JPH0376289A - Manufacture of semiconductor laser - Google Patents

Manufacture of semiconductor laser

Info

Publication number
JPH0376289A
JPH0376289A JP21334789A JP21334789A JPH0376289A JP H0376289 A JPH0376289 A JP H0376289A JP 21334789 A JP21334789 A JP 21334789A JP 21334789 A JP21334789 A JP 21334789A JP H0376289 A JPH0376289 A JP H0376289A
Authority
JP
Japan
Prior art keywords
layer
wafer
laser rays
high vacuum
diffraction grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21334789A
Other languages
Japanese (ja)
Inventor
Katsumi Yagi
克己 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP21334789A priority Critical patent/JPH0376289A/en
Publication of JPH0376289A publication Critical patent/JPH0376289A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it unneeded to make an AlGaAs layer which serves as a guide layer small in the Al compositional ratio and to make oscillating laser rays shorter in wavelength by a method wherein a diffraction grating is formed on a wafer, and a second crystal growth is carried out in succession without exposing the wafer to atmosphere. CONSTITUTION:A wafer 100 where a double hetero-structure is formed is transferred into an etching chamber 30 kept in a high vacuum state and installed at a prescribed position. I2 gas is introduced into the chamber 30 by opening a gas leak valve 35 to set its inner pressure to 10mbr. Ar<+> ion laser rays are made to propagate through an optical fiber 31, the laser rays are split into two by a half mirror 32, the split laser rays are made to interfere with each other on the wafer 100, and the wafer 100 is exposed to the interfered laser rays for 30 seconds. As interfered light from two optical paths is periodically varies in intensity, an optically induced etching takes place periodically to form a diffraction grating 8 on a guide layer 6. In succession, the etching chamber 30 is made to return to be in a high vacuum state by a high vacuum pump 36, a gate valve 40 is opened, the wafer 100 is transferred into an MBE device 20 under high vacuum, and a second crystal growth is carried out.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 回折格子が組込まれ、単一波長性に優れた半導体レーザ
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method of manufacturing a semiconductor laser incorporating a diffraction grating and having excellent single wavelength properties.

〔従来の技術〕[Conventional technology]

回折格子を組込ませた構成をなす半導体レーザとして、
DBR(distributed Bragg ref
lector)レーザ、 DFB(distribut
ed feedback)レーザ等が公知であり、これ
らの半導体レーザは単一波長性の向上を図ることができ
、光学的計測または光情報処理等に幅広く使用されてい
る。このような半導体レーザでは、回折格子を設けた効
果を発揮するために、回折格子を活性層の近傍(約0.
3μm以内〉に形成する必要がある。従って、その製造
時における結晶成長方法としては、極薄膜制御性に優れ
たMOCVD(metalorganic chemi
cal vapor deposition:有機金属
気相成長)法、 MBE(molecular bea
a+epitaxy  :分子線エピタキシ)法を用い
ることが一般的である。このような半導体レーザを製造
する際には、まず活性層を含むダブルヘテロ層を基板上
に結晶成長させ、次いで回折格子を形成した後、その上
にクラッド層及びキャップ層を再成長させる。
As a semiconductor laser with a structure incorporating a diffraction grating,
DBR (distributed Bragg ref
(lector) laser, DFB (distributor) laser, DFB (distributor) laser,
ed feedback) lasers, etc. are well known, and these semiconductor lasers can improve single wavelength properties and are widely used for optical measurement, optical information processing, etc. In such a semiconductor laser, in order to exhibit the effect of providing a diffraction grating, the diffraction grating is placed near the active layer (approximately
3 μm or less. Therefore, as a crystal growth method during production, MOCVD (metalorganic chemical
cal vapor deposition: MBE (molecular bea
It is common to use a+epitaxy (molecular beam epitaxy) method. When manufacturing such a semiconductor laser, first, a double hetero layer including an active layer is crystal-grown on a substrate, then a diffraction grating is formed, and then a cladding layer and a cap layer are re-grown thereon.

