JPH0377619A - Method for regenerating activated carbon - Google Patents

Method for regenerating activated carbon

Info

Publication number
JPH0377619A
JPH0377619A JP1214105A JP21410589A JPH0377619A JP H0377619 A JPH0377619 A JP H0377619A JP 1214105 A JP1214105 A JP 1214105A JP 21410589 A JP21410589 A JP 21410589A JP H0377619 A JPH0377619 A JP H0377619A
Authority
JP
Japan
Prior art keywords
activated carbon
desorption
pressure
adsorption
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1214105A
Other languages
Japanese (ja)
Other versions
JPH0732861B2 (en
Inventor
Yasushige Iida
飯田 泰滋
Hidejiro Ishida
石田 秀次郎
Shigeo Wakamatsu
若松 成男
Takio Adachi
安達 太起男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Eco Tech Corp
Original Assignee
Nittetsu Kakoki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Kakoki KK filed Critical Nittetsu Kakoki KK
Priority to JP1214105A priority Critical patent/JPH0732861B2/en
Publication of JPH0377619A publication Critical patent/JPH0377619A/en
Publication of JPH0732861B2 publication Critical patent/JPH0732861B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To prolong the service life of activated carbon by evacuating an adsorption vessel and blowing steam at a prescribed temp. or below into a bed of the activated carbon in the vessel. CONSTITUTION:The gas in an adsorption vessel 3-2 is sucked by a vacuum pump 6 through the vent pipe 10 of a condenser 5 at the beginning of a desorbing stage to evacuate the vessel 3-2 to a prescribed pressure. The sucked gas is sent to a duct connected to the outlet of a blower 2 for raw gas. The pressure of steam S is reduced by a reducing valve PCV-1 to a value nearly equal to the internal pressure of the vessel 3-2. Water W for cooling to the temp. of satd. steam under the reduced pressure is fed into the steam S through a temp. controlling valve TCV and the cooled steam is sent to the vessel 3-2 to heat a bed 4-2 of activated carbon. The temp. of the bed 4-2 rises to the saturation temp. of steam under the prescribed pressure and the resident air is pressed down.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は活性炭に吸着させた溶剤を水蒸気を用いて脱着
する際に、脱着圧力、温度より低い圧力、温度の水蒸気
を用いて活性炭層(以下炭層と称する)に含まれる空気
を水蒸気と置換してがら脱着を行い、脱着終了後、炭層
を脱着圧力よりも低い・圧力に保持し、活性炭に含まれ
ている水分の蒸発脱着熱により、その圧力における水蒸
気飽和温度迄炭層温度を低下させた後、溶剤の吸着を行
う活性炭再生方法に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention provides a method for desorbing a solvent adsorbed onto activated carbon using water vapor, by using water vapor at a pressure and temperature lower than the desorption pressure and temperature. Desorption is performed while replacing the air contained in the activated carbon (hereinafter referred to as the carbon bed) with water vapor, and after the desorption is completed, the carbon bed is held at a pressure lower than the desorption pressure, and the heat of evaporation and desorption of the water contained in the activated carbon is used to desorb the air. The present invention relates to an activated carbon regeneration method in which a solvent is adsorbed after the coal bed temperature is lowered to the steam saturation temperature at that pressure.

〔従来の技術〕[Conventional technology]

各種プラスチック製品の製造工程や磁気テープ工業等の
各種操作に伴って発生する排ガス中に含まれる有機溶剤
を回収する活性炭吸着法において、活性炭を充填した2
基あるいはそれ以上の吸着槽を並列的に設け、吸着と活
性炭再生のための脱着を交互に繰り返す固定床式溶剤回
収装置あるいは棚段塔を設け、塔頂より活性炭を連続的
に降下させて塔底より送り込まれる空気及び溶剤の混合
ガス(以下原ガスと称する)により、この活性炭を流動
させつつ溶剤の吸着を行わせる流動層式吸着装置などが
公知である。
In the activated carbon adsorption method, which recovers organic solvents contained in exhaust gas generated in the manufacturing process of various plastic products and various operations such as the magnetic tape industry, activated carbon-filled 2
A fixed-bed solvent recovery device or plate tower is installed in which one or more adsorption tanks are installed in parallel, and adsorption and desorption for activated carbon regeneration are repeated alternately, and the activated carbon is continuously lowered from the top of the tower. A fluidized bed type adsorption device is known in which a mixed gas of air and solvent (hereinafter referred to as raw gas) sent from the bottom causes the activated carbon to flow while adsorbing the solvent.

これらの吸着槽は一般に吸着、脱着共、大気圧下で運転
され、また脱着には水蒸気が使用される。
These adsorption vessels are generally operated under atmospheric pressure for both adsorption and desorption, and water vapor is used for desorption.

