JPH0377433B2 - - Google Patents

Info

Publication number
JPH0377433B2
JPH0377433B2 JP58176321A JP17632183A JPH0377433B2 JP H0377433 B2 JPH0377433 B2 JP H0377433B2 JP 58176321 A JP58176321 A JP 58176321A JP 17632183 A JP17632183 A JP 17632183A JP H0377433 B2 JPH0377433 B2 JP H0377433B2
Authority
JP
Japan
Prior art keywords
capsule
water
ice
specific gravity
capsules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58176321A
Other languages
Japanese (ja)
Other versions
JPS6069470A (en
Inventor
Wahei Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP17632183A priority Critical patent/JPS6069470A/en
Publication of JPS6069470A publication Critical patent/JPS6069470A/en
Publication of JPH0377433B2 publication Critical patent/JPH0377433B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は氷の融解潜熱を利用した蓄冷熱装置に
係り、特に冷却用水の冷熱源として、或はヒート
プンプに対しての熱源として小容積で大容量の冷
熱を蓄えることが出来る蓄冷熱装置に関する。
[Detailed Description of the Invention] "Industrial Application Field" The present invention relates to a cold heat storage device that utilizes the latent heat of melting of ice, and is particularly suitable for use as a cold heat source for cooling water or as a heat source for heat pumps in a small volume. The present invention relates to a cold storage device that can store a large amount of cold energy.

「従来の技術及びその問題点」 周知のように氷より水に、水より氷に相変態が
行われる場合には80Cal/cm3の熱の授受が行われ
る。これは同一容積の水に較べ、その潜熱利用に
より80倍の熱容量を保持させることが出来、極め
て有効的な蓄冷熱装置を構成させることが出来る
わけである。このために従来は冷却水を冷却管面
に結氷させ、この融解時の氷の潜熱を利用するこ
とが行われ、所謂アイスバンクと称せられるもの
であるが、冷却管面に成長する結氷の厚さが増す
にしたがい、結氷面に至る熱の伝導が次第に減少
し、結氷速度は甚だしく低下する。また結氷、融
氷面と冷却面とは結氷層を透して行われるので、
熱伝導が悪く、これを促進させるためには冷却水
と冷却管面との温度勾配を増大させることを要す
る。このような冷却温度の冷凍機の運転効率は著
しく低い値になつてしまうものである。又、冷却
管面の結氷は相互に橋絡したりすれば結氷表面は
却つて減少し、冷水供給のための熱交換率が低下
し、負荷の変動に対する追従性も低下する。また
冷却管面に成長する結氷厚の検出、測定精度を高
めることは難しく運転制御の誤動作などが生じた
場合の過剰凍結のための冷却管や、蓄熱槽の損傷
は皆無とは云い難い。
"Prior Art and its Problems" As is well known, when phase transformation occurs from ice to water or from water to ice, 80 Cal/cm 3 of heat is exchanged. Compared to the same volume of water, it can hold 80 times more heat capacity by utilizing its latent heat, making it possible to construct an extremely effective cold storage device. Conventionally, this has been done by freezing the cooling water on the surface of the cooling pipe and utilizing the latent heat of the ice during melting, which is called an ice bank. As the ice temperature increases, the conduction of heat to the frozen surface gradually decreases, and the rate of ice formation decreases significantly. Also, since freezing, melting, and cooling occur through the frozen layer,
Heat conduction is poor, and in order to promote this, it is necessary to increase the temperature gradient between the cooling water and the surface of the cooling pipe. The operating efficiency of a refrigerator at such a cooling temperature is extremely low. Furthermore, if the ice on the surface of the cooling pipe becomes bridged with each other, the surface of the ice is further reduced, the heat exchange rate for supplying cold water is reduced, and the ability to follow changes in load is also reduced. Furthermore, it is difficult to detect and measure the thickness of ice that grows on the cooling pipe surface, and it is difficult to improve the accuracy of the measurement, and it is difficult to say that there will be no damage to the cooling pipes or heat storage tank due to excessive freezing in the event of a malfunction in operation control.

