceptor 57 for the upper electrode, and the susceptor with this attached moves on the conveyor 59 by the wheels 56, and when the process in each room is completed, it passes through the thresholds 51, 52, 53 of the next room. , 54 automatically opens and is transported to the next room. Therefore, when a substrate is set in the front chamber 511, the p, i, n or n, i, p layers are sequentially transported to the rear chamber 515 and taken out in a separate chamber without breaking the vacuum. However, when grid electrodes 542, 543, and 544 are installed in each of the generation chambers 512, 513, and 514 of this device, discharge residues adhere to the grid electrodes 542 to 544 when moving to the next process after one process is completed. It must be replaced with a new, clean one. Therefore, it is necessary to break the vacuum in each room and replace the grid electrodes before setting a new substrate, which greatly reduces work efficiency.

〔発明の目的〕[Purpose of the invention]

本発明は対向する1対の放電電極と両極間に設
けられた格子電極からなるプラズマCVD法を用
いて薄膜を製造する際、格子電極に付着した放電
残留物が膜中に取りこまれないために行う格子電
極の取り換え作業をなくすことにより作業効率を
向上させることを目的とする。
In the present invention, when manufacturing a thin film using a plasma CVD method consisting of a pair of opposing discharge electrodes and a grid electrode provided between the two electrodes, discharge residues attached to the grid electrode are not incorporated into the film. The aim is to improve work efficiency by eliminating the need to replace grid electrodes.

〔発明の要点〕[Key points of the invention]

本発明は対向する1対の放電電極および両電極
間に設けられた格子電極を有する薄膜半導体生成
装置において、格子電極が可撓性で送出しロール
から巻取りロールへ移動可能であることによつ
て、例えばa−Si太陽電池を量産する場合、数工
程終了ごとに行う、該格子電極の取り換え作業を
なくし、作業効率を向上させるものである。
The present invention provides a thin film semiconductor production device having a pair of opposing discharge electrodes and a grid electrode provided between the two electrodes, in which the grid electrode is flexible and movable from the delivery roll to the take-up roll. For example, when mass-producing a-Si solar cells, it is possible to eliminate the need to replace the grid electrodes every few steps, thereby improving work efficiency.

〔発明の実施例〕[Embodiments of the invention]

第6図に本発明の第1の実施例を示す。下部電
極61に固定されたロール62に巻かれている金
属メツシユ68はロール63で巻き取られ、両者
の張力によつて平面を形成し格子電極となる。第
6図bのA−A′線矢視断面図に示した様に、巻
取り用ロール63は心棒64,65および柄66
により構成されており、柄66を回転することに
よつて金属メツシユ68はロール63に巻き取ら
れ、新しい清浄な面があらわれる構造になつてい
る。また心棒64と反応炉ベルジヤ610との接
続部は真空用ゴムリングでとめることにより、真
空を保持できるようにしてある。したがつて、
上、下両電極61,62の間でグロー放電をおこ
し、a−Si膜を基板上に成膜し、太陽電池を製造
する場合、炉内の真空を破らずに放電残留物の付
着した格子電極をロール63で容易に巻き取るこ
とができる。このため数工程終了後の格子電極の
取り換え作業がなくなり、量産化するにあたつて
作業効率が向上する。
FIG. 6 shows a first embodiment of the present invention. The metal mesh 68 wound around the roll 62 fixed to the lower electrode 61 is wound up by the roll 63, and the tension between the two forms a plane to form a grid electrode. As shown in the cross-sectional view taken along the line A-A' in FIG.
By rotating the handle 66, the metal mesh 68 is wound onto the roll 63, and a new clean surface is exposed. Further, the connecting portion between the mandrel 64 and the reactor bell gear 610 is secured with a vacuum rubber ring so that the vacuum can be maintained. Therefore,
When producing a solar cell by producing a glow discharge between the upper and lower electrodes 61 and 62 to form an a-Si film on a substrate, the lattice with discharge residue attached thereto can be removed without breaking the vacuum in the furnace. The electrode can be easily wound up on the roll 63. This eliminates the need to replace the grid electrodes after completing several steps, improving work efficiency in mass production.

第7図は、本発明の第2の実施例である。上部
電極71に基板76を搭載し、a−Si膜を生成す
る構造において、金属メツシユ75は該上部電極
71に固定されたロール73,74によつて平面
を形成し格子電極となる。したがつて同様に、格
子電極をロール74で巻き取ることができる。
FIG. 7 shows a second embodiment of the invention. In a structure in which a substrate 76 is mounted on the upper electrode 71 and an a-Si film is produced, the metal mesh 75 forms a plane with the rolls 73 and 74 fixed to the upper electrode 71 and becomes a grid electrode. The grid electrode can therefore likewise be wound up on a roll 74.

