JPH0377306A - Formation of electrode - Google Patents

Formation of electrode

Info

Publication number
JPH0377306A
JPH0377306A JP21212689A JP21212689A JPH0377306A JP H0377306 A JPH0377306 A JP H0377306A JP 21212689 A JP21212689 A JP 21212689A JP 21212689 A JP21212689 A JP 21212689A JP H0377306 A JPH0377306 A JP H0377306A
Authority
JP
Japan
Prior art keywords
electrode
film
glass frit
copper
assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21212689A
Other languages
Japanese (ja)
Inventor
Kusuo Kuguhara
久々原 九州男
Yasuhiro Izumi
泰博 泉
Tatsuya Wada
達也 和田
Hiromitsu Tagi
多木 宏光
Hiroyuki Hoashi
帆足 博之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21212689A priority Critical patent/JPH0377306A/en
Publication of JPH0377306A publication Critical patent/JPH0377306A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To lower cost and to reduce irregularity in an electrode by a method wherein a glass frit film is formed on a dielectric ceramic, a copper film by an electroless plating operation is formed and the copper film is baked at a specific temperature in an atmosphere of an inert gas to form the electrode. CONSTITUTION:The surface of a dielectric ceramic 1 is coated, in 1mum or less, with a glass frit as a pretreatment; this assemble is baked at a temperature lower than the melting point of glass and at a temperature of 250 to 850 deg.C; a glass frit film 2 is formed. Then, this assembly is immersed in a hydrochloric- acid acidic solution of stannous chloride; it is washed with water and a sensitization treatment is executed. The assembly is immersed in a hydrochloric-acid acidic aqueous solution of palladium chloride; it is washed by water and an activation treatment is executed. Then, this assembly is immersed in an electroless plating liquid which is composed of copper sulfate, EDTA, Rochelle salt, caustic soda, formalin and a stabilizer to form a metal copper electrode. Then, this assembly is washed with water and dried; it is heat-treated at at 400 to 900 deg.C in an air current of nitrogen; after this heat treatment, a grinding face 4 at an end face is ground to obtain a dielectric resonance element.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は誘電体セラミックの電極形成方法、特に誘電体
セラミックや誘電体フィルタに用いられる誘電体コアに
銅電極を無電解メッキにより形成する方法に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for forming electrodes of dielectric ceramics, particularly a method for forming copper electrodes on dielectric cores used in dielectric ceramics and dielectric filters by electroless plating. Regarding.

(従来の技術) 従来、高周波用誘電体セラミック上に電極を形成する場
合、電極として銀が一般的に用いられてきた。銀を用い
る場合は銀の焼付方法が適用されていた。そのためには
、銀粉末にガラスフリッhその他無機酸化物、有機バイ
ンダ、分散剤及び洟剤を混合してペースト状とする。そ
してこのペーストを印刷、浸漬等の手段で塗着し、熱処
理によった銀電極を誘電体セラミックに形成するという
ものである。また、近年の部品のコストダウン要求に伴
い、メツ即法による電極の形成方法が種々開発されてい
る。この方法とは、まず誘電体セラミックの表面を脱脂
し1次に酸などにより表面を粗化する1次に塩化第一錫
などにより鋭敏化し、塩化パラジウムとの化学反応(S
n”+Pd”′→Sr+”+Pd)によりパラジウムを
析出させその後活性化処理を行い、モして疏酸銅−エチ
レンデアミンテトラミン(EDTA)、ロッシェル塩−
ホルマリンー苛性ソーダを含むメッキ洛中で銅の無電解
メッキを行い、次に洗浄し乾燥することが一般的であっ
た。さらにこのメッキした銅電極を不活性ガス中で熱処
理する方法も行われている。
(Prior Art) Conventionally, when forming an electrode on a high frequency dielectric ceramic, silver has generally been used as the electrode. When silver was used, the silver baking method was applied. For this purpose, silver powder is mixed with glass frit, other inorganic oxides, an organic binder, a dispersant, and a solubilizing agent to form a paste. Then, this paste is applied by means such as printing or dipping, and a silver electrode is formed on the dielectric ceramic by heat treatment. Further, in response to the recent demand for cost reduction of parts, various methods of forming electrodes by the instant method have been developed. This method involves first degreasing the surface of the dielectric ceramic, first roughening the surface with acid, etc., then sensitizing it with stannous chloride, etc., and then chemically reacting with palladium chloride (S
Palladium is precipitated by oxidation treatment (n"+Pd"'→Sr+"+Pd), followed by activation treatment, followed by copper silicate-ethylenedeaminetetramine (EDTA), Rochelle salt-
It was common practice to perform electroless plating of copper in a plating solution containing formalin-caustic soda, followed by washing and drying. Furthermore, a method of heat-treating the plated copper electrode in an inert gas has also been used.

(発明が対決しようとする課M) 誘電体セラミックの中で誘電体共振素子の誘電体損Q0
は誘電体セラミック自身のQ、と電極のQ、によって決
定され、次式のように表わすことができる。
(Case M that the invention attempts to confront) Dielectric loss Q0 of a dielectric resonant element in a dielectric ceramic
is determined by the Q of the dielectric ceramic itself and the Q of the electrode, and can be expressed as the following equation.

1/Qa= 1 /Q、+ i /Q。1/Qa=1/Q, +i/Q.

ここで電極のQ、は、電極自身を構成する金属の導電率
が大きく寄与するため電極材料として金属の中で一番大
きな漏電率を有する銀が従来用いられできた。しかしな
がら、従来の銀電極を用いる場合、銀電極にガラスフリ
ットや無機酸化物等の存在は銀の本来の導電率を低下さ
せ、銅の導電率5.81 X 10’ (1/Ω・備)
より低くなってしまい。
Here, the electrical conductivity of the metal constituting the electrode itself greatly contributes to the Q of the electrode, so silver, which has the highest leakage rate among metals, has conventionally been used as the electrode material. However, when using a conventional silver electrode, the presence of glass frit, inorganic oxide, etc. in the silver electrode reduces the original electrical conductivity of silver, and the electrical conductivity of copper is 5.81
It ended up being lower.

結局高価な銀を使用しているにも拘らず上記の式で表わ
れされるQ、を低下さぜる。Qoを高くしようとして、
ガラスフリフトを無機酸化物等の量を少なくすると銀電
極の密着性が低下しでしまうという相反する問題点を有
している。
In the end, even though expensive silver is used, Q expressed by the above formula is lowered. Trying to increase Qo,
Glass lift has a contradictory problem in that if the amount of inorganic oxide etc. is reduced, the adhesion of the silver electrode will deteriorate.

また、従来の無電解メッキ法により銅電極を形成する場
合も多くの問題点を有している。すなわち、無電解メッ
キによる銅電極は、誘電体セラミックに直接無電解メッ
キをしても密着性が悪く実用に耐えないので酸等による
表面処理を行う。しかしながら、誘電体セラミックは誘
電特性に応Cて多くの組成系から成り立っており、かつ
、誘電体セラミックの焼結状態も均一ではなく、耐酸耐
蝕性及び使用する酸等の選択も多くの要因が複雑にから
み合って争純に決まるものηはない、また無電解メッキ
による銅電極はこのままでは導電率が銅箔より低くQも
低いという欠点があった。さらに、高温に放置したり、
高温で熱処理したり、ヒーhサイクルテスト(−55℃
30分間保持し、その後+125℃30分間保持するこ
とをエサイクルとしてこの換作を繰り返して行うテスト
)等をする辷特性が劣化する(特にQ0低下や共振周波
数がドリフトする)等の問題がある。
Furthermore, there are many problems when forming copper electrodes using conventional electroless plating methods. That is, copper electrodes formed by electroless plating have poor adhesion and are not suitable for practical use even if they are electrolessly plated directly onto dielectric ceramics, so surface treatment with acid or the like is performed. However, dielectric ceramics are made up of many composition systems depending on their dielectric properties, and the sintering state of dielectric ceramics is not uniform, and the acid corrosion resistance and the selection of the acid used depend on many factors. They are intricately intertwined, so there is no one thing that can be decided on a competitive basis, and copper electrodes formed by electroless plating as they are have the drawbacks of lower conductivity and lower Q than copper foil. Furthermore, leaving it at high temperatures,
Heat treatment at high temperature or heat cycle test (-55℃)
There are problems such as deterioration of performance characteristics (particularly Q0 drop and resonance frequency drift).

本発明は上記従来の問題を解決するものであり、コスト
が安(、信頼性が高い銅電極を形成する方法を提供する
こヒを目的とするものである。
The present invention solves the above-mentioned conventional problems, and aims to provide a method of forming a copper electrode at low cost and high reliability.

(課題を解決するための手段) 本発明は上記目的を達成するために、まず前処理として
誘導体セラミックの表面に1−以下のガラスフリットを
塗布し、ガラスの融点以下の温度で焼付してガラスフリ
ットの皮膜を形成する。その後、塩化第一錫溶液で鋭敏
化し、塩化パラジウム溶液で活性化して無電解メッキ法
により銅電極を形成する。さらにその後、不活性ガス雰
囲気中でガラスフリットの融点以上の温度400〜90
0℃で熱処理して銅電極を形成するものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention first applies a glass frit of 1 or less on the surface of a dielectric ceramic as a pretreatment, and bakes it at a temperature below the melting point of the glass to create a glass frit. Forms a frit film. Thereafter, it is sensitized with a stannous chloride solution and activated with a palladium chloride solution to form a copper electrode by electroless plating. Furthermore, after that, in an inert gas atmosphere, the temperature is 400 to 90°C, which is higher than the melting point of the glass frit.
A copper electrode is formed by heat treatment at 0°C.

(作 用) したがって、上記方法により得られた電極は、焼付電極
法によって得られた銀電極に比較して。
(Function) Therefore, the electrode obtained by the above method is compared to the silver electrode obtained by the baked electrode method.

安価であり電極のバラツキも小さい、また従来の無電解
メッキ法による電極と比較しても、酸による誘電体セラ
ミックの表面処理の問題もなく、ガラスフリットによる
接合、均一性と高い導電率を示す焼付電極とメッキ電極
の特徴を合わせ持った非常に良好な誘電特性を有する。
It is inexpensive and has little variation in electrodes, and when compared to electrodes made using conventional electroless plating methods, there is no problem with surface treatment of dielectric ceramics caused by acid, and the bonding is achieved using glass frit, which provides uniformity and high conductivity. It has very good dielectric properties, combining the characteristics of baked electrodes and plated electrodes.

(実施例) 第1図は本発明の実施例における製造工程を示すもので
ある。第1図において、1は誘電体セラミック、2はガ
ラスフリット皮膜、3は銅メッキ皮膜、4は研削面であ
る。
(Example) FIG. 1 shows a manufacturing process in an example of the present invention. In FIG. 1, 1 is a dielectric ceramic, 2 is a glass frit film, 3 is a copper plating film, and 4 is a ground surface.

次に製造工程について説明する。まず、誘電体セラミッ
クとしてBaO−8s20.−Tie、系素子(Bao
−NdiO,−Ti02系素子)とBa0−TiO,系
の素子をテストピースとして用いた。そしてそれらのテ
ストピースは前者が64mnX6゜8mの角で長さ9.
5閣、後書は6.8m5X6.8−の角で長さ1.2.
4m、!=した。これ等の素子を、ホウ硅酸亜鉛−アル
ミナ、ジルコニアを主成分とする粉末ガラスの懸濁液に
浸漬して1−以下のガラスフリットを付着させ、その後
100〜150℃の範囲内の温度で乾燥させた後、電気
かを用いて大気中200〜900℃の範囲内の温度で焼
付しガラスフリッhの皮膜を形成したく第1図(b))
、次いで塩化第一錫の塩酸酸性溶液に浸漬し、水洗して
鋭敏化処理を行った。
Next, the manufacturing process will be explained. First, as a dielectric ceramic, BaO-8s20. -Tie, system element (Bao
-NdiO, -Ti02 type elements) and Ba0-TiO type elements were used as test pieces. The test pieces are 64mm x 6°8m square and 9mm long.
5 cabinets, the afterword is 6.8 m5 x 6.8 squares and length 1.2.
4m! =I did. These elements are immersed in a suspension of powdered glass mainly composed of zinc borosilicate-alumina and zirconia to attach a glass frit of 1- or less, and then heated at a temperature in the range of 100 to 150°C. After drying, it is baked using an electric oven in the air at a temperature within the range of 200 to 900°C to form a glass film (Fig. 1 (b)).
Then, it was sensitized by immersing it in an acidic solution of stannous chloride in hydrochloric acid and washing with water.

次に、塩化パラジウムの塩酸酸性水溶液に浸漬し水洗し
て活性化処理を行った1次に硫酸銅、ED”r A 、
ロッシェル塩、苛性ソーダ1.ホルマリン及び安定剤か
らなる無電解メッキ液に浸漬して(10〜20ミクロン
厚さの)金屑銅電極を形成した(第1図(e))、次に
水洗、乾燥を行い、窒素気流中で300〜1000℃、
30分〜60分間熱処理を行った(第1図(d))、熱
処理後端面の研削面4を研削して誘電体共振素子にした
Next, primary copper sulfate, ED"r A,
Rochelle salt, caustic soda 1. A gold scrap copper electrode (with a thickness of 10 to 20 microns) was formed by immersing it in an electroless plating solution consisting of formalin and a stabilizer (Fig. 1 (e)), then washing with water, drying, and placing it in a nitrogen stream. at 300-1000℃,
Heat treatment was performed for 30 to 60 minutes (FIG. 1(d)). After the heat treatment, the ground surface 4 of the end face was ground to form a dielectric resonant element.

なお、上記実施例では誘電体セラミックを用いたが、他
の絶縁体、半導体磁器でも上記した熱処理に耐え得る磁
器組成物であれば全く問題ない。
Although dielectric ceramic was used in the above embodiment, other insulators or semiconductor ceramics may be used as long as the ceramic composition can withstand the heat treatment described above.

第1表 第1表は誘導体セラミック上に銅電極を形成したときの
処理条件を特性を示したものである。第1表において、
実施例No、1は前処理無しで電極を形成した場合のも
のであり、Q、が低く密着強度が得られない、No、2
〜N009は、ガラスフリットを融点以下の温度から融
点以上の温度で熱処理をして、電極を形成して以後窒素
気流中において400〜950℃で熱処理した場合の実
施例である。
Table 1 Table 1 shows the processing conditions and characteristics when forming a copper electrode on a dielectric ceramic. In Table 1,
Example No. 1 is a case where the electrode is formed without pretreatment, and Q is low and adhesion strength cannot be obtained. No. 2
~N009 is an example in which a glass frit is heat-treated from a temperature below the melting point to a temperature above the melting point to form an electrode, and then heat-treated at 400 to 950°C in a nitrogen stream.

No、4.No、5のように前処理でガラスフリットの
融点以上の熱処理ヒするとQ6の債も低く、密着強度が
得られないのでセラミックと電極の界面が遊離してふく
れているこヒがわかった。No、6〜No、9はガラス
フリットの融点を変えた場合の実施例である。 No、
、12〜No、17. No、19〜No、22は、誘
電体セラミックの材料系を変えた場合の実施例である。
No, 4. It was found that when heat treatment was performed at a temperature higher than the melting point of the glass frit in the pretreatment as in No. 5, the bond of Q6 was also low, and the interface between the ceramic and the electrode was loose and swollen because no adhesion strength was obtained. Examples No. 6 to No. 9 are examples in which the melting point of the glass frit is changed. No,
, 12~No, 17. No. 19 to No. 22 are examples in which the material system of the dielectric ceramic was changed.

 No、L4. No、17. No、22はガラスブ
リットの融点以上の温度で前処理した例でセラミック材
料を変えてもQIlが低く、セラミックと電極の界面に
ふくれが発生した。比較例のNo、10゜No、、11
. No、18. No、23は弗酸混合物でエツチン
グ処理をして銅電極を形成した場合の例である。
No, L4. No, 17. No. 22 was an example in which the pretreatment was performed at a temperature higher than the melting point of the glass bullet, and even though the ceramic material was changed, the QIl was low, and blistering occurred at the interface between the ceramic and the electrode. Comparative example No. 10° No. 11
.. No, 18. No. 23 is an example in which a copper electrode was formed by etching with a hydrofluoric acid mixture.

その結果、材料によってはほぼ満足できるような特性が
得られた。しかし材料選択選が大きくて、セラミックの
組成やロフト間の依存性が大きく、どうしても満足な特
性が得られない材料がある。
As a result, almost satisfactory characteristics were obtained depending on the material. However, there are many materials to choose from, and there is a great dependence on ceramic composition and loft, making it impossible to obtain satisfactory properties for some materials.

(発明の効果) 本発明は上記実施例から明らかなように、銀ペースト等
の焼付けによって電極を形成した場合に比べ、コストが
安く、信頼性が高く、工業的量産化に適した効果を有す
る。
(Effects of the Invention) As is clear from the above examples, the present invention is lower in cost and more reliable than in the case where electrodes are formed by baking silver paste, etc., and has effects suitable for industrial mass production. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の製造工程図である。 1 ・・・誘電体セラミック、 2 ・・・ガラスフリ
ット皮膜、 3・・・銅メツ卑皮膜、4・・・研削面。
FIG. 1 is a manufacturing process diagram of an embodiment of the present invention. 1...Dielectric ceramic, 2...Glass frit film, 3...Copper metal base film, 4...Grinded surface.

