JPH0377331A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH0377331A
JPH0377331A JP21291589A JP21291589A JPH0377331A JP H0377331 A JPH0377331 A JP H0377331A JP 21291589 A JP21291589 A JP 21291589A JP 21291589 A JP21291589 A JP 21291589A JP H0377331 A JPH0377331 A JP H0377331A
Authority
JP
Japan
Prior art keywords
region
emitter
conductor layer
conductivity type
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21291589A
Other languages
Japanese (ja)
Inventor
Keijiro Uehara
敬二郎 上原
Hisayuki Higuchi
樋口 久幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP21291589A priority Critical patent/JPH0377331A/en
Publication of JPH0377331A publication Critical patent/JPH0377331A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To offer a transistor which can comply with a high speed and a large-scale integration of an LSI by a method wherein a collector contact region is formed in the center, a base contact region is formed at its outside and an emitter is formed at an outermost circumference. CONSTITUTION:A slender and long emitter region 31 which is required to lower a base resistance and to increase a cutoff frequency is obtained when it is formed at an outer circumference of an element formation region; it can be formed as the smallest element area. A base contact region 32 is formed at the inside of the emitter region 31; a collector contact region 33 which is connected only to a buried layer 2 to be used as a collector and which does not require an area specially is formed in the central part at its inside. Sizes of the individual regions differ largely; the outside region is longer and the area becomes larger; as compared with transistors of a structure in which an emitter is formed in the center, an emitter area becomes large by 8.9 times or 4.0 times; it is possible to solve a problem of a drop in a cutoff frequency in a large electric-current region due to an increase in a current density.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はバイポーラトランジスタに係り、特に和高速L
SIに適した構造の自己整合型トランジスタに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to bipolar transistors, and in particular,
The present invention relates to a self-aligned transistor with a structure suitable for SI.

〔従来の技術〕[Conventional technology]

LSIの高速化、高密度化を目的に素子寸法の微細化が
進められ、その性能は大福に改良されてきた、特に特開
昭53−132275に述べられているような自己整合
技術の採用により、ホトエツチング技術で形成1J能な
寸法以下のパターンが使用できるようになり、トランジ
スタの活性領域は大幅に縮小した。
With the aim of increasing the speed and density of LSIs, element dimensions have been miniaturized, and their performance has been significantly improved, especially by the adoption of self-alignment technology as described in JP-A-53-132275. It has become possible to use patterns smaller than the size that can be formed using photoetching techniques, and the active area of transistors has been significantly reduced.

素子寸法の微細化に伴って、大きな問題になるエミッタ
の電流密度の増加による動作電流領域における遮断周波
数の低下は、特開昭61−112378に示されている
ようにベースコンタクト領域を中央に設け、その外側に
環状のエミッタ領域を形成した構造の採用により、同じ
ベース面積で数倍のエミッタ領域を得る方法などで解決
された。
With the miniaturization of device dimensions, the reduction in the cutoff frequency in the operating current region due to the increase in current density of the emitter, which becomes a serious problem, can be solved by placing the base contact region in the center as shown in JP-A-61-112378. , by adopting a structure in which an annular emitter region is formed on the outside, the emitter region can be several times larger with the same base area.

コレクタ領域の縮小にはアイソレーション領域に埋込ん
だ多結晶シリコンをコレクタ引出し電極として利用する
方法が、特開昭62−134941などに述べられてい
る。また、素子領域の周囲に自己整合技術で埋込層に達
する多結晶シリコンを形威し、コレクタ電極とする方法
が特開昭63−215068などに述べられている。
In order to reduce the collector region, a method of utilizing polycrystalline silicon buried in the isolation region as a collector lead-out electrode is described in JP-A-62-134941 and other publications. Furthermore, a method of forming polycrystalline silicon that reaches a buried layer around an element region using a self-alignment technique to form a collector electrode is described in Japanese Patent Laid-Open No. 63-215068.