これらの従来法のうち2槽固定床式吸着装置を第2図及
び第1表(従来法)により説明する。第1表は従来法、
本発明方法について吸着槽操作条件の一例を示したもの
である。
Among these conventional methods, a two-tank fixed bed adsorption apparatus will be explained with reference to FIG. 2 and Table 1 (conventional method). Table 1 shows the conventional method,
This figure shows an example of adsorption tank operating conditions for the method of the present invention.

第2図において原ガス1はブロワ−2により吸着槽3−
1または3−2のいずれか一方に送り込まれ、原ガス中
の溶剤は固定床を形成する活性炭に吸着され、浄化され
た廃ガスは大気に放出される。例えば吸着槽3−1にお
いて吸着操作が行われるとすると、他方の吸着槽3−2
は吸着を終了し切換弁によって吸着から脱着に切換えら
れ、水蒸気Sが吹込まれて吸着された溶剤は脱着されて
水蒸気と共にガス状で排出される。この混合蒸気(脱着
蒸気)は凝縮S5に導かれて水冷却によって全量凝縮さ
れる。この除水と回収溶剤が相互に不溶の場合には、デ
カンタ−9において比重差により溶剤層と水層の2層に
分かれ、水は排出され、溶剤は回収される。また両者が
相互に一部または全部溶は合う場合には適宜蒸留塔(図
示せず)へ送られ水と溶剤の分離が行われる。この際凝
縮器5の凝縮側はベント管10によって大気に通じてお
り、従って脱着は大気圧下で行われる。この方式では吸
着工程より脱着工程に切換えられた初期は活性炭温度は
吸着温度(一般に30″C前後)にあり、吹込まれた水
蒸気は凝縮しつつ炭層温度を上昇させ100°Cに至っ
た後炭層中に滞留している原ガスを排出させ、続いて脱
着蒸気が吸着槽より排出され、脱着はioo’cにおい
て続行される。
In Fig. 2, raw gas 1 is transferred to adsorption tank 3 by blower 2.
1 or 3-2, the solvent in the raw gas is adsorbed by activated carbon forming a fixed bed, and the purified waste gas is released into the atmosphere. For example, if adsorption operation is performed in adsorption tank 3-1, the other adsorption tank 3-2
When adsorption ends, the switching valve switches from adsorption to desorption, and water vapor S is blown in, and the adsorbed solvent is desorbed and discharged together with water vapor in gaseous form. This mixed vapor (desorption vapor) is led to condensation S5 and is completely condensed by water cooling. If the water removed and the recovered solvent are insoluble in each other, the decanter 9 separates into two layers, a solvent layer and an aqueous layer, due to the difference in specific gravity, the water is discharged, and the solvent is recovered. In addition, if the two are partially or completely soluble in each other, they are appropriately sent to a distillation column (not shown) to separate water and solvent. In this case, the condensing side of the condenser 5 is connected to the atmosphere by means of a vent pipe 10, so that the desorption is carried out under atmospheric pressure. In this method, at the initial stage when the adsorption process is switched to the desorption process, the activated carbon temperature is at the adsorption temperature (generally around 30"C), and the injected water vapor condenses and raises the coal bed temperature until it reaches 100 °C. The raw gas stagnant therein is discharged and the desorption vapors are subsequently discharged from the adsorption tank and desorption continues in the ioo'c.

脱着工程終了後、その吸着槽は吸着工程に切換えられ、
吸着槽には原ガスが吹込まれる。この際脱着後の炭層温
度は100°Cにあり、活性炭中の水分(凝縮水蒸気)
が原ガス中に蒸発することにより、その蒸発熱で炭層の
温度は徐々に低下し、原ガス中の溶剤の吸着が進行する
After the desorption process is completed, the adsorption tank is switched to the adsorption process,
Raw gas is blown into the adsorption tank. At this time, the temperature of the coal bed after desorption is 100°C, and the moisture in the activated carbon (condensed water vapor)
evaporates into the raw gas, the temperature of the coal bed gradually decreases due to the heat of evaporation, and the adsorption of the solvent in the raw gas progresses.