Claims (4)

【特許請求の範囲】[Claims] (1)誘電体セラミック上にガラスフリットの皮膜を形
成し、前記ガラスフリットの皮膜上に無電解銅メッキに
よる銅皮膜を形成し、前記銅皮膜を不活性ガス雰囲気中
において400℃ないし900℃で焼付けをして誘電体
セラミック上に電極を形成することを特徴とする電極形
成方法。
(1) Form a glass frit film on a dielectric ceramic, form a copper film by electroless copper plating on the glass frit film, and heat the copper film at 400°C to 900°C in an inert gas atmosphere. An electrode forming method characterized by forming an electrode on a dielectric ceramic by baking.
(2)ガラスフリットの皮膜はガラスフリットの融点以
下の温度でかつ250℃ないし850℃で行われること
を特徴とする請求項(1)記載の電極形成方法。
(2) The method for forming an electrode according to claim 1, wherein the glass frit film is formed at a temperature below the melting point of the glass frit and from 250°C to 850°C.
(3)誘電体セラミック上にガラスフリットの皮膜を形
成し、前記ガラスフリットの皮膜上に無電解銅メッキに
よる銅皮膜を形成し、前記銅皮膜の上に銅,銀,半田の
中から1種類以上を電解メッキによって電極皮膜を形成
することを特徴とする電極形成方法。
(3) Form a glass frit film on the dielectric ceramic, form a copper film by electroless copper plating on the glass frit film, and apply one type of copper, silver, or solder on the copper film. An electrode forming method characterized by forming an electrode film by electrolytic plating.
(4)電極の不必要箇所を機械的に除去して電極を形成
する請求項(1),(2)または(3)記載の電極形成
方法。
(4) The electrode forming method according to claim (1), (2) or (3), wherein the electrode is formed by mechanically removing unnecessary portions of the electrode.
JP21212689A 1989-08-19 1989-08-19 Formation of electrode Pending JPH0377306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21212689A JPH0377306A (en) 1989-08-19 1989-08-19 Formation of electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21212689A JPH0377306A (en) 1989-08-19 1989-08-19 Formation of electrode

Publications (1)

Publication Number Publication Date
JPH0377306A true JPH0377306A (en) 1991-04-02

Family

ID=16617319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21212689A Pending JPH0377306A (en) 1989-08-19 1989-08-19 Formation of electrode

Country Status (1)

Country Link
JP (1) JPH0377306A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8179660B2 (en) 2005-03-06 2012-05-15 Murata Manufacturing Co., Ltd. Electronic device and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8179660B2 (en) 2005-03-06 2012-05-15 Murata Manufacturing Co., Ltd. Electronic device and method for manufacturing the same
US8894836B2 (en) 2005-06-03 2014-11-25 Murata Manufacturing Co., Ltd. Electronic device and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US4795658A (en) Method of metallizing ceramic material
US4668925A (en) Dielectric resonator and method for making
JP2591205B2 (en) Thermistor
US6452780B2 (en) Capacitor
JPH04185103A (en) Dielectric resonator and its manufacture
JPH0377306A (en) Formation of electrode
JP3348705B2 (en) Electrode formation method
JPH0266101A (en) Electric conductive particles and manufacture thereof
JP3208438B2 (en) Ceramic substrate with metal layer and method of manufacturing the same
JPH0785495B2 (en) Method of forming copper electrode on oxide ceramics
JPS58166806A (en) Method for forming electrode on dielectric ceramic for high frequency
JP2004131302A (en) Conductive ceramic and its manufacturing process
JPS6127003A (en) Conductive paste composition
JPS634332B2 (en)
JP2003073890A (en) Method for forming end face electrode of electronic component
JPH05174614A (en) Manufacture of wiring electrode paste and electronic parts
JP4933674B1 (en) Copper paste for electrodes.
JP2001291604A (en) Chip-type laminated thermistor and its manufacturing method
JPH02294007A (en) Formation of ceramic electronic component electrode
JPH0279407A (en) Manufacture of grain boundary insulation type semiconductor porcelain capacitor
JPS60194512A (en) Porcelain electronic part and method of producing same
JPH08162361A (en) Electronic part and manufacture thereof
JPH03270004A (en) Laminated ceramic capacitor
JPH04344701A (en) Manufacture of coaxial dielectric resonator
JP2000164404A (en) Manufacture of positive temperature coefficient thermistor