第8図は本発明の第3の実施例である。下部電
極82は絶縁性格子支持体85,86によつて固
定されているロール83,84によつて平面を形
成し、格子電極となつている。またロール83を
通つて金属メツシユ88は直流電源80に接続さ
れており、格子電極と下部電極間に直流バイアス
を印加できる構造になつている。この場合も、巻
き取りロール84には心棒および柄が同様に取り
付けられており、柄を回転することによつて金属
メツシユ88は反応炉810内を真空にしたまま
で取り換えることができる。
FIG. 8 shows a third embodiment of the present invention. The lower electrode 82 forms a plane with rolls 83, 84 fixed by insulating grid supports 85, 86, and serves as a grid electrode. Further, the metal mesh 88 is connected to a DC power source 80 through the roll 83, so that a DC bias can be applied between the grid electrode and the lower electrode. In this case as well, the take-up roll 84 is similarly attached to a mandrel and a handle, and by rotating the handle, the metal mesh 88 can be replaced while keeping the reactor 810 under vacuum.

第9図は本発明の第4の実施例である。前記分
離形成プラズマCVD法a−Si太陽電池生成装置
において、a−Si膜生成室912,913,91
4の各部屋に格子電極922,923,924が
ロール932,942,933,943,93
4,944に設置されている。各ロールは、上部
電極運搬用車輪952,962,953,96
3,954,964に接続されている。第9図b
に第1の生成室912の上部電極付近の詳細図を
示す。車輪952,962には内輪956,96
6が車軸957,967によつて取り付けられて
いる。また、ロール932,942には内輪93
6,946が車軸937,947によつて取り付
けられており、この内輪936,946と内輪9
56,966は、それぞれベルト97,98で接
続されている。したがつて基板96を搭載した上
部電極用サセプタ95がa−Si生成室912での
成膜を終了し、コンベア99上を次室913に運
搬される際、ロール932,942を連動して回
転するため格子電極922もロール942に巻き
取られることになる。その際、上部電極運搬用車
輪の内輪とロールの内輪の半径を適当な比率に調
整することによつて上部電極用サセプタがa−Si
生成室912で成膜後、913,914,915
と移動し、1工程を終え、再び911で新しい基
板をセツトして912に到着した時点で、格子電
極922は、新しい清浄面に自動的に取り換えら
れることになる。
FIG. 9 shows a fourth embodiment of the present invention. In the separation formation plasma CVD method a-Si solar cell generation device, the a-Si film generation chambers 912, 913, 91
Grid electrodes 922, 923, 924 are placed in each room of 4 on rolls 932, 942, 933, 943, 93.
4,944. Each roll has upper electrode transport wheels 952, 962, 953, 96
It is connected to 3,954,964. Figure 9b
shows a detailed view of the vicinity of the upper electrode of the first generation chamber 912. The wheels 952, 962 have inner rings 956, 96
6 are attached by axles 957,967. In addition, the rolls 932 and 942 have an inner ring 93.
6,946 are attached by axles 937, 947, and the inner rings 936, 946 and 9
56 and 966 are connected by belts 97 and 98, respectively. Therefore, when the upper electrode susceptor 95 carrying the substrate 96 finishes film formation in the a-Si generation chamber 912 and is transported on the conveyor 99 to the next chamber 913, the rolls 932 and 942 are rotated in conjunction with each other. Therefore, the grid electrode 922 is also wound up on the roll 942. At that time, by adjusting the radius of the inner ring of the upper electrode transport wheel and the inner ring of the roll to an appropriate ratio, the upper electrode susceptor can be made of a-Si.
After film formation in the generation chamber 912, 913, 914, 915
After completing one step, a new substrate is set again at 911, and when the substrate arrives at 912, the grid electrode 922 is automatically replaced with a new clean surface.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、対向する1対の放電電極と両
者間に設けられた格子電極からなるプラズマ
CVD法薄膜生成装置において該格子電極をロー
ルによつて巻き取ることができる構造にしたた
め、a−Si太陽電池などを製作する場合、数工程
終了ごとに行つていた放電残留物の付着した格子
電極の、取り換え、清浄作業をなくすことがで
き、量産化するにあたつて作業効率が向上する。
According to the present invention, a plasma consisting of a pair of opposing discharge electrodes and a grid electrode provided between them
In the CVD method thin film production equipment, the grid electrode is structured so that it can be wound up with a roll, so when manufacturing a-Si solar cells, etc., the grid electrode is covered with discharge residue, which has been removed every few steps. It is possible to eliminate electrode replacement and cleaning work, improving work efficiency in mass production.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、容量結合型薄膜生成装置の構成概念
図、第2図、第3図、第4図は、従来の格子電極
を設けた容量結合型薄膜生成装置の構成概念図、
第5図は、格子電極を設けた分離形成方式薄膜生
成装置の構成概念図、第6図、第7図、第8図
は、それぞれ本発明の異なる実施例であるロール
を使つて巻き取り可能な格子電極を設けた薄膜生
成装置の構成概念図で、第6図bに第6図aのA
−A′線矢視断面図、第9図は、さらに別の実施
例のロールを使つて巻き取り可能な格子電極を設
けた、分離形成方式薄膜生成装置の構成概念図
で、第9図bは第9図aの部分拡大図である。 61,62,71,72,81,82……放電
電極、68,75,88,922,923,92
4……格子電極(金属メツシユ)。
FIG. 1 is a conceptual diagram of the configuration of a capacitively coupled thin film generation device, and FIGS. 2, 3, and 4 are conceptual diagrams of the configuration of a capacitively coupled thin film generation device provided with a conventional grid electrode.
Fig. 5 is a conceptual diagram of the configuration of a separate formation type thin film production device provided with grid electrodes, and Figs. 6, 7, and 8 each show different embodiments of the present invention that can be wound using rolls. Fig. 6b is a conceptual diagram of the structure of a thin film production device provided with a grid electrode.
-A' line arrow sectional view, FIG. 9 is a conceptual diagram of the configuration of a separate formation type thin film production apparatus provided with a grid electrode that can be wound up using a roll according to another embodiment, and FIG. is a partially enlarged view of FIG. 9a. 61, 62, 71, 72, 81, 82...discharge electrode, 68, 75, 88, 922, 923, 92
4...Grid electrode (metal mesh).