ところで、近年磁気テープ製造あるいは合成樹脂加工工
業においてケトン系溶剤としてメチルエチルケトン、メ
チルイソブチルケトン、シクロヘキサノン等が多量に使
用されるようになった。これらケトン系溶剤は吸脱着の
際、活性炭上で酸化、分解、重合等の反応を起こし易く
、回収製品の純度、活性炭の吸着能力保持期間あるいは
炭層着火に対する安全上の問題が生じている。例えば、
メチルエチルケトンは活性炭の触媒作用により酸化を受
け、ジアセチル酢酸等を生威し、回収溶剤が黄色に着色
して製品純度を損ねる。またシクロヘキサノンも酸化を
受けてシクロヘキサンジオン、アジピン酸等を生成する
。これらの酸化物は沸点が高く、脱着工程において容易
に脱着されず、活性炭細孔内に蓄積し、徐々に活性炭の
吸着性能を低下させる。さらにこれらケトン系溶剤は酸
化により過酸化物を生威し、屡々炭層の着火を惹き起こ
す原因となっている。この酸化反応は吸着工程が終了し
、脱着工程に入った初期、炭層には原ガス中の空気が存
在し、ここに水蒸気が吹込まれ、水蒸気の凝縮により炭
層が高温に加熱されることから、活性炭中に吸着されて
いる溶剤が酸素の存在下、活性炭の触媒作用によって激
しく起こる。
Incidentally, in recent years, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, and the like have come to be used in large quantities as ketone solvents in the magnetic tape manufacturing and synthetic resin processing industries. These ketone solvents tend to cause reactions such as oxidation, decomposition, and polymerization on activated carbon during adsorption and desorption, resulting in safety problems regarding the purity of recovered products, the retention period of activated carbon's adsorption capacity, and the ignition of the coal bed. for example,
Methyl ethyl ketone is oxidized by the catalytic action of activated carbon, producing diacetyl acetic acid, etc., and the recovered solvent is colored yellow, impairing product purity. Cyclohexanone also undergoes oxidation to produce cyclohexanedione, adipic acid, etc. These oxides have a high boiling point and are not easily desorbed during the desorption process, accumulating in the activated carbon pores and gradually reducing the adsorption performance of the activated carbon. Furthermore, these ketone solvents produce peroxides through oxidation, which often causes ignition of coal seams. In this oxidation reaction, at the beginning of the desorption process after the adsorption process is completed, air in the raw gas is present in the coal bed, water vapor is blown into this, and the coal bed is heated to a high temperature due to the condensation of the water vapor. This occurs violently due to the catalytic action of the activated carbon in the presence of oxygen, where the solvent is adsorbed in the activated carbon.

また脱着が終了し、吸着に入った初期、炭層がまだ高温
であり、ここに原ガスが送入されれば、活性炭中に残留
している溶剤と共に、脱着初期と同様、高温、酸素の存
在下、活性炭の触媒作用で溶剤の酸化が激しく起こるこ
とが考えられる。
In addition, at the beginning of adsorption after desorption is complete, the coal layer is still at a high temperature, and if the raw gas is fed here, along with the solvent remaining in the activated carbon, high temperature and the presence of oxygen are present, as in the early stage of desorption. Below, it is thought that the catalytic action of activated carbon causes severe oxidation of the solvent.

したがってこれらの溶剤の反応抑止が強く要望されてい
る。
Therefore, there is a strong demand for suppressing the reaction of these solvents.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は上記課題を解決するためになされたもので、そ
の目的とするところは脱着、さらには吸着の際活性炭に
吸着された溶剤の分解、酸化、重合などの反応を抑止し
、活性炭の寿命を長くしようとすることにある。
The present invention has been made to solve the above problems, and its purpose is to suppress reactions such as decomposition, oxidation, and polymerization of the solvent adsorbed on activated carbon during desorption and adsorption, thereby increasing the lifespan of activated carbon. The purpose is to try to make it longer.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは上記目的を達成するため、活性炭上におけ
る溶剤の酸化等の反応速度は温度によって変り、低温に
なるにつれてこれらの反応速度が大きく低下することを
見出し、水蒸気脱着の初期において低圧低温の水蒸気を
用いて炭層内の空気を追出し、しかる後所定の温度の水
蒸気を用いて脱着を行い、脱着終了後は、炭層内に残留
充満すろ水蒸気を凝縮器によって水冷凝縮させることに
より吸着槽内を減圧し、圧力の低下によって水の沸点が
下がるため、水蒸気脱着後の活性炭に含まれる水分の蒸
発が起こり、その除水の蒸発熱によって炭層温度を低下
させる。炭層の温度が所定の温度迄低下した後、吸着工
程に移り、炭層に原ガスを通過させる。
In order to achieve the above object, the present inventors discovered that reaction rates such as oxidation of solvents on activated carbon vary depending on temperature, and that these reaction rates decrease significantly as the temperature decreases. The air in the coal seam is expelled using water vapor of As the boiling point of water decreases due to the pressure drop, the water contained in the activated carbon after steam desorption evaporates, and the heat of evaporation of the removed water lowers the coal bed temperature. After the temperature of the coal seam has decreased to a predetermined temperature, the process moves to the adsorption step, in which the raw gas is passed through the coal seam.