コレクタ抵抗を下げるための埋込層に達する孔を形成し
、直接アルミ電極を形威する方法が特開昭53−967
66に述べられている。
Japanese Patent Laid-Open No. 53-967 describes a method of forming a hole reaching the buried layer and directly forming an aluminum electrode in order to lower the collector resistance.
66.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

バイポーラLSIはこれらの技術の組合せにより、素子
寸法が縮小されると同時に^連化されてきたが、もはや
限界に近く、今後更に高速化するためにはこれら技術の
単なる組合せでは効率が悪い、LSIの高速化には素子
寸法の縮小による高密度化と寄生容量の低減が重要で、
超高速LSIに適した構造のトランジスタが必要である
By combining these technologies, bipolar LSIs have been able to reduce the element size and at the same time become interconnected, but they are now close to their limits, and in order to achieve even higher speeds in the future, a simple combination of these technologies will be inefficient. To increase speed, it is important to increase density and reduce parasitic capacitance by reducing element dimensions.
A transistor with a structure suitable for ultra-high-speed LSI is required.

本発明の目的はLSIの高速化と大規模集積化に対応可
能な、超高速LSIに適した構造のトランジスタを提供
するところにある。
An object of the present invention is to provide a transistor having a structure suitable for an ultra-high-speed LSI, which can support high-speed and large-scale integration of LSIs.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的はコレクタコンタクト領域を中央に設け、その
外側にベースコンタクト領域を形成し、細く長い領域が
必要なエミッタを最外周に形威した新しいトランジスタ
構造の採用により達成できる。
The above object can be achieved by adopting a new transistor structure in which a collector contact region is provided in the center, a base contact region is formed outside of the collector contact region, and an emitter, which requires a long and thin region, is formed at the outermost periphery.

〔作用〕[Effect]

自己整合型トランジスタの採用により、トランジスタ単
体のスイッチング速度は大幅に高速化されたが、LSI
としての高速化は必ずしも満足できるものではない、こ
の主な原因は集積規模の拡大による平均配線長の増加、
および、14子あたりに流せる電流の減少によるもので
、トランジスタ本体のスイッチング時間よりも負荷を付
けたための遅れが遥かに大きくなってきたためである。
The adoption of self-aligned transistors has greatly increased the switching speed of individual transistors, but LSI
The increase in speed is not necessarily satisfactory, and the main reason for this is the increase in the average wiring length due to the expansion of the integration scale,
Another reason is that the current that can be passed through the 14th element has decreased, and the delay due to the addition of the load has become much larger than the switching time of the transistor itself.

したがって、LSIの今後の高速化はそこに使用されて
いるトランジスタの高速化も必要であるが、それ以上の
素子寸法の縮小による高密度化を検討し、寄生容量など
を低減してLSI全体として高速化した方が効果的であ
る。
Therefore, in order to increase the speed of LSI in the future, it will be necessary to increase the speed of the transistors used there, but we will also consider increasing the density by further reducing the element size, reducing parasitic capacitance, etc., and improving the overall LSI. It is more effective to speed up the process.

現在一般に使用されている自己整合型トランジスタはエ
ミッタ領域を中央に、その外側にベースコンタクト領域
を形成し、その横にコレクタコンタクト領域を形威した
構造になっている。この構造で素子寸法を縮小した場合
、エミッタ寸法の確保が困難になり、その対簗として、
ベースコンタクト領域を中央に設け、その外側に環状の
エミッタ領域を形威し、ベース面積中のエミッタIll
kYMの割合を増加させる方法などが検討されている。
Self-aligned transistors currently in common use have a structure in which an emitter region is located in the center, a base contact region is formed outside the emitter region, and a collector contact region is formed next to the base contact region. If the element size is reduced with this structure, it will be difficult to secure the emitter size, and as a countermeasure,
A base contact region is provided in the center, and an annular emitter region is formed on the outside of the base contact region.
Methods of increasing the ratio of kYM are being considered.