Claims (1)

【特許請求の範囲】[Claims] 1 対向する1対の放電電極と両電極間に設けら
れた格子電極を有するものにおいて、格子電極が
可撓性で送出しロールから巻取りロールへ移動可
能であることを特徴とする薄膜半導体生成装置。
1. Thin film semiconductor production having a pair of opposing discharge electrodes and a grid electrode provided between the two electrodes, characterized in that the grid electrode is flexible and movable from a delivery roll to a take-up roll. Device.
JP58138564A 1983-07-28 1983-07-28 Forming device for thin-film semiconductor Granted JPS6030123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58138564A JPS6030123A (en) 1983-07-28 1983-07-28 Forming device for thin-film semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58138564A JPS6030123A (en) 1983-07-28 1983-07-28 Forming device for thin-film semiconductor

Publications (2)

Publication Number Publication Date
JPS6030123A JPS6030123A (en) 1985-02-15
JPH0377656B2 true JPH0377656B2 (en) 1991-12-11

Family

ID=15225086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58138564A Granted JPS6030123A (en) 1983-07-28 1983-07-28 Forming device for thin-film semiconductor

Country Status (1)

Country Link
JP (1) JPS6030123A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63246814A (en) * 1987-04-02 1988-10-13 Matsushita Electric Ind Co Ltd Thin film formation apparatus
JP5965289B2 (en) * 2012-10-25 2016-08-03 東レエンジニアリング株式会社 Remote plasma CVD equipment

Also Published As

Publication number Publication date
JPS6030123A (en) 1985-02-15

Similar Documents

Publication Publication Date Title
JP2012151506A (en) Method for manufacturing silicon-based thin film photoelectric conversion device
JPH07230960A (en) Plasma cvd device
JPH0377656B2 (en)
JPS6010618A (en) Plasma cvd apparatus
US5945353A (en) Plasma processing method
JPH0776781A (en) Plasma vapor growth device
JPS6323827B2 (en)
JPH0769790A (en) Thin film-preparing device
JPH0124866B2 (en)
JPS6037118A (en) Plasma vapor phase reaction method
JP3426788B2 (en) Plasma CVD equipment
JP2002289530A (en) Plasma cvd system and method for depositing film
JPS59219927A (en) Plasma cvd device
JPS58212128A (en) Manufacture of amorphous semiconductor film
JP3968649B2 (en) Thin film forming method and apparatus
JP3615919B2 (en) Plasma CVD equipment
JPH10317150A (en) Formation of coating and coating forming device
JP2002151495A (en) Plasma processing apparatus and semiconductor device manufactured thereby
JP3059297B2 (en) Method for forming amorphous silicon-based semiconductor thin film
JP3513504B2 (en) Plasma CVD apparatus, photoelectric conversion element, and method of manufacturing photoelectric conversion element
JPH1050614A (en) Plasma cvd device
JPS61295374A (en) Formation apparatus for accumulated film by glow discharge decomposition method
JPS60193321A (en) Manufacturing equipment of thin film
JPS59211219A (en) Plasma cvd apparatus
JPS59136474A (en) Capacity-coupling apparatus for glow discharge decomposition