この脱着−吸着方式によって活性炭とこれに含まれる溶
剤が、高温において空気と接触することなく、水蒸気脱
着が行われる。
This desorption-adsorption method allows activated carbon and the solvent contained therein to desorb water vapor at high temperatures without coming into contact with air.

〔実施態様及び作用〕[Embodiment and operation]

以下に本発明方法を第1図及び第1表(本発明方法)に
基づき説明する。
The method of the present invention will be explained below based on FIG. 1 and Table 1 (method of the present invention).

第1図は本発明の一実施態様を示すフロー図である。第
1図において吸着槽3−1は吸着工程にあり、また吸着
槽3−2は脱着工程にあるとする。
FIG. 1 is a flow diagram showing one embodiment of the present invention. In FIG. 1, it is assumed that the adsorption tank 3-1 is in the adsorption process and the adsorption tank 3-2 is in the desorption process.

ここで吸着槽3−2は吸着工程に切換えた初期において
は吸着槽内は原ガスで充満しており、はぼ大気圧下にあ
る。このような状態にある吸着槽3−2内のガスを、脱
着工程開始と共に真空ポンプ6により凝縮55のベント
1f40を通して吸引し、吸着槽3−2を減圧し所定の
圧力とする。一方吸引したガスは原ガスのブロワ−2の
出口の導管に接続する。
Here, in the initial stage of switching to the adsorption step, the adsorption tank 3-2 is filled with raw gas and is almost under atmospheric pressure. The gas in the adsorption tank 3-2 in such a state is sucked through the vent 1f40 of the condenser 55 by the vacuum pump 6 at the start of the desorption process, and the pressure in the adsorption tank 3-2 is reduced to a predetermined pressure. On the other hand, the sucked gas is connected to the conduit at the outlet of the raw gas blower 2.

その後水蒸気Sを減圧弁PCV−1により吸着槽3−2
とほぼ等しい圧力に減圧し、さらにこの水蒸気が減圧さ
れた圧力における過熱水蒸気温度状態となるので、これ
をその圧力における飽和水蒸気温度まで冷却するため水
Wを温度調節弁TCVを通して水蒸気中に送入し、水の
蒸発により飽和水蒸気温度に至った水蒸気を吸着槽3−
2に送入し炭層4−2の加熱を行う。炭層4−2の温度
は送入された水蒸気の凝縮により、吸着工程における温
度(一般に30’C前後〉から、減圧加熱温度、すなわ
ち水蒸気の所定圧力における飽和温度まで上昇する。こ
の炭層温度上昇は炭層上部より水蒸気温度に到達し、そ
れと共にその部分の水蒸気の凝縮は止み、その部分の炭
層内に滞留する空気は水蒸気の通過により下方へ押出さ
れ、これが徐々に炭層下部に向って進行し炭層全体が水
蒸気温度と等しい温度に至った時点において、炭層内の
空気はほぼ完全に排出される。
After that, water vapor S is transferred to adsorption tank 3-2 by pressure reducing valve PCV-1.
The pressure is reduced to approximately the same as that of the water vapor, and the water vapor reaches the superheated vapor temperature state at the reduced pressure, so water W is sent into the vapor through the temperature control valve TCV to cool it to the saturated vapor temperature at that pressure. The water vapor that has reached the saturated vapor temperature due to water evaporation is transferred to the adsorption tank 3-
2 to heat the coal seam 4-2. The temperature of the coal bed 4-2 increases from the temperature in the adsorption process (generally around 30'C) to the reduced pressure heating temperature, that is, the saturation temperature at a predetermined pressure of water vapor, due to the condensation of the introduced steam. The water vapor temperature reaches the temperature from the upper part of the coal bed, and the condensation of the water vapor in that part stops, and the air remaining in the coal bed in that part is pushed downward by the passage of water vapor, and this gradually advances toward the bottom of the coal bed, and the coal bed is closed. When the entire coal seam reaches a temperature equal to the water vapor temperature, the air in the coal seam is almost completely evacuated.

従来法においては炭層全体が脱着温度(100°C)に
至る時間は一般の装置において、水蒸気送入開始より、
0.5〜1時間であり、この時間帯に有機溶剤が活性炭
及び空気の存在下、高温に曝されることになり、溶剤が
最も激しく酸化反応を起こすことになる。酸化反応速度
が温度の低下に従って減少することは自明のことである
が、炭層内の空気を脱着初期において排出するに当り、
100°Cの水蒸気を用いて炭層を100”C迄加熱し
て空気の除去を行う従来法に比較して、低圧力低温度の
水蒸気を用いて行うことは溶剤の酸化を抑制する上で大
きい効果が得られる。
In conventional methods, the time it takes for the entire coal bed to reach the desorption temperature (100°C) is approximately
During this period, the organic solvent is exposed to high temperature in the presence of activated carbon and air, and the most violent oxidation reaction occurs in the solvent. It is obvious that the oxidation reaction rate decreases as the temperature decreases, but when the air in the coal seam is discharged at the initial stage of desorption,
Compared to the conventional method of heating the coal bed to 100"C using 100°C steam to remove air, using low-pressure, low-temperature steam is much more effective in suppressing oxidation of the solvent. Effects can be obtained.