ところがAlGaAs系の半導体レーザを製造する場合
には、AlGaAs層が酸化されやすいので、クランド
層及びキャップ層の再成長が困難であるときがある。そ
こで酸化防止を図るために、第1回目の成長時に表面層
として、酸化の影響を受けにくいGaAs層かAlvA
戒比が小さいAlGaAs層を形成しておくことが知ら
れている(Appl、Phys、Lett、4B(1)
、6January 1986)。そしてこの文献に開
示されている製造方法では、AI組成比が0.lである
AlGaAs表面層を酸化防止層として形成する。
However, when manufacturing an AlGaAs-based semiconductor laser, the AlGaAs layer is easily oxidized, so it is sometimes difficult to re-grow the ground layer and the cap layer. Therefore, in order to prevent oxidation, a GaAs layer or an AlvA layer, which is less susceptible to oxidation, is used as a surface layer during the first growth.
It is known that an AlGaAs layer with a small ratio is formed (Appl, Phys, Lett, 4B(1)
, 6 January 1986). In the manufacturing method disclosed in this document, the AI composition ratio is 0. An AlGaAs surface layer of 1 is formed as an oxidation prevention layer.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、AlGaAs系の半導体レーザにおいて一般
的に用いられるレーザ光の波長は0.78μmであり、
活性層のAI組成比は0.15であるので、ガイド層の
AI組成比は0.15以上であることが必要である。
By the way, the wavelength of laser light commonly used in AlGaAs semiconductor lasers is 0.78 μm,
Since the active layer has an AI composition ratio of 0.15, the guide layer needs to have an AI composition ratio of 0.15 or more.

AlGaAs層は酸化されやすいので、ガイド層に使用
できるAlGaAs層のAI組成比を低くしておく必要
がある。従って、従来の製造方法では、作製できる半導
体レーザのレーザ光の波長に制限が生じるという問題点
がある。
Since the AlGaAs layer is easily oxidized, the Al composition ratio of the AlGaAs layer that can be used as the guide layer must be kept low. Therefore, the conventional manufacturing method has a problem in that the wavelength of the laser light of the semiconductor laser that can be manufactured is limited.

本発明はかかる事情に鑑みてなされたものであり、ダブ
ルヘテロ層が形成されたウェハに、高気密性に優れたエ
ツチング室内において光誘起エツチングを施して回折格
子を形成し、次に表面を大気に露出させることなく、再
成長を行うことにより、レーザ光の波長が制限を受ける
ことなく、回折格子の形成及び再成長によるクランド層
及びキャップ層の形成が可能である半導体レーザの製造
方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and a wafer on which a double hetero layer has been formed is subjected to photo-induced etching in an etching chamber with excellent airtightness to form a diffraction grating, and then the surface is exposed to air. Provided is a method for manufacturing a semiconductor laser, in which a diffraction grating can be formed and a ground layer and a cap layer can be formed by regrowth without limiting the wavelength of laser light by performing regrowth without exposure to The purpose is to

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る半導体レーザの製造方法は、基板上に、ダ
ブルヘテロ層2回折格子、クラッド層及びキャップ層を
この順に形成してあるAlGaAs系の半導体レーザを
製造する方法において、前記基板上に前記ダブルヘテロ
層を成長形成する工程と、形成されたダブルヘテロ層に
、干渉露光光源による光誘起ガスエツチングを施して前
記回折格子を形成する工程と、前記光誘起ガスエツチン
グ後に、大気にさらすことなく、前記クラッド層及びキ
ャップ層を成長形成する工程とを有することを特徴とす
る。
A method for manufacturing a semiconductor laser according to the present invention is a method for manufacturing an AlGaAs semiconductor laser in which a double hetero layer two diffraction grating, a cladding layer, and a cap layer are formed in this order on a substrate. a step of growing and forming a double hetero layer, a step of subjecting the formed double hetero layer to photo-induced gas etching using an interference exposure light source to form the diffraction grating, and a step of forming the diffraction grating after the photo-induced gas etching without exposing it to the atmosphere. , a step of growing and forming the cladding layer and the cap layer.

〔作用〕[Effect]

本発明の半導体レーザの製造方法にあっては、まず基板
上に、活性層を含むダブルヘテロ層を形成した後、干渉
露光光源を用いて光誘起ガスエツチングを行って、回折
格子を形成する。次いで表面を大気にさらすことなく、
クラッド層及びキャップ層を再成長させる。そうすると
回折格子形成後にダブルヘテロ層の表層のAlGaAs
層が酸化されることなく再成長が行なえ、このAlGa
As層のAI組成比を低くしておく必要はない。
In the method of manufacturing a semiconductor laser of the present invention, a double hetero layer including an active layer is first formed on a substrate, and then photo-induced gas etching is performed using an interference exposure light source to form a diffraction grating. Then, without exposing the surface to the atmosphere,
Re-grow the cladding and cap layers. Then, after the formation of the diffraction grating, the AlGaAs on the surface layer of the double hetero layer
This AlGa layer can be regrown without being oxidized.
There is no need to keep the Al composition ratio of the As layer low.

〔実施例〕〔Example〕

以下、本発明をその実施例を示す図面に基づき具体的に
説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on drawings showing embodiments thereof.

第1図は本発明に係る半導体レーザの製造方法の工程を
示す断面図、第2図は本発明の半導体レーザの製造方法
を実施するための装置の構成を示す模式図である。
FIG. 1 is a cross-sectional view showing the steps of the semiconductor laser manufacturing method according to the present invention, and FIG. 2 is a schematic diagram showing the configuration of an apparatus for carrying out the semiconductor laser manufacturing method of the present invention.

第2図において、図中20は結晶成長の場であるMBB
装置、30は回折格子形成の場である高気密性のエツチ
ング室であり、MBB装置20及びエツチング室30は
ゲートパルプ40を介して接続されている。
In Figure 2, 20 in the figure is MBB, which is the place of crystal growth.
The device 30 is a highly airtight etching chamber where a diffraction grating is formed, and the MBB device 20 and the etching chamber 30 are connected via a gate pulp 40.

エツチング室30には露光用の光を伝播する光ファイバ
31が装入されており、該光ファイバ31の端面近傍に
はハーフミラ−32が配設されている。該ハーフごラー
からの2方向の光路には、ξシー33゜34が設けられ
、製造工程中にあるウェハ100にミラー33.34に
おける反射光が照射されるようになっている。またエン
チング室30にガスリークパルプ35の作用により■8
ガスが導入され、また真空ポンプ36の作用により内部
を高真空状態にすることができるようになっている。
An optical fiber 31 for propagating exposure light is inserted into the etching chamber 30, and a half mirror 32 is disposed near the end face of the optical fiber 31. In the optical path in two directions from the half mirror, ξ seats 33 and 34 are provided so that the reflected light from the mirrors 33 and 34 is irradiated onto the wafer 100 during the manufacturing process. Also, due to the action of the gas leak pulp 35 in the enching chamber 30, ■8
Gas is introduced, and the inside can be brought into a high vacuum state by the action of the vacuum pump 36.

まずMBE室2室内0内いて、MBE法を用いて基板温
度を680℃にして、n−GaAs基板1上に以下の各
層を連続的に成長させて、活性層を含むダブルヘテロ構
造を形成する(第1図(a))。
First, in MBE chamber 2, the substrate temperature is set to 680° C. using the MBE method, and the following layers are successively grown on the n-GaAs substrate 1 to form a double heterostructure including an active layer. (Figure 1(a)).

2: n−GaAsバッファ層、膜厚1μmI X−4
0”cs+−’ (Siドープ〉3 : n−A1.、
 Gas、、 Asクラッド層、膜厚1μm5 XIO
”elm−″(Siドープ)4:アンドープ^to、 
l Gas、 l As活性層。
2: n-GaAs buffer layer, thickness 1 μm IX-4
0"cs+-' (Si doped>3: n-A1.,
Gas, As cladding layer, film thickness 1μm5 XIO
"elm-" (Si doped) 4: undoped ^to,
lGas, lAs active layer.

膜厚0.1μm 5 : P−Al6.4 Gao、6 Asバリア層、
膜厚0.02μm5 XIO”am−″(Beドープ) 6 : p−/It0. zsGaa、 t5Asガイ
ド層、膜厚0.2μm5 XIO”Ql−” (Beド
ープ)7 : p−GaAs酸化防止層、膜厚0.05
μm5 XIO”Ca1−’ (Beドープ)次にダブ
ルヘテロ構造が形成されたウェハ100を、高真空状態
に維持されたエツチング室30内へ搬送して所定位置に
設置する。基板温度を200℃に保ち、ガスリークパル
プ35を開いて■2ガスを室内に導入し、内部圧力を1
0a+br (ミリバール)にする。光ファイバ31に
Ar+イオンレーザ(λ−488nm)を伝播させ、ハ
ーフミラ−32により光を分割して、ウェハ100表面
にてこのレーザ光を干渉させ、30秒問わたって露光す
る。そうすると2光路からの干渉光がウェハ100上で
周期的な強弱を形成するので、光誘起エツチングが周期
的に生じて、ガイド層6に回折格子8が形成される(第
1図(bl)。
Film thickness 0.1 μm 5: P-Al6.4 Gao, 6 As barrier layer,
Film thickness 0.02 μm5 XIO “am-” (Be doped) 6: p-/It0. zsGaa, t5As guide layer, film thickness 0.2 μm5 XIO"Ql-" (Be doped) 7: p-GaAs oxidation prevention layer, film thickness 0.05
μm5 Open the gas leak pulp 35 to introduce 2 gas into the room and reduce the internal pressure to 1.
Set to 0a+br (millibar). An Ar+ ion laser (λ-488 nm) is propagated through the optical fiber 31, the light is split by the half mirror 32, the laser light is caused to interfere with the surface of the wafer 100, and exposure is performed for 30 seconds. Then, since the interference light from the two optical paths forms periodic intensities on the wafer 100, photo-induced etching occurs periodically, and a diffraction grating 8 is formed on the guide layer 6 (FIG. 1(bl)).

次いで高真空ポンプ36にてエツチング室30内を再び
I Xl0−’mbr以上の高真空状態に戻し、ゲート
バルブ40をあけて、高真空中にてウェハ100をMB
E装置20へ搬送する。そしてMBE装置20内にて、
下記両層を形成すべく2回目の結晶成長(再成長)を行
う。(第1図(C)) 9 : p−Al0.4 Ga、、 Asクラフト層、
膜厚1μm5 Xl0I?cs+−’ (Beドープ)
10 : p−GaAsキャップ層、膜厚1.crmI
 XIO”cm−” (Beドープ)なおMBE装置で
はなく MOCVD装置を用いて2回目の結晶成長を行
う場合には、高真空状態にエツチング室30内を戻した
後、ウェハ100表面にAsを蒸着させて、MOCVD
装置にウェハ100を搬送する。
Next, the inside of the etching chamber 30 is returned to a high vacuum state of IXl0-'mbr or higher again using the high vacuum pump 36, the gate valve 40 is opened, and the wafer 100 is transferred to the MB in the high vacuum.
Transfer to E device 20. Then, within the MBE device 20,
A second crystal growth (regrowth) is performed to form both of the layers described below. (Figure 1 (C)) 9: p-Al0.4 Ga, As kraft layer,
Film thickness 1μm5 Xl0I? cs+-' (Be doped)
10: p-GaAs cap layer, film thickness 1. crmI
XIO"cm-" (Be-doped) When performing the second crystal growth using an MOCVD device instead of an MBE device, after returning the inside of the etching chamber 30 to a high vacuum state, As is vapor-deposited on the surface of the wafer 100. Let me, MOCVD
The wafer 100 is transferred to the apparatus.

モしてMOCVD装置内にて、基板温度を上昇させて表
面の^Sを脱離させ、引き続いて再成長を行うようにす
ればよい。
Then, the temperature of the substrate may be increased in the MOCVD apparatus to remove ^S from the surface, and then regrowth may be performed.

次いで、フォトエツチングにより、中央部のクラフト層
9及びキャップ層10を幅4μmのメサ構造とする。こ
の際のエツチング条件は、エンチング液4HsPO*+
HzO□+cnsouを用いて室温で40秒間とした。
Next, by photo-etching, the craft layer 9 and the cap layer 10 in the center are formed into a mesa structure with a width of 4 μm. The etching conditions at this time are the etching solution 4HsPO**
HzO□+cnsou was used for 40 seconds at room temperature.

次に、基板温度を400℃にし、5iHe(11/ll
l1n、) +0g(0,4Il/sin、)を約3分
間にわたって導入して、エツチング除去により露出した
回折格子8(ガイド層6)上に、膜厚5000人の5i
Oz熱CVD膜11を形成する。フォトエツチングによ
りメサ上部に直径3μmの窓あけを行った後、Au/C
rからなるp側電極12を形成する。最後に基板1を約
100μmまでラッピング除去した後、AuGe/Ni
/Auからなるn側電極13を形成して、レーザ素子を
作製する(第1図(d))。
Next, the substrate temperature was set to 400°C, and 5iHe (11/ll
l1n,)+0g (0.4Il/sin,) for about 3 minutes to form a 5i film with a film thickness of 5000 on the diffraction grating 8 (guide layer 6) exposed by etching.
An Oz thermal CVD film 11 is formed. After making a window with a diameter of 3 μm on the top of the mesa by photoetching, Au/C
A p-side electrode 12 made of r is formed. Finally, after removing the substrate 1 by lapping to about 100 μm, the AuGe/Ni
An n-side electrode 13 made of /Au is formed to produce a laser element (FIG. 1(d)).

本発明の製造方法を用いて製造した半導体レーザのI−
L(電流−光出力〉特性を、第3図に示す。
I- of the semiconductor laser manufactured using the manufacturing method of the present invention
The L (current-light output) characteristic is shown in FIG.

発振しきい値電流Iいは45mAであった。また、本発
明の製造方法を用いて製造した半導体レーザにおける発
振波長の温度依存性を第4図に示す。第4図かられかる
ように、発振スペクトルは単一波長であり、温度変化に
対する発振波長の変化率は0.85A/℃が得られた。
The oscillation threshold current I was 45 mA. Further, FIG. 4 shows the temperature dependence of the oscillation wavelength in a semiconductor laser manufactured using the manufacturing method of the present invention. As can be seen from FIG. 4, the oscillation spectrum was a single wavelength, and the rate of change of the oscillation wavelength with respect to temperature change was 0.85 A/°C.

以上のように本発明によって製造した半導体レーザでは
、良好な特性が得られている。
As described above, the semiconductor laser manufactured according to the present invention has good characteristics.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明の半導体レーザの製造方法では
、回折格子を形成した後、大気にさらすことなく連続的
に2回目の結晶成長を行うので、AlGaAs系半導体
レーザにおいて、ガイド層に使用するAlGaAs層の
AI組威比を小さくすることが不要となり、発振波長の
短波長化を実現でき、またレジストの塗布工程及び除去
工程を省略でき、更にMBE法またはMOCVD法を用
いて、活性層の下方の層にも回折格子を形成できる等、
本発明は優れた効果を奏する。
As detailed above, in the semiconductor laser manufacturing method of the present invention, after forming the diffraction grating, the second crystal growth is performed continuously without exposing it to the atmosphere. It is no longer necessary to reduce the AI composition ratio of the AlGaAs layer, the oscillation wavelength can be shortened, the resist coating and removal steps can be omitted, and the active layer can be formed using the MBE method or MOCVD method. Diffraction gratings can also be formed in the lower layer, etc.
The present invention has excellent effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る半導体レーザの製造方法の工程を
示す断面図、第2図は本発明の製造方法を実施するため
の装置を示す模式図、第3図は本発明の製造方法を用い
て製造された半導体レーザのI−L特性を示すグラフ、
第4図は本発明の製造方法を用いて製造された半導体レ
ーザにおける発振波長の温度依存性を示すグラフである
。 1・・・基板 4・・・活性層 酸化防止層 ・・・キャップ層 2・・・バッファN 3・・・クラッド層5・・・バリ
ア層 6・・・ガイド層 7・・・8・・・回折格子 
9・・・クラッドN1020・・・?lBB装置 30
・・・エツチング家持 許 出願人
FIG. 1 is a cross-sectional view showing the steps of the method for manufacturing a semiconductor laser according to the present invention, FIG. 2 is a schematic diagram showing an apparatus for carrying out the method for manufacturing a semiconductor laser according to the present invention, and FIG. A graph showing the IL characteristics of a semiconductor laser manufactured using the
FIG. 4 is a graph showing the temperature dependence of the oscillation wavelength in a semiconductor laser manufactured using the manufacturing method of the present invention. 1...Substrate 4...Active layer anti-oxidation layer...Cap layer 2...Buffer N 3...Clad layer 5...Barrier layer 6...Guide layer 7...8... ·Diffraction grating
9...Clad N1020...? lBB device 30
・・・Etching home ownership permit applicant

Claims (1)

【特許請求の範囲】 1、基板上に、ダブルヘテロ層、回折格子、クラッド層
及びキャップ層をこの順に形成してあるAlGaAs系
の半導体レーザを製造する方法において、 前記基板上に前記ダブルヘテロ層を成長形 成する工程と、 形成されたダブルヘテロ層に、干渉露光光 源による光誘起ガスエッチングを施して前記回折格子を
形成する工程と、 前記光誘起ガスエッチング後に、大気にさ らすことなく、前記クラッド層及びキャップ層を成長形
成する工程と を有することを特徴とする半導体レーザの 製造方法。
[Claims] 1. A method for manufacturing an AlGaAs semiconductor laser in which a double hetero layer, a diffraction grating, a cladding layer, and a cap layer are formed in this order on a substrate, comprising: the double hetero layer on the substrate; forming the diffraction grating by subjecting the formed double hetero layer to photo-induced gas etching using an interference exposure light source; and after the photo-induced gas etching, removing the cladding from the cladding without exposing it to the atmosphere. 1. A method for manufacturing a semiconductor laser, comprising the step of growing a layer and a cap layer.
JP21334789A 1989-08-18 1989-08-18 Manufacture of semiconductor laser Pending JPH0376289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21334789A JPH0376289A (en) 1989-08-18 1989-08-18 Manufacture of semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21334789A JPH0376289A (en) 1989-08-18 1989-08-18 Manufacture of semiconductor laser

Publications (1)

Publication Number Publication Date
JPH0376289A true JPH0376289A (en) 1991-04-02

Family

ID=16637653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21334789A Pending JPH0376289A (en) 1989-08-18 1989-08-18 Manufacture of semiconductor laser

Country Status (1)

Country Link
JP (1) JPH0376289A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105887034A (en) * 2016-06-07 2016-08-24 南京汇金锦元光电材料有限公司 Multi-cathode magnetron sputtering interference control device and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61244022A (en) * 1985-04-20 1986-10-30 Matsushita Electronics Corp Photoinduction reacting device
JPS63136588A (en) * 1986-11-27 1988-06-08 Sony Corp Distributed feedback type semiconductor laser
JPS63155713A (en) * 1986-12-19 1988-06-28 Hitachi Ltd Manufacture of semiconductor fine structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61244022A (en) * 1985-04-20 1986-10-30 Matsushita Electronics Corp Photoinduction reacting device
JPS63136588A (en) * 1986-11-27 1988-06-08 Sony Corp Distributed feedback type semiconductor laser
JPS63155713A (en) * 1986-12-19 1988-06-28 Hitachi Ltd Manufacture of semiconductor fine structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105887034A (en) * 2016-06-07 2016-08-24 南京汇金锦元光电材料有限公司 Multi-cathode magnetron sputtering interference control device and method

Similar Documents

Publication Publication Date Title
US5292685A (en) Method for producing a distributed feedback semiconductor laser device
JPH0685405A (en) Embedded heterostructure laser
JPH0656906B2 (en) Semiconductor laser device
JPH07154024A (en) Semiconductor laser
JPH05175609A (en) Manufacture of algainp semiconductor lightemitting device
JP2726209B2 (en) Semiconductor optical device and method of manufacturing the same
JP3246207B2 (en) Manufacturing method of semiconductor laser
US4783425A (en) Fabrication process of semiconductor lasers
JPH0376289A (en) Manufacture of semiconductor laser
Dutta et al. InGaAsP distributed feedback multiquantum well laser
JP2564813B2 (en) A (1) GaInP semiconductor light emitting device
JPH1187764A (en) Semiconductor light-emitting device and its manufacture
US9379524B2 (en) Semiconductor device
JP2000216495A (en) Manufacture of semiconductor optical element
JP3239821B2 (en) Method for producing strained semiconductor crystal
JPH0511677B2 (en)
JP3205589B2 (en) Semiconductor thin film growth method
JPH1168226A (en) Semiconductor laser element and manufacture thereof
JPH09186391A (en) Compound semiconductor device and manufacture thereof
JPS61236185A (en) Preparation of semiconductor laser element
JPH0831652B2 (en) Semiconductor laser
KR100239767B1 (en) Method for manufacturing semiconductor laser diode
JPH11195837A (en) Manufacture of semiconductor laser
JP2001024278A (en) Method for growing semiconductor thin film and fabrication of semiconductor laser device
JPH0582886A (en) Semiconductor laser element