他の方法として水滴カプセルによつて生ずる蓄
冷熱装置については水より氷の相変態時の体積膨
脹によつて生ずるカプセル破損の懸念、運転中に
おけるカプセルと冷却水との熱交換、カプセル内
の結氷の姿態、結氷量に対する蓄冷熱装置の運転
制御、保護等の点が明らかでないため、その活用
が阻まれていたものである。
As for other methods, there are concerns about capsule breakage caused by volume expansion during the phase transformation of ice from water, heat exchange between the capsule and cooling water during operation, and freezing of ice inside the capsule. Its use has been hindered due to unclear aspects such as the state of ice, operation control and protection of the cold heat storage device in relation to the amount of ice formed.

周知のように水より氷の相変態時の潜熱の活用
が蓄冷熱装置の本質的なものであるが、同時に相
変態時の氷の密度は0.917であるから、その被体
積は1.0905となり、体積膨張が行われる。氷の圧
縮力は極めて大きな値なので、結氷時には普通の
容器がこれに耐えることが出来ず、これに追従す
るか、追従できないときは破損してしまう。前述
の冷水製造用の水冷却器の制御の誤動作などで発
生する破裂事故はこれによるものである。カプセ
ルの弾性比例限界が氷の体積膨張より仮りに大き
な値であつても、結氷、融氷が繰返して行われる
場合には融氷部分に融けた水が入り込み結氷し、
遂には容器の弾性比例限界を越して容器を破壌し
てしまうことになる。
As is well known, utilizing the latent heat during phase transformation of ice rather than water is essential for cold storage heat storage devices, but at the same time, since the density of ice during phase transformation is 0.917, its covered volume is 1.0905, and the volume Expansion takes place. The compressive force of ice is extremely large, so when it freezes, an ordinary container cannot withstand it, and if it is unable to follow it, it will break. This is the cause of the bursting accidents that occur due to malfunctions in the control of water coolers for producing chilled water, as mentioned above. Even if the elastic proportionality limit of the capsule is larger than the volumetric expansion of ice, if freezing and melting are repeated, melted water will enter the melted area and freeze.
Eventually, the elastic proportionality limit of the container will be exceeded and the container will be destroyed.

「課題を解決する為の技術手段」 本発明はこれらの点に鑑み行われたカプセルを
使用した蓄冷熱装置であり、その特徴とする所
は、 水を封入したカプセル群をブライン液中に浸漬
けし、該カプセルに封入した水の氷潜熱を利用し
た蓄冷熱装置において、 前記カプセルを脱気させた水を封入した弾性カ
プセルで形成すると共に、該カプセルの少なくと
も一のカプセルのブライン液に対する相対比重を
検出する手段と、水に対する前記ブライン液の比
重を検出する手段を設け、前記両検出手段よりの
出力に基づいてカプセル秤量値を演算し、該該秤
量値の変化により前記蓄冷熱槽の運転制御を行な
うように構成した蓄冷熱装置を提案する。
"Technical Means for Solving the Problems" The present invention is a cold storage heat storage device using capsules, which was developed in view of these points. In the cold heat storage device that utilizes ice latent heat of water sealed in the capsule, the capsule is formed of an elastic capsule filled with deaerated water, and the relative specific gravity of at least one of the capsules to the brine liquid is and a means for detecting the specific gravity of the brine liquid relative to water, a capsule weight value is calculated based on the outputs from both of the detection means, and the operation of the cold storage heat tank is determined based on a change in the weight value. We propose a cold storage heat storage device configured to perform control.

次に本発明を概略的に説明する。 Next, the present invention will be schematically explained.

カプセルに充填される水については気泡などは
勿論、水中に溶存する空気や他のガスを真空ポン
プなどで脱気することが望ましく、このような水
をカプセルに完全に充満させて後にカプセルに密
封する事により、カプセル内の水が氷に、又氷が
水に夫々変化する際の比重測定を精度よく行なう
事が出来る。
It is desirable to use a vacuum pump to remove not only air bubbles but also air and other gases dissolved in the water that is filled into the capsule.The capsule must be completely filled with such water and then sealed in the capsule. By doing so, it is possible to accurately measure the specific gravity when the water in the capsule changes to ice, and the ice changes to water.