炭層全体が所定減圧下における飽和水蒸気温度に到達後
、真空ポンプ6を停止し、脱着弁V−Bを閉とし、次い
で水蒸気Sを圧力はぼ1 atnt、温度約100°C
において吸着槽3−2に送入することにより、炭層4−
2はさらに水蒸気の凝縮が起こり、約100’Cに到達
する。このようにして炭層が約100゜Cに到達した後
、脱着弁V−Bを開とし続いて約100°Cの水蒸気を
所定時間送入することにより活性炭に吸着された溶剤の
脱着が行われる。脱着を低圧低温水蒸気によって行わす
100°C水蒸気で行う理由は、低温になるにつれて脱
着に要する水蒸気量が増大することであり、炭層より空
気を排除した後では高温においても溶剤の酸化が起らな
いことによる。
After the entire coal bed reaches the saturated steam temperature under a predetermined reduced pressure, the vacuum pump 6 is stopped, the desorption valve V-B is closed, and the steam S is then pumped to a pressure of 1 atnt and a temperature of about 100°C.
The coal seam 4-
2, water vapor condenses further and reaches about 100'C. After the temperature of the coal bed reaches about 100°C in this way, the desorption valve V-B is opened and water vapor at about 100°C is introduced for a predetermined period of time to desorb the solvent adsorbed on the activated carbon. . The reason why desorption is performed using low-pressure, low-temperature steam (100°C steam) is that the amount of steam required for desorption increases as the temperature decreases, and oxidation of the solvent does not occur even at high temperatures after air is removed from the coal seam. By not having one.

脱着工程を終了し水蒸気の吸着槽3−2への送入を停止
後、吸着工程に入り原ガスlを吸着槽3−2に送入する
前に炭層4−2を脱着温度より所定の低温度迄冷却する
ために、凝縮器ベント管10のS■を全開とする。吸着
槽3−2及び凝縮器5は水蒸気によって充満されている
が、ベント管10を閉じることにより水蒸気が冷却水W
を通す凝縮器5において水冷却凝縮されるにつれて吸着
槽3−2内の圧力は低下する。圧力の低下に伴い脱着温
度にある炭層4−2に含まれる水分(脱着初期における
凝縮水)は蒸発し、その蒸発熱(脱着熱二水の蒸発潜熱
の約1.3倍)により炭層の温度は降下する。この減圧
冷却により炭層4−2が所定の温度に到達後、脱着工程
は終了し、開閉弁Sv及び圧力調節弁PCV−2を開き
吸着槽3−2を大気圧に戻し、吸着工程に切換えられ原
ガス1を送入する。同時に吸着槽3−1は脱着工程に切
換えられ、減圧−減圧加熱一脱着一減圧冷却が行われる
After completing the desorption process and stopping the supply of water vapor to the adsorption tank 3-2, the adsorption process begins and the coal bed 4-2 is heated to a predetermined temperature lower than the desorption temperature before supplying the raw gas 1 to the adsorption tank 3-2. In order to cool down to the temperature, the S■ of the condenser vent pipe 10 is fully opened. The adsorption tank 3-2 and the condenser 5 are filled with water vapor, but by closing the vent pipe 10, the water vapor is removed from the cooling water W.
As the adsorption tank 3-2 is cooled and condensed in the condenser 5, the pressure inside the adsorption tank 3-2 decreases. As the pressure decreases, the water contained in the coal bed 4-2 at the desorption temperature (condensed water at the initial stage of desorption) evaporates, and the temperature of the coal bed increases due to its heat of vaporization (approximately 1.3 times the latent heat of vaporization of water). descends. After the coal bed 4-2 reaches a predetermined temperature due to this reduced pressure cooling, the desorption process is completed, the on-off valve Sv and the pressure control valve PCV-2 are opened, the adsorption tank 3-2 is returned to atmospheric pressure, and the adsorption process is started. Inject raw gas 1. At the same time, the adsorption tank 3-1 is switched to the desorption process, and vacuum-heating, desorption, and vacuum cooling are performed.