また、コレクタ領域の縮小にはアイソレーション溝を利
用して、コレクタを引出す方法などが検討されている。
In addition, to reduce the collector area, methods are being considered that utilize isolation grooves to pull out the collector.

本発明は今後の超高速LSI用トランジスタとして重要
な、寄生容量の低減が達成でき、最も小さな素子面積で
最も大きなエミッタ領域が得られる構造のトランジスタ
である。このトランジスタはエミッタ面積を確保するた
めにエミッタ領域を最外周に設け、その内側にベースコ
ンタクト領域を設け、一番内側の中央部にコレクタコン
タクト領域を形成した新しい構造の中央コレクタ型環状
エミッタトランジスタである。
The present invention is a transistor having a structure that can achieve a reduction in parasitic capacitance, which is important as a transistor for future ultra-high-speed LSIs, and can obtain the largest emitter area with the smallest element area. This transistor is a center collector type annular emitter transistor with a new structure in which an emitter region is provided at the outermost periphery to secure the emitter area, a base contact region is provided inside the emitter region, and a collector contact region is formed at the innermost center. be.

第1図が本発明によるトランジスタの断面構造で、第2
図が平面構造である。成る程度の面積が必要な上に、ベ
ース抵抗を下げ、遮断周波数を上げるために必要な細く
て長いエミッタ領域31は、素子形成領域の外周に形成
することにより得られ。
Figure 1 shows the cross-sectional structure of the transistor according to the present invention, and Figure 2 shows the cross-sectional structure of the transistor according to the present invention.
The figure shows a planar structure. The thin and long emitter region 31, which is necessary to reduce the base resistance and increase the cutoff frequency, can be obtained by forming it on the outer periphery of the element forming region.

最も小さな素子面積にすることができる。エミツ夕領域
31の内側にはペースコンタクI’領j432を形成し
、コレクタとなる埋込層2に接続するだけで、特に面積
を必要としないコレクタコンタクト領域33はその内側
の中央部に設けた。
The element area can be minimized. A pace contact region I' 432 is formed inside the emitter region 31, and a collector contact region 33, which does not require a particular area and is simply connected to the buried layer 2 which becomes the collector, is provided at the center inside thereof. .

図を見れば明らかなように各領域の寸法には大きな違い
があり、外側はど長く、面積も大きくなる0例えば、中
央のコレクタコンタクト領域33の幅を0.6 μm、
コレクタとベースコンタクトの分離領域34の間隔を0
.1 μm、ベースコンタクト領域32の幅を0.2 
 μm、ベースとエミッタの分離領域35の間隔を0.
2μmにした場合、コレクタコンタクト面積が0.36
 μm、ベースコンタクト領域の面積が0.80 μm
で、エミッタ面積は図に示した他の領域の2倍の0.4
μm幅で3.2μボ、同膜が他の領域と同じ0.2μm
でも1.44 μmになる。なお2素子領域はエミツタ
幅が0.4μmの場合が2.4 X 2.4μボ、同幅
0.2  μmでは2.OX2.0μ耐になる。
As is clear from the figure, there are large differences in the dimensions of each region, with the outer region being longer and having a larger area.For example, if the width of the central collector contact region 33 is 0.6 μm,
The distance between the collector and base contact isolation regions 34 is set to 0.
.. 1 μm, and the width of the base contact region 32 is 0.2 μm.
μm, and the distance between the base and emitter isolation regions 35 is 0.
When it is 2 μm, the collector contact area is 0.36
μm, base contact area area is 0.80 μm
The emitter area is 0.4 times the other areas shown in the figure.
The width is 3.2 μm, and the same film is 0.2 μm, which is the same as other areas.
But it becomes 1.44 μm. Note that the two-element area has a width of 2.4 x 2.4 μm when the emitter width is 0.4 μm, and a width of 2.4 μm when the emitter width is 0.2 μm. OX2.0μ resistance.

