JPS6069470A - Cold heat accumulator utilizing capsule - Google Patents

Cold heat accumulator utilizing capsule

Info

Publication number
JPS6069470A
JPS6069470A JP17632183A JP17632183A JPS6069470A JP S6069470 A JPS6069470 A JP S6069470A JP 17632183 A JP17632183 A JP 17632183A JP 17632183 A JP17632183 A JP 17632183A JP S6069470 A JPS6069470 A JP S6069470A
Authority
JP
Japan
Prior art keywords
capsule
ice
cold storage
water
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17632183A
Other languages
Japanese (ja)
Other versions
JPH0377433B2 (en
Inventor
和平 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP17632183A priority Critical patent/JPS6069470A/en
Publication of JPS6069470A publication Critical patent/JPS6069470A/en
Publication of JPH0377433B2 publication Critical patent/JPH0377433B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は氷の融解潜熱?利用した蓄冷熱槽に関するもの
で、冷却用水の冷熱源として、或はヒートポンプに対し
ての熱源として小容積で大容隈の冷熱を蓄えることが出
来るものである。
[Detailed Description of the Invention] Is the present invention the latent heat of melting of ice? This relates to the cold storage tank used, which can store a large amount of cold energy in a small volume as a cold source for cooling water or as a heat source for a heat pump.

周知のよ5に氷より水に、水より氷に相変軽が行はれる
場合には80m/fflの熱の授受が行はれる。これは
同一容積の水に較べ、その潜熱利用により80倍の熱容
酔ヲ保有させることが出来、極わけである。このために
従来は冷却水を冷却管面に結氷させ、この融解時の氷の
z名MY利用することが行はれ、所謂アイスバンクと称
せられるものであるが、冷却管面に成長する結氷の厚さ
が増すにしたがい、結氷面に至る熱の伝導が次第に減少
し、結氷速度は基だしく低下する。また結氷、融氷面と
冷却面とは結氷層ケ透して行はれるので、熱伝導が悪(
、これを促進させるためには冷却水と冷却面との温度勾
配を増大させること欠要する。
As is well known 5, when a change in phase occurs from ice to water, or from water to ice, heat is transferred at a rate of 80 m/ffl. Compared to the same volume of water, it can retain 80 times more heat intoxication by utilizing its latent heat, which is extremely important. For this purpose, conventionally, the cooling water was frozen on the surface of the cooling pipe, and when it melted, the ice was used to make use of the ice, which was called an ice bank. As the thickness of the ice increases, the conduction of heat to the frozen surface gradually decreases, and the rate of ice formation decreases fundamentally. Also, since the ice formation, melting surface and cooling surface pass through the ice layer, heat conduction is poor (
In order to promote this, it is necessary to increase the temperature gradient between the cooling water and the cooling surface.

このような低温度の冷凍機の運転〃J率は著しく低い値
になってしまうものである。また、冷却管面の結氷は州
庁に橋絡したりすれば拮水衣面積は却って減少し、冷水
供給のための熱交喚率が低下し、負荷の変動に対する追
従性も低下する。また冷却管面に成長する結氷層の検出
、測定端Ifを高めることは難しく運転制御の誤動作な
どが生じた場合の過剰ン巾結のために冷却管や、蓄熱槽
の損傷は皆無とは云い難い。
When operating a refrigerator at such a low temperature, the J rate becomes a significantly low value. Furthermore, if ice builds up on the surface of the cooling pipes and forms a bridge to the state office, the area of cooling pipes will actually decrease, the heat exchange rate for supplying cold water will decrease, and the ability to follow changes in load will also decrease. In addition, it is difficult to detect the ice layer that grows on the surface of the cooling pipe and to increase the measurement end If.It is difficult to detect the ice layer that grows on the surface of the cooling pipe and to raise the measurement end If.It is difficult to detect the ice layer that grows on the surface of the cooling pipe, and when an operational control malfunction occurs, there is no damage to the cooling pipe or heat storage tank due to excessive cooling. hard.

他の方法として水滴カプセルによって生ずる蓄冷凱糟r
ついでは索より栄のJ41壺曲1殊の休矛口l隆によっ
て生ずるカプセル破損の懸念、運転中におけるカプセル
と冷却水との熱交換、カプセル内の結氷の姿帖、結氷量
に対する蓄冷熱槽の運転制剣ζ保膿等の点が明らかでな
いため、その活用が、阻まれていたものである。
Another method is to use water droplet capsules for cold storage.
Next, we will discuss concerns about capsule damage caused by the suspension of the mouth of the J41 Tsubokyoku 1 at Sakae Saku, heat exchange between the capsule and cooling water during operation, a record of ice formation inside the capsule, and a cold storage heat tank with respect to the amount of ice formation. Its use had been hindered because it was not clear how the driving control sword ζ protection, etc.

周知のように水より氷の相変態時の潜熱の活用が蓄冷熱
槽の本質的のものであるが、同時に相変態時の氷の密度
は0.917であるから、その比体積は1.0905と
なり、体積膨張が行はれる。氷の圧縮力は極めて大きな
値なので、結氷時には普通の容器がこれに耐えることが
出□来ず、これに追従するか、追従出来ないときは破十
iしてしまう。
As is well known, utilizing the latent heat during the phase transformation of ice rather than water is essential for cold storage tanks, but at the same time, since the density of ice during phase transformation is 0.917, its specific volume is 1. 0905, and the volume expansion is carried out. The compressive force of ice is extremely large, so when it freezes, ordinary containers are unable to withstand it, and either follow it or break if they cannot.

前述の冷水製造用の水冷却器の制御の誤動作などで発生
する破裂事故はこれによるものである。カプセルの弾性
比例限界が氷の体積膨張より仮りに大きな値であっても
、結氷、融氷が繰返して行はれる場合には融氷部分に融
けた水が入り込み結氷し、遂には容器の弾性比例限界を
越して容器を破壌してしまうことになる。
This is the cause of the bursting accidents that occur due to malfunctions in the control of water coolers for producing chilled water, as mentioned above. Even if the elastic proportional limit of the capsule is larger than the volumetric expansion of ice, if freezing and melting are repeated, melted water will enter the melted area and freeze, eventually decreasing the elasticity of the container. This will exceed the proportional limit and destroy the container.

本発明はこれらの点に鑑み行はれたカプセル乞使用した
蓄冷熱槽である。
The present invention has been developed in view of these points and is a cold storage heat tank using a capsule.

カプセルに充填される水については気泡などは勿論、水
中に溶存する空気や他のガスを真空ボンダなどで脱気す
ることが望ましく、このような水をカプセルに完全に充
満させて後にカプセルを密封する。
It is desirable to use a vacuum bonder to remove not only air bubbles but also air and other gases dissolved in the water that is filled into the capsule.The capsule must be completely filled with such water and then sealed. do.

カプセルは任意の形状、多面体であっても差支はなく、
その表面積の最も小さな形状は球状カプセルとなり、そ
のものの容積対内容積の比よりみれば最も経済的型状で
ある。これを例に採れば球状カプセル構成の材質の線膨
張はr「「丁了了=1.0293以上であれば差支はな
い。カプセルの材質は熱伝導の良い弾性材とすれば金属
カプセルとなるが、低温度で硬化変質のない樹脂であっ
ても差支はない。このようにして作られたカプセルは結
氷、融氷の繰返しが行はれる過程で、融氷された部分に
融けた水が他から新たに入り込むようなことはカプセル
内では融氷が全表面で行はれ、水が充満されているので
、そのような事は行はれない。即ちカプセルの結氷、融
氷の繰返しが幾度も行はれても相変態による体積膨張以
上の膨張はあり得ないので、カプセル破損は起り得ない
The capsule can have any shape, even if it is polyhedral.
The shape with the smallest surface area is a spherical capsule, which is the most economical shape in terms of its volume to internal volume ratio. Taking this as an example, the linear expansion of the material of the spherical capsule is equal to or greater than 1.0293.If the material of the capsule is an elastic material with good thermal conductivity, it is equivalent to a metal capsule. However, there is no difference even if the resin does not harden or deteriorate at low temperatures.In the process of repeated freezing and melting, the capsules made in this way will melt into the melted area. It is impossible for water to enter the capsule from elsewhere because ice melts on the entire surface of the capsule and the capsule is filled with water. No matter how many times the capsule is repeated, it cannot expand beyond the volumetric expansion due to phase transformation, so no capsule breakage can occur.

カプセルは前述のように構成されるので、結氷融氷の過
程における体積変化即ちカプセル外経変化を直接実測を
行ってもよいが、液ブライン中にカプセルは浸漬されて
熱交換が行はれるので、浸漬中のカプセルの全数、或は
代表の標準カプセルの液プライ/に対する比重をめ、更
に水に対する液ブラインの比重より換算すれば、結氷厭
ヲ容易に検出、計測し、蓄冷熱槽の制御を行はせること
が出来るものである。
Since the capsule is constructed as described above, it is possible to directly measure the change in volume during the process of freezing and melting, that is, the change in the external diameter of the capsule, but since the capsule is immersed in liquid brine and heat exchange takes place, By calculating the total number of capsules being immersed or the specific gravity of a representative standard capsule to the liquid ply, and further converting it from the specific gravity of liquid brine to water, freezing can be easily detected and measured, and the cold storage tank can be controlled. It is something that can be done.

このカプセル比重計測装置の一例を第1図に示す。第2
図は結氷、融氷の特性曲線の一例、第3図は蓄冷熱槽の
制御の系統図を示す。
An example of this capsule specific gravity measuring device is shown in FIG. Second
The figure shows an example of the characteristic curves of ice formation and ice melting, and Fig. 3 shows a system diagram of the control of the cold storage heat tank.

第1図において(1)は水Z充満し密封した結氷検出球
状カプセル、(2)は液ブライン、(3)はカプセル重
量釣合ばね、(4)はバネ指標検出用鉄心、(5)は励
磁線輪、(6)は線輪導線とした球状カプセル比重計側
装置である。第2図の(a)は液ブラインの冷却経過時
間fT1に対するカプセル内の結氷−μ申ek普Mの変
化乞示す曲線、(b)は(a)に対するカプセル内の温
度(1)と冷却経過時間α)の変化曲線で、前記球状カ
プセル比重計測装置による実測値の一例である。
In Figure 1, (1) is a spherical ice detection capsule filled with water Z and sealed, (2) is liquid brine, (3) is a capsule weight balancing spring, (4) is a spring index detection iron core, and (5) is The excitation wire ring (6) is a spherical capsule hydrometer side device using a wire wire. Figure 2 (a) is a curve showing the change in ice formation in the capsule - μ M with respect to the elapsed cooling time fT1 of the liquid brine, and (b) is a curve showing the temperature (1) in the capsule and the cooling progress with respect to (a). This is a change curve for time α), which is an example of actual values measured by the spherical capsule specific gravity measuring device.

(81図は冷却経過時間(r)に対するカプセル内部の
結氷量(■が増加している状態、更に冷却水使用時のカ
プセル内での融氷状態が明らに示されている。
(Figure 81 clearly shows the state in which the amount of ice formed inside the capsule (■) increases with respect to the elapsed cooling time (r), and also the state in which the ice melts inside the capsule when cooling water is used.

(b)は(alの状態が進行しているときのカプセル内
の温度ftlの変化である。(S)点は結氷時のカプセ
ル内で生ずる水の過冷却現象が現れたものである。第3
図において(7)はブライ/比重測定用の球状浮子、(
8)は球状浮子による検出部、(9)は前記ブライン比
重検出部導線、(10)は比屯検出演轢装置6、(11
)は蓄冷熱槽、(12)は蓄冷熱用弾性球状カプセル、
(13)は冷却装置、(14)は液フライン冷却管、(
15)は空気冷却器、(16)は液ブライン循環ボ/グ
である。
(b) shows the change in the temperature ftl inside the capsule as the state of (al) progresses. Point (S) shows the supercooling phenomenon of water that occurs inside the capsule during freezing. 3
In the figure, (7) is a spherical float for braai/specific gravity measurement, (
8) is a detection section using a spherical float, (9) is a conductor wire for the brine specific gravity detection section, (10) is a Hitun inspection vehicle 6, and (11) is a detection section using a spherical float.
) is a cold storage heat tank, (12) is an elastic spherical capsule for cold storage heat,
(13) is a cooling device, (14) is a liquid fly cooling pipe, (
15) is an air cooler, and (16) is a liquid brine circulation bo/g.

次にこの運転について述べる。蓄冷熱槽(11)内には
結氷検出球状カプセル(1)、ブライ/比@測定球状浮
子(7)が液ブライン(2)に浸漬され、これらの浮子
の浮沈は前記検出部(31、(4) 、 (5)及び(
8)から第2図特性曲線のような出力とし、比重検出演
算装置(10)に人力され、その演算結果より蓄冷熱槽
(11)内の蓄冷熱用弾性球状カプセル(12)内に結
氷されている全結氷喰が算出される。このような制御系
を有する蓄熱槽(1)は冷却装置(13)で液ブライ/
冷却管(14)v介してl夜ブライン(2)が零度以下
に冷却され、前記弾性球状カプセル(J2)内に充満さ
れた水は凍結する。水の凍結される間はその温度は零度
を保持し、潜熱としてカプセル内に結氷状態で蓄熱され
、その結氷倹は前記比重検出装+#(10)で検出され
゛る。11ヒの出力で冷却装置(13)の運転開始、停
止などの制御が行はれる。例えば翌日の気象条件の推定
より空気冷却器(15)の蓄冷熱の必要喰に基き、予め
結氷させて置くことにより、極めて経済的な運転を容易
に行うことが出来るものである。
Next, we will discuss this operation. In the cold storage heat tank (11), an ice detection spherical capsule (1) and a brine/ratio measurement spherical float (7) are immersed in the liquid brine (2), and the floating and sinking of these floats is detected by the detection unit (31, ( 4), (5) and (
8), the output is as shown in the characteristic curve in Figure 2, and it is manually input to the specific gravity detection calculation device (10), and based on the calculation result, ice is formed in the elastic spherical capsule for cold storage heat (12) in the cold storage heat tank (11). The total ice consumption is calculated. The heat storage tank (1) with such a control system is heated by a cooling device (13).
The brine (2) is cooled to below zero degrees through the cooling pipe (14), and the water filled in the elastic spherical capsule (J2) is frozen. While the water is frozen, its temperature remains at zero degrees, and the latent heat is stored in the capsule in a frozen state, and the frozen state is detected by the specific gravity detection device (10). Controls such as starting and stopping the cooling device (13) are performed with the output of 11H. For example, extremely economical operation can be easily achieved by freezing the air cooler (15) in advance based on the required amount of cold storage heat in the air cooler (15) based on an estimate of the next day's weather conditions.

以上は結氷検出球状カプセルとして代表的な標準カプセ
ルによる全結氷tを演算、検出した例について述べたが
、全カプセルより結氷緊の検出、測定の行えることはい
うまでもない。本発明は以上のように弾性カプセル内に
充填した水の潜熱乞利用した蓄冷熱装置であるために、
その蓄冷熱箭は極めて大きく、カプセルを使用しても結
氷時の破壌の行はれることがな(、凍結、融氷の行はれ
ろ面と凍結面とが同一であり、g1度勾配は小さくても
よく、従って冷却温度ヲ大きく低下させる必要もな(、
冷却装置の運転効率がよく、結氷、融氷の検出にヒステ
リシスの生ずることがないので、結氷状袢の検出精度も
高(、運転制御が容易である。
The above has described an example in which the total ice formation t is calculated and detected using a standard capsule that is typical as a spherical capsule for ice formation detection, but it goes without saying that it is possible to detect and measure ice formation intensity using a whole capsule. As described above, the present invention is a cold storage heat device that utilizes the latent heat of water filled in an elastic capsule.
The cold storage heat chamber is extremely large, and even if a capsule is used, there will be no breakage during freezing (the freezing and melting surfaces are the same, and the g1 degree gradient is It can be small, so there is no need to significantly reduce the cooling temperature (,
The operating efficiency of the cooling device is high, and there is no hysteresis in detecting ice formation or melting, so the detection accuracy of ice formation is high (and operation control is easy).

また保縛の見地よりは基本的なフェール・セーフ型で運
転は安全に行うことが出来るものである。
Also, from the point of view of restraint, it is a basic fail-safe type and can be operated safely.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はカプセル比重計測装置の一例、第2図は結氷、
帥氷の特性曲線の一例、第3図は蓄冷熱槽の制御の系統
図で1:結氷検出球状カプセル、2:液ブライン、7:
ブライン比i′li測定球状浮子、10:比重検出演算
装置、11:蓄冷熱槽、12:蓄冷熱用弾性球状カプセ
ル、13:冷却装置、14:液ブライン冷却管、15:
空気冷却器、16:液ブライン循環ポンプっ
Figure 1 shows an example of a capsule specific gravity measuring device, Figure 2 shows ice formation,
An example of the ice characteristic curve, Figure 3 is a system diagram of the control of the cold storage heat tank. 1: Ice detection spherical capsule, 2: Liquid brine, 7:
Brine ratio i'li measurement spherical float, 10: Specific gravity detection calculation device, 11: Cold storage heat tank, 12: Elastic spherical capsule for cold storage heat, 13: Cooling device, 14: Liquid brine cooling pipe, 15:
Air cooler, 16: Liquid brine circulation pump

Claims (1)

【特許請求の範囲】[Claims] 氷の潜熱を利用する蓄冷熱槽において、脱気し水を充満
し、密封させた天竜の弾性カプセルをブライン液中に浸
漬し、前記カプセルの全数、若しくは代表の標準的カプ
セルの秤旨値の演算出力で、前記蓄冷熱槽の運転制御乞
行はせることを特徴とするカプセルを使用した蓄冷熱槽
In a cold storage thermal tank that utilizes the latent heat of ice, Tenryu's elastic capsules, which have been deaerated, filled with water, and sealed, are immersed in brine solution, and the total number of capsules or the weighed value of a representative standard capsule is A cold storage heat tank using a capsule, characterized in that operation of the cold storage heat tank is controlled by a calculation output.
JP17632183A 1983-09-26 1983-09-26 Cold heat accumulator utilizing capsule Granted JPS6069470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17632183A JPS6069470A (en) 1983-09-26 1983-09-26 Cold heat accumulator utilizing capsule

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17632183A JPS6069470A (en) 1983-09-26 1983-09-26 Cold heat accumulator utilizing capsule

Publications (2)

Publication Number Publication Date
JPS6069470A true JPS6069470A (en) 1985-04-20
JPH0377433B2 JPH0377433B2 (en) 1991-12-10

Family

ID=16011535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17632183A Granted JPS6069470A (en) 1983-09-26 1983-09-26 Cold heat accumulator utilizing capsule

Country Status (1)

Country Link
JP (1) JPS6069470A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6383564A (en) * 1986-09-26 1988-04-14 東洋エンジニアリング株式会社 Frigorie accumulator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57122265A (en) * 1981-01-23 1982-07-30 Maekawa Seisakusho Kk Frozen ice level measuring apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57122265A (en) * 1981-01-23 1982-07-30 Maekawa Seisakusho Kk Frozen ice level measuring apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6383564A (en) * 1986-09-26 1988-04-14 東洋エンジニアリング株式会社 Frigorie accumulator

Also Published As

Publication number Publication date
JPH0377433B2 (en) 1991-12-10

Similar Documents

Publication Publication Date Title
US5065598A (en) Ice thermal storage apparatus
Molz et al. Freezing and melting of fluids in porous glasses
Chen et al. An experimental investigation of nucleation probability of supercooled water inside cylindrical capsules
Chen et al. A study of supercooling phenomenon and freezing probability of water inside horizontal cylinders
White et al. Improved initiation technique for the metal fixed points
Sait Experimental study of water solidification phenomenon for ice-on-coil thermal energy storage application utilizing falling film
Zhang et al. Study on the mechanism of crystallization deformation of sulfate saline soil during the unidirectional freezing process
Johari et al. Intergranular liquid in solids and premelting of ice
JPS6069470A (en) Cold heat accumulator utilizing capsule
Yan et al. Study on the performance enhancement of ice storage and melting processes in an ice-on-coil thermal energy storage system
CN113362974A (en) Heat transfer characteristic experiment system of fused salt and heat pipe under influence of marine environment
Mohamed Solidification of phase change material on vertical cylindrical surface in holdup air bubbles
Hardee et al. The extraction of heat from magmas based on heat transfer mechanisms
CN112685884B (en) Method for determining liquid water content at different temperatures in soil
CN108489841A (en) A kind of phase-change material cold cycling endurance testing device and test method
JPS5844194B2 (en) Chikunetsuriyousokuteihouhou
JP2000044939A (en) Heat storage apparatus
Brewster et al. The effects of supercooling and freezing on natural convection in seawater
Derjaguin et al. Thermocrystallization flow of nonfreezing water films on the surface of capillaries
JPS60134175A (en) Sensor for quantity of freezing of cold heat accumulator by elastic capsule
JPH02677Y2 (en)
ALEXIADES Void formation in solidification
Miyata A thermodynamic study of liquid transportation in freezing porous media
Smith et al. Observations and significance of internal pressures in freezing soil
JPS6096872A (en) Automatic control system of quantity of ice formed in ice heat accumulator