この脱着後の減圧冷却は吸着槽付属の切換弁に多少の洩
れがあり減圧冷却時に空気の流入があり、減圧を阻害す
ることがある場合には開閉弁Svは使用せず、真空ポン
プ6を駆動し圧力調節弁pcv−2の設定圧力を炭層の
到達温度に対応する圧力に調節し、流入空気を排出しつ
つ所定の減圧圧力を保持することも本発明に含まれる。
When cooling under reduced pressure after desorption, if there is some leakage in the switching valve attached to the adsorption tank and air flows in during cooling under reduced pressure, which may impede depressurization, do not use the on-off valve Sv and turn on the vacuum pump 6. The present invention also includes adjusting the set pressure of the driven pressure regulating valve PCV-2 to a pressure corresponding to the temperature reached by the coal seam, and maintaining a predetermined reduced pressure while discharging the incoming air.

なおこの圧力は冷却水Wの水温にも依存することが明ら
かである。
It is clear that this pressure also depends on the temperature of the cooling water W.

この減圧冷却により、脱着後戻層に残留する溶剤が、高
温で空気と接触することなく冷却されるため残留溶剤の
酸化が防止されることになる。さらに吸着初期の新たな
吸着溶剤の酸化も防止される。
By this reduced pressure cooling, the solvent remaining in the return layer after desorption is cooled without coming into contact with air at high temperatures, thereby preventing oxidation of the remaining solvent. Furthermore, oxidation of new adsorption solvent at the initial stage of adsorption is also prevented.

さらに溶剤の加熱による重合を抑制するために脱着を減
圧低温水蒸気を用いて行う場合があるが、その場合にお
いても溶剤の酸化を防止するため(こ、炭層の脱着前の
減圧加熱(炭層よりの空気排除)を脱着におけるよりも
、さらに低圧力低温度水蒸気を使用して行い、また脱着
後の減圧冷却を脱着におけるよりも低圧力で行うことに
ついてもこの発明に含まれる。
Furthermore, in order to suppress polymerization due to heating of the solvent, desorption is sometimes carried out using reduced-pressure low-temperature steam, but even in that case, in order to prevent oxidation of the solvent The present invention also includes performing air removal) using steam at a lower pressure and lower temperature than during desorption, and performing vacuum cooling after desorption at a lower pressure than during desorption.

〔以下余白〕[Margin below]

〔実施例〕 乾燥機より発生するシクロヘキサノン及びトルエンを含
むガス中から活性炭を充填した吸着槽2基を用い、1つ
は従来法の吸着と大気圧、100°Cの水蒸気脱着によ
る活性炭再生を繰返すサイクルによる方式、他は本発明
方法による吸着と減圧水蒸気加熱、lOO″C水蒸気脱
着、減圧冷却による活性炭再生を繰返すサイクルによる
方式によって同じ仕様条件下において溶剤回収を行った
場合の運転条件と活性炭寿命(lI&着槽排ガス溶剤濃
度が規定値を越えるまでの運転時間)について第2表に
比較して示す。
[Example] Using two adsorption tanks filled with activated carbon from gas containing cyclohexanone and toluene generated from a dryer, one repeats conventional adsorption and activated carbon regeneration by steam desorption at atmospheric pressure and 100°C. Operating conditions and activated carbon life when solvent is recovered under the same specification conditions by a cycle method and a cycle method that repeats adsorption using the method of the present invention, vacuum steam heating, lOO''C steam desorption, and activated carbon regeneration by vacuum cooling. Table 2 shows a comparison of (lI & operating time until tank exhaust gas solvent concentration exceeds the specified value).

運転条件 溶剤(シクロヘキサノン、トルエン)含有ガス流量10
、 OOONm3/Fl ガス中の溶剤濃度        2360volpp
m溶剤回収量         トルエン50Kg/H
シクロヘキサノン50Kg/H 吸着槽排ガス溶剤濃度規定量   < 1100vol
pp吸着槽(円筒竪型)2基 内径3. latφ高さ
3.0m切換時間 使用水蒸気 使用冷却水 活性炭  3.300Kg/基 吸着3時間、脱着3時間 2Kg/cm”G 30°C 〔以下余白〕 なお吸着槽排ガス溶剤濃度が1100volppになる
までの時間を示したのが第3図である。
Operating conditions Gas flow rate containing solvent (cyclohexanone, toluene) 10
, OOONm3/Fl Solvent concentration in gas 2360volpp
m Solvent recovery amount Toluene 50Kg/H
Cyclohexanone 50Kg/H Adsorption tank exhaust gas solvent concentration specified amount < 1100vol
2 pp adsorption tanks (cylindrical vertical type), inner diameter 3. latφ Height 3.0m Switching time Used Steam Used Cooling water Activated carbon 3.300Kg/group Adsorption for 3 hours, Desorption for 3 hours 2Kg/cm"G 30°C Figure 3 shows the time.