この値は中央にエミッタを形成する同じ素子寸法の一般
的な構造のトランジスタに比較して、エミッタ面積が8
.9倍(エミツタ幅が0.4μmの場合)あるいは4.
0倍(エミツタ幅が0.2μmの場合)になり、電流密
度の増加による大電流領域における遮断周波数の低下の
問題も解決できる。
This value means that the emitter area is 80% compared to a transistor with the same element size and a general structure where the emitter is formed in the center.
.. 9 times (when the emitter width is 0.4 μm) or 4.
0 times (when the emitter width is 0.2 μm), and the problem of a decrease in cutoff frequency in a large current region due to an increase in current density can also be solved.

このように従来構造のトランジスタとは違−)た電極構
成を取ることにより、素子領域がイイ効活用でき、素子
寸法が縮小し、寄生容量の低減と高密度化による配線長
の短縮が可能で、LSIの晶連化が実現できる。
By adopting an electrode configuration that is different from that of conventional transistors, the device area can be used effectively, the device dimensions can be reduced, and the wiring length can be shortened due to the reduction of parasitic capacitance and higher density. , crystal interconnection of LSI can be realized.

〔実施例〕〔Example〕

以下、本発明の一実施例を第3図にしたがって説明する
An embodiment of the present invention will be described below with reference to FIG.

同図(a)はP型シリコン基板1の所定領域にN壁埋込
層2を形成後、エピタキシャル層3を成長させ、その表
面を熱酸化して二酸化シリコン脱4を形成し、その上に
窒化シリコン膜5をCV IJ(ケミカル ベーパ デ
ポジション: ChemicaJvapor Depo
sitj、on)法によす被着した所である。
In the figure (a), after forming an N-wall buried layer 2 in a predetermined region of a P-type silicon substrate 1, an epitaxial layer 3 is grown, its surface is thermally oxidized to form silicon dioxide de4, and then The silicon nitride film 5 is deposited by CV IJ (chemical vapor deposition).
This is the place where the material was deposited using the Sitj, On) method.

同図(b)はホトエツチング技術により、N型埋込yf
12に対応した素子形成領域に前記窒化シリコン膜5と
その下の二酸化シリコン膜4を残した後、これらの膜を
マスクにエピタキシャル層3の一部をエツチングした所
で、必要に応じて反転層防止用のp型不純物をエッチ向
にイオン注入する。
Figure (b) shows N-type embedded yf using photoetching technology.
After leaving the silicon nitride film 5 and the underlying silicon dioxide film 4 in the element formation region corresponding to 12, a part of the epitaxial layer 3 is etched using these films as a mask, and then an inversion layer is formed as necessary. A p-type impurity for prevention is ion-implanted in the etch direction.

次に熱酸化してアイソレーション用の淳い二酸化シリコ
ン膜6を形成し、前記窒化シリコン膜5およびそのドの
二酸化シリコン膜4を除去し、エピタキシャル層3を露
出させる。
Next, a thick silicon dioxide film 6 for isolation is formed by thermal oxidation, and the silicon nitride film 5 and the silicon dioxide film 4 thereon are removed to expose the epitaxial layer 3.

ここまでの工程を一般的なアイソプレーナ型の素子分離
工程で、次にエミッタ引出し用の導体層ヒなる多結晶シ
リコン膜7をCVD法により被着する。この多結晶シリ
コン膜7にまず、ベース層形成用のボロンをイオン注入
し、熱処理を行なって所定の深さにベース、v8を形成
する。この状態が同図(c)で、続いて、前記多結晶シ
リコン膜7中にエミッタ形成用の不純物としてひ素をイ
オン注入する。
The steps up to this point are a general isoplanar element isolation step, and then a polycrystalline silicon film 7, which will serve as a conductor layer for leading out the emitter, is deposited by CVD. First, boron ions for forming a base layer are implanted into this polycrystalline silicon film 7, and heat treatment is performed to form a base v8 at a predetermined depth. This state is shown in FIG. 4(c).Subsequently, arsenic ions are implanted into the polycrystalline silicon film 7 as an impurity for forming an emitter.