又、カプセルは任意の形状、多面体であつても
差支はなく、その表面積の最も小さな形状は球状
カプセルとなり、そのものの容積対内容積の比よ
りみれば最も経済的型状である。これを例に採れ
ば球状カプセル構成の材質の線膨脹は 3√1.0905
=1.0293以上であれば差支えない。
Further, the capsule may have any shape or polyhedron, and the shape with the smallest surface area is a spherical capsule, which is the most economical shape in terms of the ratio of its volume to internal volume. Taking this as an example, the linear expansion of the material of the spherical capsule structure is 3 √1.0905
There is no problem if it is equal to or greater than = 1.0293.

又カプセルの材質は熱伝導の良い弾性材とすれ
ば金属カプセルとなるが、低温度で硬化変質のな
い樹脂であつても差支はない。このようにして作
られたカプセルは弾性を有するために結氷、融氷
の繰返しが行われる過程で、融氷された部分に融
けた水が他から新たに入り込むようなことはカプ
セル内では融氷が全表面で行われ、水が充満され
ているので、そのような事は行われない。即ちカ
プセルの結氷、融氷の繰返しが幾度も行われても
相変態による体積膨脹以上の膨脹はあり得ないの
で、カプセル破損は起り得ない。
Furthermore, if the material of the capsule is an elastic material with good thermal conductivity, the capsule will be a metal capsule, but there is no problem if it is made of resin, which does not harden or change in quality at low temperatures. Capsules made in this way have elasticity, so during the process of repeated freezing and melting, there is no possibility that melted water may enter the melted area from elsewhere. This is not possible since the entire surface is filled with water. That is, no matter how many times the capsule freezes and melts, the capsule cannot expand more than the volume expansion due to phase transformation, so the capsule cannot break.

カプセルは前述のように構成されるので、結
氷、融氷の過程における体積変化即ちカプセル外
径変化を直接実測を行つてもよいが、液ブライン
中にカプセルは浸漬されて熱交換が行われるの
で、浸漬中のカプセルの代表的な標準カプセルの
液ブラインに対する相対比重を検出する手段と、
水に対する前記ブライン液の比重を検出する手段
を設け、前記両検出手段よりの出力に基づいてカ
プセル秤量値、より具体的にはカプセル内の水
(氷)の比重を演算し、該比重よりカプセル内の
(氷)の融氷状態若しくは結氷状態を求め、その
状態に対応させて前記蓄冷熱槽の運転制御を行な
えば前記した従来技術における欠点が解消され
る。
Since the capsule is constructed as described above, it is possible to directly measure the volume change, that is, the change in the outer diameter of the capsule during the freezing and melting process, but since the capsule is immersed in liquid brine and heat exchange takes place, , means for detecting the relative specific gravity of a representative standard capsule to liquid brine of the capsule during immersion;
Means for detecting the specific gravity of the brine liquid with respect to water is provided, and based on the outputs from both of the detection means, the capsule weight value, more specifically, the specific gravity of water (ice) in the capsule is calculated, and from the specific gravity, the capsule weight is calculated. The above-described drawbacks of the prior art can be overcome by determining the melting or freezing state of the ice and controlling the operation of the cold storage heat tank in accordance with the determined state.

「実施例」 以下、図面に基づいて本発明の実施例を例示的
に詳しく説明する。但しこの実施例に記載されて
いる構成部品の寸法、材質、形状、その相対配置
などは特に特定的な記載がない限りは、この発明
の範囲をそれのみに限定する趣旨ではなく単なる
説明例に過ぎない。
"Embodiments" Hereinafter, embodiments of the present invention will be described in detail by way of example based on the drawings. However, unless otherwise specified, the dimensions, materials, shapes, and relative positions of the components described in this example are not intended to limit the scope of this invention, but are merely illustrative examples. Not too much.

このカプセル比重計測装置の一例を第1図に示
す。第2図は結氷、融氷の徳性曲線の一例、第3
図は蓄冷熱装置の制御の系統図を示す。
An example of this capsule specific gravity measuring device is shown in FIG. Figure 2 is an example of the virtue curve of freezing and melting ice.
The figure shows a control system diagram of the cold storage heat storage device.