〔発明の効果〕〔Effect of the invention〕

従来法では脱着初期、空気の存在下高温にさらされた溶
剤が酸化され、また吸着初期に送入された原ガスが加熱
されるので活性炭中に酸化物が生威し蓄積されるので、
活性炭の寿命が短い。これに対し本発明方法では吸着槽
の減圧を行い低温水蒸気を送入して空気を排出した後、
大気圧水蒸気によって脱着が行われるため溶剤の酸化が
抑制される。また脱着後、減圧による水分の蒸発熱によ
って炭層の冷却を行った後、吸着工程にて原ガスが送入
されるので酸化が抑制される。
In the conventional method, the solvent exposed to high temperature in the presence of air is oxidized in the early stage of desorption, and the raw gas introduced in the early stage of adsorption is heated, causing oxides to grow and accumulate in the activated carbon.
Activated carbon has a short lifespan. In contrast, in the method of the present invention, after reducing the pressure in the adsorption tank, introducing low-temperature steam, and discharging air,
Oxidation of the solvent is suppressed because desorption is performed by atmospheric pressure water vapor. Furthermore, after desorption, the coal bed is cooled by the heat of evaporation of water due to reduced pressure, and then the raw gas is introduced in the adsorption step, so oxidation is suppressed.

これら酸化抑制の効果により、本発明方法における一定
の吸脱着条件下での吸着槽排ガス溶剤濃度が1100v
olppを越えるまでの期間(活性炭寿命)は従来法の
約3倍と長い。これは活性炭交換費用が従来のA以下で
済むことになり、溶剤の回収コストを大幅に低下させる
ので経済的効果は大きい。
Due to these oxidation-suppressing effects, the adsorption tank exhaust gas solvent concentration under certain adsorption and desorption conditions in the method of the present invention is 1100V.
The period until the OLPP is exceeded (activated carbon life) is about three times longer than that of the conventional method. This means that the cost of replacing the activated carbon is less than the cost of conventional method A, and the cost of recovering the solvent is significantly reduced, which has a great economic effect.

また酸化物の生成が抑制されることにより回収溶剤の収
率、品質の向上が達成される。
Furthermore, by suppressing the generation of oxides, the yield and quality of the recovered solvent can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の減圧加熱、大気圧脱着、減圧冷却方式
のフロー図である。第2図は従来の大気圧加熱、大気圧
脱着方式のフロー図である。 第3図は溶剤回収運転期間と吸着槽排ガス溶剤濃度推移
関係図(実施例)である。 l・・・・・原ガス      2・・・・・ガスブロ
ワ−3−1,3−2・・・・・吸着槽   4−1.4
−2・・・活性炭層5・・・・・凝縮器      6
・・・・・真空ポンプ7・・・・・中継槽      
8・・・・・送液ポンプ9・・・・・デカンタ−lO・
・・・・ベント管S・・・・・水蒸気     W・・
・・・冷却水PCV−1・・・・・水蒸気圧力調節弁P
CV−2・・・・・真空ポンプ圧力調節弁TCV  ・
・・・・水蒸気温度調節弁SV  ・・・・・遮断弁 V−B  ・・・・・脱着弁
FIG. 1 is a flow diagram of the reduced pressure heating, atmospheric pressure desorption, and reduced pressure cooling methods of the present invention. FIG. 2 is a flow diagram of the conventional atmospheric pressure heating and atmospheric pressure desorption method. FIG. 3 is a diagram (example) showing the relationship between the solvent recovery operation period and the adsorption tank exhaust gas solvent concentration transition. l...Raw gas 2...Gas blower-3-1, 3-2...Adsorption tank 4-1.4
-2...Activated carbon layer 5...Condenser 6
...Vacuum pump 7...Relay tank
8... Liquid pump 9... Decanter lO.
...Vent pipe S...Water vapor W...
...Cooling water PCV-1...Steam pressure control valve P
CV-2...Vacuum pump pressure control valve TCV ・
...Steam temperature control valve SV ...Shutoff valve V-B ...Desorption valve

Claims (1)