次にエミッタ電極として使用する領域以外の前記多結晶
シリコン膜7をホトエツチング技術により除去した後、
CVD法により二酸化シリコン膜9と多結晶シリコンl
!A10を重ねて被着すると同図(d)の形になる。同
図(e)はホトエツチング技術により、ベースコンタク
トおよびコレクタコンタクト形成領域の前記多結晶シリ
コン11に〕0とそのトの二酸化シリコンIll、更に
そのドの多結晶シリコン膜7を除冷した後、酸化シリコ
ン11に11をCVD法により被着した所である。
Next, after removing the polycrystalline silicon film 7 other than the area to be used as an emitter electrode by photoetching,
Silicon dioxide film 9 and polycrystalline silicon l are formed by CVD method.
! When A10 is layered and applied, it becomes the shape shown in the same figure (d). In the same figure (e), after slowly cooling the polycrystalline silicon 11 in the base contact and collector contact forming regions, the silicon dioxide Ill and the polycrystalline silicon film 7 are oxidized. 11 is deposited on silicon 11 by the CVD method.

次にこの二酸化シリコン脱11を深さ方向にはエツチン
グするが、横方向のいわゆるサイドエッチが発生しない
異方性エツチング装置を用いて全面エッチすると、段差
部にだけ間膜11を残すことができる。この膜の厚さが
エミッタ領域とベースコンタクト領域の分離間隔になる
。次にCVD法により多結晶シリコン膜12を被着し、
外部ベース形成用のボロンをイオン注入した後、窒化シ
リコン膜13を被着する。続いて、熱処理を行なうと多
結晶シリコン膜7中にイオン注入したひ素が拡散してエ
ミツタ層14が形成できると同時に多結晶シリコン膜1
2中のボロンが拡散して外部ベースN15が形成でき、
同図(f)の形になる。
Next, this silicon dioxide removal 11 is etched in the depth direction, but if the entire surface is etched using an anisotropic etching device that does not cause so-called side etching in the lateral direction, the interlayer film 11 can be left only in the step portions. . The thickness of this film becomes the separation distance between the emitter region and base contact region. Next, a polycrystalline silicon film 12 is deposited by CVD method,
After boron ions for forming an external base are implanted, a silicon nitride film 13 is deposited. Subsequently, when heat treatment is performed, the arsenic ion-implanted into the polycrystalline silicon film 7 is diffused and an emitter layer 14 is formed.At the same time, the polycrystalline silicon film 1
Boron in 2 can diffuse to form an external base N15,
The shape will be as shown in (f) in the same figure.

第3図(g)は窒化シリコン膜13の表面にホトレジス
ト膜16を塗布し、間膜が厚く塗布される孔の中にのみ
全面゛エッチにより同[16を残しち後、露出している
領域の前記窒化シリコン膜13を除去した所である。次
にホトエツチング技術により、ベース電極として用いる
領域以外の多結晶シリコン膜10.12を除去すると同
図(h)の形になる。
FIG. 3(g) shows that a photoresist film 16 is applied to the surface of the silicon nitride film 13, and the entire surface is etched to leave only the holes where the interlayer is thickly applied, leaving the exposed area. This is the place where the silicon nitride film 13 has been removed. Next, by photo-etching, the polycrystalline silicon film 10.12 in areas other than the area used as the base electrode is removed, resulting in the shape shown in FIG.

同図(i)はこの多結晶シリコン1lililo、 1
2の一部を酸化して二酸化シリコン膜17を形成し。
Figure (i) shows this polycrystalline silicon 1lililo, 1
2 is partially oxidized to form a silicon dioxide film 17.

酸化のマスクとして用いた窒化シリコン膜13を除去し
た所である。なお、この酸化はベース、エミツタ層が既
に形成されているので、これらの周が再拡散する高温で
行なうことができないため、低温で二酸化シリコン膜が
形成できる高圧酸化法を採用した。
The silicon nitride film 13 used as an oxidation mask has been removed. Since the base and emitter layers have already been formed, this oxidation cannot be carried out at a high temperature that would cause the periphery of these layers to re-diffuse. Therefore, a high-pressure oxidation method that allows the formation of a silicon dioxide film at a low temperature was employed.

同図(j)は二酸化シリコン膜9,17をマスクに異方
性エツチング装置により、多結晶シリコン膜12とその
下のエピタキシャル層3をエツチングし、N型埋込層2
に到達するコレクタコンタクト用の孔18を形成した所
である。
In the same figure (j), the polycrystalline silicon film 12 and the epitaxial layer 3 thereunder are etched using an anisotropic etching device using the silicon dioxide films 9 and 17 as masks, and the N-type buried layer 2 is etched.
This is where the hole 18 for the collector contact reaching the hole 18 is formed.

次に熱酸化して前記孔18の表面に二酸化シリコン膜1
9を形成した後、異方性エツチング装置により、孔の1
戊部の同[19だけを除去する(同図k)、なお、ここ
では膜厚が薄くても良いために熱酸化膜を用いだが、C
VL)法による二酸化シリコン膜を用いることも可能で
ある0次にホトエツチング技術により、ベースコンタク
ト孔20およびエミッタコンタクト孔21の二酸化シリ
コン膜17および9をエツチングすると同図(1)の型
が得られる。
Next, thermal oxidation is performed to form a silicon dioxide film 1 on the surface of the hole 18.
After forming hole 9, hole 1 is etched using an anisotropic etching device.
Remove only the corner part [19] (k in the same figure). Here, a thermal oxide film is used because the film thickness may be thin, but C
When the silicon dioxide films 17 and 9 of the base contact hole 20 and the emitter contact hole 21 are etched by zero-order photoetching technology, which can also be used with a silicon dioxide film produced by the VL) method, the mold shown in FIG. 1 (1) is obtained. .

次にアルミニウム等の配線を形成すると第1図に示した
中央にコレクタコンタクトを形成した環状エミッタ型の
トランジスタが完成する。
Next, wiring made of aluminum or the like is formed to complete the annular emitter type transistor with a collector contact formed in the center as shown in FIG.

以上、本発明による超^速LSHに適した構造のトラン
ジスタの製造方法の一例を示したが、本発明の特徴はエ
ミッタ領域に接続した。第1導体層上にベースコンタク
トに接続した第2導体層が形成され、これらの導体層に
囲まれた領域に埋込層に達するコレクタコンタクト領域
を形成した所にあり、エミッタおよびベースの引出し電
極として用いた多結晶シリコン膜が金属シリサイド膜や
多結晶シリコン膜と金属シリサイド膜の二M構造でもな
んら支障の無いことは云うまでもない。
An example of a method for manufacturing a transistor having a structure suitable for an ultrafast LSH according to the present invention has been described above, but the feature of the present invention is the connection to the emitter region. A second conductor layer connected to the base contact is formed on the first conductor layer, a collector contact region reaching the buried layer is formed in a region surrounded by these conductor layers, and an emitter and base extraction electrode is formed. It goes without saying that there will be no problem if the polycrystalline silicon film used as a metal silicide film or a 2M structure of a polycrystalline silicon film and a metal silicide film is used.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、所定のエミッタ面積を持つトランジス
タがより小さな領域に形成でき、寄生容量が大幅に減少
すると同時に、高密度化による配線長の短縮が実現でき
、LSHの遅延時間を短縮して高速化する上で多大の効
果が得られる。
According to the present invention, a transistor with a predetermined emitter area can be formed in a smaller area, parasitic capacitance is significantly reduced, and at the same time, wiring length can be shortened due to high density, and LSH delay time can be shortened. A great effect can be obtained in speeding up the process.

また、構造的にもベースコンテクト領域の外側にコレク
タコンタクトを形成する従来構造に比較して、両者の接
触領域が短くなり、LSIの遅延時間に大きな影響を与
えるコレクタ・ベース間容量が大幅に低減できる効果も
ある。
In addition, compared to the conventional structure in which the collector contact is formed outside the base contact area, the contact area between the two is shortened, and the capacitance between the collector and the base, which has a large effect on the delay time of the LSI, is significantly reduced. There are also effects that can reduce it.

更に、プロセス的には初期の工程で素子形成領域の外側
にコレクタコンタクトを形成する従来方式に比較して、
最終工程に近い工程でコレクタコンタクト用の孔を形成
する本発明は、回礼に導電性物質を埋込み平坦化する必
要もなく、トランジスタの製作工程が簡単になる効果も
ある。
Furthermore, compared to the conventional method in which the collector contact is formed outside the element formation area in the initial process,
The present invention, in which the hole for the collector contact is formed in a step close to the final step, does not require burying and planarizing the conductive material in the circuit, and has the effect of simplifying the manufacturing process of the transistor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるトランジスタの断面構造図、第2
図はその平向構造図で、第3図は本発明によるトランジ
スタの製作工程を示す新曲構造図である。 1・・・シリコン基板、2・・・N型埋込層、3・・・
エピタキシャル層、4,6,9,11,17,19・・
・二酸化シリコン膜、5.13・・・窒化シリコン般、
7゜10.12・・・多結晶シリコン膜、8・・・ベー
ス層、14・・・エミツタ層、15・・・外部ベース層
、16・・・ホトレジスト膜、18・・・コレクタコン
タクト孔。 20・・・ベースコンタクト孔、21・・・エミッタコ
ンタクト孔、31・・・エミッタ領域、32・・・ベー
スコンタクト領域、33・・・コレクタコンタクト領域
、34・・・ベース・コレクタ分離領域、35・・・エ
ミッ不 l 篤 図 z 閃 第 図
FIG. 1 is a cross-sectional structural diagram of a transistor according to the present invention, and FIG.
The figure is a planar structural diagram thereof, and FIG. 3 is a new structural diagram showing the manufacturing process of a transistor according to the present invention. 1... Silicon substrate, 2... N-type buried layer, 3...
Epitaxial layer, 4, 6, 9, 11, 17, 19...
・Silicon dioxide film, 5.13...Silicon nitride in general,
7゜10.12... Polycrystalline silicon film, 8... Base layer, 14... Emitter layer, 15... External base layer, 16... Photoresist film, 18... Collector contact hole. 20... Base contact hole, 21... Emitter contact hole, 31... Emitter region, 32... Base contact region, 33... Collector contact region, 34... Base/collector separation region, 35・・・Emifuru Atsushizu Z Sendaizu

Claims (1)

【特許請求の範囲】 1、第1導電型の半導体基板の所定領域に第2導電型の
埋込層を形成し、半導体層を成長させ、絶縁膜によりア
イソレーシヨンした素子形成領域を持つ半導体装置にお
いて、前記素子形成領域の外周表面で第2導電型の第1
領域に接続した第1導体層を持ち、前記第1導体層に囲
まれた所定領域に第1導電型の第2領域に接続した第2
導体層を持ち、前記第1導体層と前記第2導体層は絶縁
膜で分離され、少なくとも、前記第1導体層の一部を覆
う形に前記第2導体層が形成され、前記第2導体層に囲
まれた所定領域に第2導電型の前記埋込層に達する側面
が絶縁膜で覆われた孔を形成したことを特徴とする半導
体装置。 2、第1導電型の半導体基板の所定領域に第2導電型の
埋込層を形成し、半導体層を成長させ、絶縁膜によりア
イソレーシヨンした素子形成領域を持つ半導体基板を用
い、前記素子形成領域の外周領域表面で、第2導電型の
第1領域と接続した第1導体層を形成する工程と、前記
第1導体層の所定領域に前記第1導体層で囲まれた第2
導体層接続用の領域を形成する工程と、第1導電型の第
2領域に接続し、絶縁膜を介して前記第1導体層上の少
なくとも一部を覆う第2導体層を形成する工程と、第2
導体層に囲まれた所定領域に第2導電型の前記埋込層に
到達する第3領域を形成する工程とを含む半導体装置の
製造方法。
[Claims] 1. A semiconductor having an element formation region isolated by an insulating film, in which a buried layer of a second conductivity type is formed in a predetermined region of a semiconductor substrate of a first conductivity type, and a semiconductor layer is grown. In the device, a first conductive layer of a second conductivity type is formed on an outer peripheral surface of the element forming region.
a first conductor layer connected to the region, and a second conductor layer connected to a second region of the first conductivity type in a predetermined region surrounded by the first conductor layer.
the first conductor layer and the second conductor layer are separated by an insulating film, the second conductor layer is formed to cover at least a part of the first conductor layer, and the second conductor layer is separated from the second conductor layer by an insulating film; 1. A semiconductor device, characterized in that a hole is formed in a predetermined region surrounded by layers and whose side surface reaching the buried layer of the second conductivity type is covered with an insulating film. 2. Forming a buried layer of a second conductivity type in a predetermined region of a semiconductor substrate of a first conductivity type, growing a semiconductor layer, and using a semiconductor substrate having an element formation region isolated by an insulating film, forming a first conductor layer connected to the first region of the second conductivity type on the surface of the outer peripheral region of the formation region; and forming a second conductor layer surrounded by the first conductor layer in a predetermined region of the first conductor layer.
a step of forming a region for connecting a conductor layer; and a step of forming a second conductor layer connected to the second region of the first conductivity type and covering at least a portion of the first conductor layer via an insulating film. , second
forming a third region reaching the buried layer of a second conductivity type in a predetermined region surrounded by a conductor layer.
JP21291589A 1989-08-21 1989-08-21 Semiconductor device and manufacture thereof Pending JPH0377331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21291589A JPH0377331A (en) 1989-08-21 1989-08-21 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21291589A JPH0377331A (en) 1989-08-21 1989-08-21 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0377331A true JPH0377331A (en) 1991-04-02

Family

ID=16630389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21291589A Pending JPH0377331A (en) 1989-08-21 1989-08-21 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0377331A (en)

Similar Documents

Publication Publication Date Title
JPS6318673A (en) Manufacture of semiconductor device
JPH05206451A (en) Mosfet and its manufacture
US4717678A (en) Method of forming self-aligned P contact
JP2587444B2 (en) Bipolar transistor using CMOS technology and method of manufacturing the same
JPS62179764A (en) Manufacture of bipolar semiconductor device with wall spaser
JPS60241261A (en) Semiconductor device and manufacture thereof
JPH0377331A (en) Semiconductor device and manufacture thereof
JPH02153534A (en) Manufacture of semiconductor device
JP3194286B2 (en) Manufacturing method of bipolar transistor
JPH0335528A (en) Manufacture of semiconductor device
JPS59186368A (en) Manufacture of semiconductor device
JPS60211958A (en) Semiconductor device
JP3114307B2 (en) Semiconductor device and manufacturing method thereof
JPH11233521A (en) Manufacture of semiconductor device
JPH01140667A (en) Semiconductor device
JPS584462B2 (en) How to use the basics
JPH01147864A (en) Semiconductor device
JPS63114261A (en) Self-aligning base shunt for transistor
JPS60182149A (en) Manufacture of semiconductor integrated circuit
JPH03116784A (en) Manufacture of semiconductor device
JPH0240921A (en) Manufacture of bipolar transistor
JPH09148583A (en) Semiconductor integrated circuit device and manufacture of the same
JPS61112375A (en) Manufacture of semiconductor device
JPS6018960A (en) Manufacture of semiconductor device
JPH03157933A (en) Bipolar transistor and manufacture thereof