第1図において1は水を充満し密封した結氷検
出球状カプセル、2は液ブライン、3はカプセル
重量釣合ばね、4はバネ指標検出用鉄心、5は励
磁線輪、6は線輪導線とした球状カプセル比重計
測装置である。第2図のaは液ブラインの冷却経
過時間Tに対するカプセル内の結氷、融氷量Vの
変化を示す曲線、bはaに対するカプセル内の温
度tと冷却経過時間Tの変化曲線で、前記球状カ
プセル比重計測装置による実測置の一例である。
In Fig. 1, 1 is a spherical ice detection capsule filled with water and sealed, 2 is liquid brine, 3 is a capsule weight balance spring, 4 is an iron core for spring index detection, 5 is an excitation wire ring, and 6 is a wire ring conductor. This is a spherical capsule specific gravity measuring device. In Fig. 2, a is a curve showing changes in the amount of ice formed and melted V in the capsule with respect to the cooling elapsed time T of the liquid brine, and b is a curve showing changes in the temperature t inside the capsule and the elapsed cooling time T with respect to a. This is an example of an actual measuring device using a capsule specific gravity measuring device.

a図は冷却経過時間Tに対するカプセル内部の
結氷量Vが増加している状態、更に冷却水使用時
のカプセル内での融氷状態が明らかに示されてい
る。bはaの状態が進行しているときのカプセル
内の温度tの変化である。s点は結氷時のカプセ
ル内で生ずる水の過冷却現象が現れたものであ
る。第3図において7はブライン比重測定用の球
状浮子、8は球状浮子による検出部、9は前記ブ
ライン比重検出部導線、10は比重検出演算装
置、11は蓄冷熱槽、12は蓄冷熱用弾性球状カ
プセル、13は冷却装置、14は液ブライン冷却
管、15は空気冷却器、16は液ブライン循環ポ
ンプである。
Figure a clearly shows the state in which the amount of ice forming inside the capsule increases with respect to the elapsed cooling time T, and also clearly shows the state in which the ice melts inside the capsule when cooling water is used. b is the change in temperature t inside the capsule while state a is progressing. The s point is a manifestation of the supercooling phenomenon of water that occurs inside the capsule during freezing. In Fig. 3, 7 is a spherical float for measuring the specific gravity of brine, 8 is a detection section using a spherical float, 9 is a conducting wire for the brine specific gravity detection section, 10 is a specific gravity detection calculation device, 11 is a cold storage heat tank, and 12 is an elastic body for cold storage heat. A spherical capsule, 13 a cooling device, 14 a liquid brine cooling pipe, 15 an air cooler, and 16 a liquid brine circulation pump.

次にこの運転について述べる。 Next, we will discuss this operation.

蓄冷熱槽11内には結氷検出球状カプセル1、
ブライン比重測定球状浮子7が液ブライン2に浸
漬され、これらの浮子の浮沈は前記検出部3,
4,5及び8から第2図特性曲線のような出力と
し、比重検出演算装置10に入力され、その演算
結果より蓄冷熱槽11内の蓄冷熱用弾性球状カプ
セル12内に結氷されている全結氷量が検出され
る。このような制御系を有する蓄熱槽1は冷却装
置13でブライン冷却管14を介して液ブライン
2が零度以下に冷却され、前記弾性球状カプセル
12内に充満された水は凍結する。水の凍結され
る間はその温度は零度を保持し、潜熱としてカプ
セル内に結氷状態で蓄熱され、その結氷量は前記
比重検出装置10で検出される。この出力で冷却
装置13の運転開始、停止などの制御が行われ
る。例えば翌日の気象条件の推定により空気冷却
器15の蓄冷熱の必要量に基き、予め結氷させて
置くことにより、極めて経済的な運転を容易に行
うことが出来るものである。
In the cold storage heat tank 11, there is a freezing detection spherical capsule 1,
Brine specific gravity measurement Spherical floats 7 are immersed in liquid brine 2, and the floating and sinking of these floats is detected by the detection unit 3,
4, 5, and 8 are outputted as shown in the characteristic curve in Figure 2, which is input to the specific gravity detection calculation device 10, and from the calculation result, all of the ice frozen in the elastic spherical capsule 12 for cold storage heat storage in the cold storage heat storage tank 11 is determined. The amount of ice is detected. In the heat storage tank 1 having such a control system, the liquid brine 2 is cooled to below zero degrees through the brine cooling pipe 14 in the cooling device 13, and the water filled in the elastic spherical capsule 12 is frozen. While the water is frozen, its temperature remains at zero degrees, and the latent heat is stored in the capsule in a frozen state, and the amount of frozen water is detected by the specific gravity detection device 10. Control such as starting and stopping the operation of the cooling device 13 is performed using this output. For example, extremely economical operation can be easily performed by freezing the air cooler 15 in advance based on the required amount of cold storage heat in the air cooler 15 by estimating the next day's weather conditions.

以上は結氷検出球状カプセルとして代表的な標
準カプセルによる全結氷量を演算、検出した例に
ついて述べたが、全カプセルより結氷量の検出、
測定の行えることはいうまでもない。
The above describes an example in which the total amount of ice is calculated and detected using a standard capsule, which is a typical ice detection spherical capsule.
Needless to say, measurements can be taken.

「効果」 本発明は以上のように弾性カプセル内に充填し
た水の潜熱を利用した蓄冷熱装置であるために、
その蓄冷熱量は極めて大きく、カプセルを使用し
ても結氷時の破損を行われることがなく、凍結、
融氷の行われる面と凍結面とが同一であり、温度
勾配は小さくてもよく、従つて冷却温度を大きく
低下させる必用もなく、冷却装置の運転効率がよ
く、結氷、融氷の検出にヒステリシスの生じるこ
とがないので、結氷状態の検出精度も高く、運転
制御が容易である。また保護の見地よりは基本的
なフエール・セーフ型で運転は安全に行うことが
出来る。等の種々の著効を有す。
"Effects" Since the present invention is a cold heat storage device that utilizes the latent heat of water filled in an elastic capsule as described above,
The amount of cold storage heat is extremely large, and even if the capsule is used, it will not be damaged when it freezes.
The surface where ice melts and the frozen surface are the same, the temperature gradient may be small, and therefore there is no need to reduce the cooling temperature significantly, the cooling system has good operating efficiency, and it is easy to detect ice formation and melting. Since hysteresis does not occur, the detection accuracy of ice formation is high, and operation control is easy. Also, from a protection standpoint, it is a basic fail-safe type and can be operated safely. It has various effects such as

【図面の簡単な説明】[Brief explanation of drawings]

第1図はカプセル比重計測装置の一例、第2図
は結氷、融氷の特性曲線の一例、第3図は蓄冷熱
装置の制御の系統図で1:結氷検出球状カプセ
ル、2:液ブライン、7:ブライン比重測定球状
浮子、10:比重検出演算装置、11:蓄冷熱
槽、12:蓄冷熱用弾性球状カプセル、13:冷
却装置、14:液ブライン冷却管、15:空気冷
却器、16:液ブライン循環ポンプ。
Figure 1 is an example of a capsule specific gravity measurement device, Figure 2 is an example of ice formation and ice melting characteristic curves, and Figure 3 is a control system diagram of a cold storage heat storage device. 1: Ice detection spherical capsule, 2: Liquid brine, 7: Spherical float for measuring brine specific gravity, 10: Specific gravity detection calculation device, 11: Cold storage heat tank, 12: Elastic spherical capsule for cold storage heat, 13: Cooling device, 14: Liquid brine cooling pipe, 15: Air cooler, 16: Liquid brine circulation pump.

Claims (1)

【特許請求の範囲】 1 水を封入したカプセル群をブライン液中に浸
漬けし、該カプセルに封入した水の氷潜熱を利用
した蓄冷熱装置において、 前記カプセルを脱気させた水を封入した弾性カ
プセルで形成し、 該カプセルの少なくとも一のカプセルと、ブラ
イン液中に位置する浮子を夫々連結部材を介して
ブライン液上に位置する比重検出演算装置の検出
部に連結して、 該検出部よりブライン液に対する相対比重と、
水に対する前記ブライン液の比重を夫々検出して
その検出値に基づいて前記比重検出演算装置で前
記カプセルの秤量値を演算し、 該秤量値の変化に対応させて前記蓄冷熱槽の冷
却運転を行なうように構成した事を特徴とする蓄
冷熱装置。
[Scope of Claims] 1. A cold storage heat storage device that utilizes ice latent heat of the water sealed in the capsules by immersing a group of capsules filled with water in a brine solution, wherein the capsules are degassed and filled with water. formed of capsules, at least one of the capsules and the float located in the brine solution are each connected to a detection section of a specific gravity detection calculation device located above the brine solution via a connecting member, and from the detection section Relative specific gravity to brine solution,
Detecting the specific gravity of the brine liquid relative to water, calculating the weighed value of the capsule with the specific gravity detection calculation device based on the detected value, and controlling the cooling operation of the cold storage heat tank in response to a change in the weighed value. A cold storage heat device characterized by being configured to perform the following functions.
JP17632183A 1983-09-26 1983-09-26 Cold heat accumulator utilizing capsule Granted JPS6069470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17632183A JPS6069470A (en) 1983-09-26 1983-09-26 Cold heat accumulator utilizing capsule

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17632183A JPS6069470A (en) 1983-09-26 1983-09-26 Cold heat accumulator utilizing capsule

Publications (2)

Publication Number Publication Date
JPS6069470A JPS6069470A (en) 1985-04-20
JPH0377433B2 true JPH0377433B2 (en) 1991-12-10

Family

ID=16011535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17632183A Granted JPS6069470A (en) 1983-09-26 1983-09-26 Cold heat accumulator utilizing capsule

Country Status (1)

Country Link
JP (1) JPS6069470A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6383564A (en) * 1986-09-26 1988-04-14 東洋エンジニアリング株式会社 Frigorie accumulator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57122265A (en) * 1981-01-23 1982-07-30 Maekawa Seisakusho Kk Frozen ice level measuring apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57122265A (en) * 1981-01-23 1982-07-30 Maekawa Seisakusho Kk Frozen ice level measuring apparatus

Also Published As

Publication number Publication date
JPS6069470A (en) 1985-04-20

Similar Documents

Publication Publication Date Title
US5065598A (en) Ice thermal storage apparatus
JPH0377433B2 (en)
US6298676B1 (en) Ice thermal storage control
Farid et al. Performance of direct contact latent heat storage unit
Mohamed Solidification of phase change material on vertical cylindrical surface in holdup air bubbles
CN114877548B (en) Instrument thermal protection device under low temperature environment
Wessling et al. The thermal properties of human blood during the freezing process
Hakuraku et al. Thermal design and tests of a subcooled superfluid helium refrigerator
CN108489841A (en) A kind of phase-change material cold cycling endurance testing device and test method
JPS5844194B2 (en) Chikunetsuriyousokuteihouhou
JPH02677Y2 (en)
GB1256874A (en)
RU189197U1 (en) SOIL TEST DEVICE
JPS6014240B2 (en) Underground storage tank for low temperature liquefied gas
Brewster et al. The effects of supercooling and freezing on natural convection in seawater
JPS60134175A (en) Sensor for quantity of freezing of cold heat accumulator by elastic capsule
JP2569654B2 (en) Heat storage device
SU1735681A1 (en) Ice cold accumulator
CN212028675U (en) Anti-freezing stop valve
Chellaiah et al. Melting of ice-aluminum balls system
CN217034098U (en) Combined temperature control device for frozen soil resistivity test
Tanaka et al. Pool boiling heat transfer of liquid 3He
CN209416461U (en) Ice amount detecting device for ice-storage equipment
SU1263978A2 (en) Rig for filling heat pipes with heat-transfer agent
Liebenberg et al. Chilldown and storage losses of large liquid hydrogen storage dewars