【特許請求の範囲】[Claims] (1)活性炭を充填した吸着槽を用いて溶剤ガスを吸着
させ次いで活性炭に吸着された該ガスを脱着するため活
性炭層に直接所定の水蒸気を吹込んで活性炭を再生する
方法において、前記水蒸気を吹込む以前に、吸着槽内を
減圧し、次いで前記水蒸気の温度以下の水蒸気を吹込み
、その減圧圧力の飽和温度における水蒸気によって活性
炭層の空気を置換した後、前記水蒸気を吹込んで脱着を
行い、前記水蒸気吹込みを停止した後、吸着槽内を脱着
時の圧力以下に減圧し、活性炭に含まれる水分の蒸発熱
により、活性炭層の温度を脱着温度から減圧圧力におけ
る水蒸気飽和温度付近迄冷却した後、吸着工程に移るこ
とを特徴とする活性炭再生方法。
(1) In a method of regenerating activated carbon by adsorbing a solvent gas using an adsorption tank filled with activated carbon and then blowing a predetermined amount of water vapor directly into the activated carbon layer to desorb the gas adsorbed on the activated carbon, the water vapor is blown into the activated carbon layer. Before injecting, the inside of the adsorption tank is depressurized, and then water vapor at a temperature lower than that of the water vapor is blown into the activated carbon layer, and the air in the activated carbon layer is replaced by the water vapor at the saturation temperature of the reduced pressure, and then the water vapor is blown in to perform desorption. After stopping the steam injection, the pressure inside the adsorption tank was reduced to below the pressure at the time of desorption, and the temperature of the activated carbon layer was cooled from the desorption temperature to around the steam saturation temperature at the reduced pressure by the heat of evaporation of the water contained in the activated carbon. Activated carbon regeneration method characterized by moving to an adsorption step.
JP1214105A 1989-08-22 1989-08-22 Activated carbon regeneration method Expired - Fee Related JPH0732861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1214105A JPH0732861B2 (en) 1989-08-22 1989-08-22 Activated carbon regeneration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1214105A JPH0732861B2 (en) 1989-08-22 1989-08-22 Activated carbon regeneration method

Publications (2)

Publication Number Publication Date
JPH0377619A true JPH0377619A (en) 1991-04-03
JPH0732861B2 JPH0732861B2 (en) 1995-04-12

Family

ID=16650317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1214105A Expired - Fee Related JPH0732861B2 (en) 1989-08-22 1989-08-22 Activated carbon regeneration method

Country Status (1)

Country Link
JP (1) JPH0732861B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107970904A (en) * 2018-01-26 2018-05-01 索红卫 A kind of regenerating active carbon system and application method
CN108317646A (en) * 2017-12-23 2018-07-24 天津市华歌美川环境科技工程有限公司 Air cleaning unit based on air source heat pump

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108317646A (en) * 2017-12-23 2018-07-24 天津市华歌美川环境科技工程有限公司 Air cleaning unit based on air source heat pump
CN108317646B (en) * 2017-12-23 2024-01-02 天津沐歌医疗科技发展有限公司 Air purification device based on air source heat pump
CN107970904A (en) * 2018-01-26 2018-05-01 索红卫 A kind of regenerating active carbon system and application method
CN107970904B (en) * 2018-01-26 2023-06-20 索红卫 Activated carbon regeneration system and use method

Also Published As

Publication number Publication date
JPH0732861B2 (en) 1995-04-12

Similar Documents

Publication Publication Date Title
US4283212A (en) Treatment of gas streams
US5345771A (en) Process for recovering condensable compounds from inert gas-condensable compound vapor mixtures
EP0205582B1 (en) Bulk removal of water from organic liquids
US4259094A (en) Apparatus for continuous recovery of solvent
JP6305868B2 (en) Hydrogen gas purification method and purification apparatus
TW201107288A (en) Processes for purification of acetylene
JPS6099192A (en) Improved process and apparatus for removing hydrocarbon frommixture of air and hydrocarbon vapor
CN101978235A (en) Method and apparatus for separating blast furnace gas
JPS60118206A (en) Improved adsorptive separation cycle
EP0628336B1 (en) Vapor recovery system
CZ20014632A3 (en) Ethylene regeneration process
US3696587A (en) Adsorption process for recovering easy-to-regenerate condensible components from a multicomponent gas stream
JPH0377619A (en) Method for regenerating activated carbon
WO1988001534A1 (en) Process and apparatus for recovering impurities, in particular solvents, contained in gases
SE452952B (en) MULTIPLE STEP ADSORPTION PROCESS FOR SEPARATION OF ORGANIC LIQUIDS FROM WATER
JP4070399B2 (en) Helium gas purification method
JP2000334257A (en) Dehydration of organic compound
JP3983440B2 (en) Cooling method of activated carbon layer in solvent recovery
WO2021239749A1 (en) Methods and devices for steam driven carbon dioxide capture
JPS63264119A (en) Desorption method for activated carbon
CN113660992A (en) Two-step recovery of halogenated hydrocarbons
JP6349478B1 (en) Removal system and removal method for removing moisture from moisture-containing organic solvent
JPH11276840A (en) Method and device for recovering organic solvent
JPS63162636A (en) Production of absolute alcohol
JPS59115724A (en) Cooling method of adsorption tank using activated carbon

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090412

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees