JPH0376110A - Ultra fine semiconductor particle and production thereof - Google Patents

Ultra fine semiconductor particle and production thereof

Info

Publication number
JPH0376110A
JPH0376110A JP21179489A JP21179489A JPH0376110A JP H0376110 A JPH0376110 A JP H0376110A JP 21179489 A JP21179489 A JP 21179489A JP 21179489 A JP21179489 A JP 21179489A JP H0376110 A JPH0376110 A JP H0376110A
Authority
JP
Japan
Prior art keywords
semiconductor
ultrafine particles
particles
ultra fine
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21179489A
Other languages
Japanese (ja)
Inventor
Ken Yamashita
山下 建
Shuhei Tanaka
修平 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP21179489A priority Critical patent/JPH0376110A/en
Publication of JPH0376110A publication Critical patent/JPH0376110A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable ultra fine semiconductor particles to be easily processed even in the atmospheric air thereby enabling the physical property such as notable photonon- linearity held by the ultra fine semiconductor particles to be effectively applied by a method wherein the thin films of an inert material to oxygen having almost no reactivity to semiconductor even at the maximum temperature in the manufacturing process are bonded onto the surfaces of the ultra fine semiconductor particles. CONSTITUTION:GaAs material 4 (powder or polycrystal) is contained in a crucible 5 in an evaporation chamber 1 pressure-reduced by a vacuum pump (a) (not shown) and then heated by irradiating the material 4 with the laser beams 6 of an exciner laser outside the evaporation chamber 1 through a window 7. A purified inert gas such as Ar gas or N2 gas, etc., containing not exceeding 1ppm of residual oxygen and water content, is led into the evaporation chamber 1 previously vacuumized at the pressure not exceeding 10<-7>Torr and pressurized at about 10Torr. Any evaporated GaAs vapor collides with the gas molecules to produce GaAs ultra fine particles 9. Next, the ultra fine particles 9 are carried to a pipe 10 to be discharge into a vapor deposition chamber 2 through a nozzle 11. Through these procedures, the GaAs ultra fine particles whose surfaces are covered with SiC covering material can be produced.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は半導体超微粒子及びその製造方法に関し、特に
その量子効果を利用した電子デバイス、光デバイスへの
応用に適した半導体超微粒子に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to semiconductor ultrafine particles and a method for producing the same, and particularly to semiconductor ultrafine particles suitable for application to electronic devices and optical devices that utilize quantum effects.

〈従来の技術〉 近年、Cd55a微結晶が1ないし2%分散したガラス
(写真用シャープカプトフィルタ〉において、3次の非
線形光学効果がバルクCdSより200倍も増大するこ
とが観測された( Journal of 0ptic
alSociety of  America  73
巻、 647頁、 1983年)。
<Prior art> In recent years, it has been observed that in glass (Sharpcapto filter for photography) in which 1 to 2% of Cd55a microcrystals are dispersed, the third-order nonlinear optical effect is increased by 200 times compared to bulk CdS (Journal of 0ptic
alSociety of America 73
Vol. 647, 1983).

これは、電子、正孔あるいは励起子をIOn+n程度以
下の狭い空間に閉じ込めることにより生しる効果である
This is an effect produced by confining electrons, holes, or excitons in a narrow space of about IOn+n or less.

前記非線形光学効果は光照射により屈折率が変化する効
果であるから、光制御型光スイッチ等への応用が期待さ
れる。ただし、実用的なデバイスを実現するためには、
より効果を増大させる必要がある。そのための手段とし
ては、より高濃度の分散、あるいはCd55a以外の半
導体の分散などが考えられる。
Since the nonlinear optical effect is an effect in which the refractive index changes due to light irradiation, it is expected to be applied to light-controlled optical switches and the like. However, in order to realize a practical device,
It is necessary to further increase the effect. Possible means for this purpose include dispersion at a higher concentration or dispersion of a semiconductor other than Cd55a.

しかし上記の分散ガラスの製造方法は、半導体構成元素
とガラスを溶融混合した後、再熱処理して微結晶を析出
させるものであり、この方法では分散濃度は前述の程度
が限界であり、また多様な半導体材料に適用することは
困難である。
However, the method for producing dispersed glass described above involves melting and mixing semiconductor constituent elements and glass, and then reheating to precipitate microcrystals. In this method, the dispersion concentration is limited to the above-mentioned level, and there is a wide variety of It is difficult to apply this method to other semiconductor materials.

そこでこれに代わる方法として、半導体超微粒子(粒径
Ions程度以下)を作製し、これを適当な手段でマト
リックス中に分散することが考えられる。
Therefore, as an alternative method, it is conceivable to prepare semiconductor ultrafine particles (particle size of approximately Ions or less) and disperse them in a matrix by appropriate means.

従来、超微粒子を生成する物理的方法としては、ガス中
蒸発法が最も一般的に用いられている。この方法は、A
rやN2などの不活性ガス中で、超微粒子の原料を、抵
抗加熱、高周波誘導加熱、あるいは電子ビームやレーザ
光の照射等の手段によって加熱、蒸発させる。
Conventionally, as a physical method for producing ultrafine particles, evaporation in gas has been most commonly used. This method is
In an inert gas such as r or N2, the ultrafine particle raw material is heated and evaporated by means such as resistance heating, high frequency induction heating, or irradiation with an electron beam or laser light.

第4図は、上述した従来方法のうちの高周波誘導加熱に
よる方法を示している。
FIG. 4 shows a method using high-frequency induction heating among the conventional methods described above.

図において、不活性ガス26が導入される真空室20内
には、外部の高周波電源21に接続されている誘導コイ
ル22に囲まれたるっぽ23が配置されており、このる
つぼ23内に入れた半導体原料24を高周波誘導加熱す
る。蒸発した粒子25は、蒸発源(るつぼ23)から離
れるにしたがってその粒径を次第に増大させるから、蒸
発源からある一定の距離で粒子を捕集することにより、
粒径の揃った超微粒子を得ることができる。
In the figure, a crucible 23 surrounded by an induction coil 22 connected to an external high-frequency power source 21 is placed in a vacuum chamber 20 into which an inert gas 26 is introduced. The semiconductor raw material 24 is heated by high frequency induction. Since the evaporated particles 25 gradually increase in particle size as they move away from the evaporation source (crucible 23), by collecting the particles at a certain distance from the evaporation source,
Ultrafine particles with uniform particle size can be obtained.

〈発明が解決しようとする問題点〉 しかしながら、超微粒子は通常のバルクに比べると全原
子数に対して表面に露出した原子の割合が多く、したが
って一般に周囲の物質との反応性に富んでいる。とくに
半導体材料には被酸化性の物質が多く、大気中の酸素と
極めて反応しやすい場合が多いため製造後の取り扱いが
難しかった。
<Problems to be solved by the invention> However, compared to normal bulk particles, ultrafine particles have a higher proportion of atoms exposed on the surface compared to the total number of atoms, and therefore are generally highly reactive with surrounding substances. . In particular, semiconductor materials contain many oxidizable substances and often react extremely easily with oxygen in the atmosphere, making them difficult to handle after manufacture.

これが半導体超微粒子の産業上の利用を阻んできた重大
な問題点のひとつである。
This is one of the major problems that has hindered the industrial use of semiconductor ultrafine particles.

く問題点を解決するための手段〉 上記の問題点を解決するため本発明では、半導体超微粒
子の表面に、製造工程での最高温度においても該半導体
と反応性がほとんどなく、かつ酸素に対して不活性な物
質の薄膜を付着させた。
Means for Solving the Problems> In order to solve the above problems, the present invention provides a material on the surface of the semiconductor ultrafine particles that has almost no reactivity with the semiconductor even at the highest temperature in the manufacturing process and is resistant to oxygen. A thin film of inert material was then deposited.

く作用〉 半導体超微粒子表面に付着した薄膜物質は該半導体と反
応性がなく、かつ酸素に対して不活性であるから、大気
中においても半導体超微粒子本来の物性を損なうことな
く、安定に保つように作用する。また該薄膜物質を前記
半導体のバンドギャップに対応する波長の光を透過する
材料とすれば、周囲から入射する光は吸収されることな
く内部の半導体超微粒子と相互作用できる。
Effect> The thin film substance attached to the surface of the semiconductor ultrafine particles has no reactivity with the semiconductor and is inert to oxygen, so it remains stable even in the atmosphere without damaging the original physical properties of the semiconductor ultrafine particles. It works like this. Furthermore, if the thin film material is a material that transmits light of a wavelength corresponding to the band gap of the semiconductor, light incident from the surroundings can interact with the internal semiconductor ultrafine particles without being absorbed.

〈実施例〉 第2図は本発明の第一の実施例における半導体超微粒子
の製造装置の概略図である。GaAs原料4く粉末ある
いは多結晶)を図外の真空ポンプで減圧される蒸発室1
中のるっぽ5に入れ、蒸発室外からエキシマレーザのレ
ーザ光6を窓7を通して原料4に照射し加熱する。蒸発
室1は予め10−’t。
<Example> FIG. 2 is a schematic diagram of an apparatus for producing semiconductor ultrafine particles in a first example of the present invention. Evaporation chamber 1 where GaAs raw material (powder or polycrystal) is depressurized by a vacuum pump (not shown)
The raw material 4 is placed in an inner Lupo 5 and heated by irradiating the raw material 4 with laser light 6 from an excimer laser from outside the evaporation chamber through a window 7. The evaporation chamber 1 is preliminarily heated to 10-'t.

rr台以下の真空にしたのち、残留酸素、水分の量をl
ppm以下に純化したArガス、またはN2ガスなどの
不活性ガスを10torr程度の圧力になるよう導入し
ておく。蒸発したGaAs蒸気はガス分子と衝突してG
1^B超微粒子9を生成する。該超微粒子9はパイプl
O中を輸送され、ノズル11を通して気相成長室2に放
出される。
After creating a vacuum below rr level, reduce the amount of residual oxygen and moisture to l.
Ar gas purified to less than ppm or an inert gas such as N2 gas is introduced to a pressure of about 10 torr. Evaporated GaAs vapor collides with gas molecules and generates G
1^B ultrafine particles 9 are generated. The ultrafine particles 9 are pipe l
The gas is transported through O and discharged into the vapor growth chamber 2 through the nozzle 11.

該気相成長室2にはs+zue、5ills(CIls
)およびN2ガスの導入口を設け、全圧力を5torr
程度になるよう各ガスを一定流量で導入する。またこの
部分に加熱手段を設け、かつ上記エキシマレーザ光の一
部を半透鏡8で分は導入する窓12を設ける・この気相
成長室2内をGaAs超微粒子9が通過する際、各粒子
表面に光化学反応でSICの被膜が形成される。該粒子
は捕集室3で捕集される。
The vapor phase growth chamber 2 has s+zue, 5ills (CIls
) and N2 gas inlet, and the total pressure is 5 torr.
Each gas is introduced at a constant flow rate so that the In addition, a heating means is provided in this part, and a window 12 is provided through which a portion of the excimer laser light is introduced through a semi-transparent mirror 8. When the GaAs ultrafine particles 9 pass through the vapor phase growth chamber 2, each particle A SIC film is formed on the surface by photochemical reaction. The particles are collected in the collection chamber 3.

このようにして、第1図に示すような表面がSICの被
lll17で被覆されたGaAs超微粒子9が得られる
。非晶質SICの光学ギャップは2eV程度であり、G
aAsのバンドギャップ1.4eVより大きく、GaA
sのバンドギャップ近傍に対応する光は十分透過できる
In this way, GaAs ultrafine particles 9 whose surfaces are covered with SIC coatings 17 as shown in FIG. 1 are obtained. The optical gap of amorphous SIC is about 2 eV, and G
The bandgap of aAs is larger than 1.4 eV, and GaA
Light corresponding to the vicinity of the band gap of s can be sufficiently transmitted.

本実施例では半導体としてGaAsの場合を述べたが、
これはSlやGeのよ、うな元素半導体でもよく、また
InP% CdS 、  CuC1などの化合物半導体
でも良い。またこれら半導体超微粒子をおおう被膜17
の材質も化学的に安定であればSICに限定されず、例
えばSiN 、  あるいはZn5eなど多くの物質が
使用可能である。
In this example, the case of GaAs was described as the semiconductor, but
This may be an elemental semiconductor such as Sl or Ge, or a compound semiconductor such as InP%CdS or CuC1. In addition, a coating 17 covering these semiconductor ultrafine particles
The material is not limited to SIC as long as it is chemically stable, and many other materials such as SiN or Zn5e can be used.

第3図は本発明の第二の実施例における製造装置の概略
図である。るつぼ5に入れたG!^8原料4を第一の実
施例同様の雰囲気で高周波誘導加熱により蒸発させ、ノ
ズル11を通してプラズマ室13に送る。プラズマ室1
3にはスチレンモノマー16を導入し、高周波グロー放
電によりポリスチレンを生成する。該ポリスチレンはG
aAs超微粒子表面に付着する。この微粒子を捕集し、
これを80℃程度の温度でンソターすることにより、G
aAs超微粒子が約10体積%程度以上の高濃度に分散
した薄膜あるいは厚膜を形成できる。
FIG. 3 is a schematic diagram of a manufacturing apparatus in a second embodiment of the present invention. G in crucible 5! ^8 The raw material 4 is evaporated by high-frequency induction heating in the same atmosphere as in the first embodiment, and sent to the plasma chamber 13 through the nozzle 11. plasma chamber 1
Styrene monomer 16 is introduced into 3, and polystyrene is produced by high frequency glow discharge. The polystyrene is G
It adheres to the surface of the aAs ultrafine particles. Collect these fine particles,
By sotering this at a temperature of about 80℃, G
A thin film or a thick film in which ultrafine aAs particles are dispersed at a high concentration of about 10% by volume or more can be formed.

上記実施例においても第一の実施例同様超微粒子材料は
GaAg以外の半導体であっても良い。また表面保護膜
も超微粒子化した半導体より融点が低く反応性がなけれ
ば他の材料であってもよい。装置についても加熱手段は
抵抗加熱、レーザ加熱などであってもよい。
In the above embodiment, as in the first embodiment, the ultrafine particle material may be a semiconductor other than GaAg. The surface protective film may also be made of other materials as long as they have a lower melting point and no reactivity than the ultrafine semiconductor. Regarding the device, the heating means may be resistance heating, laser heating, or the like.

〈発明の効果〉 本発明は、半導体超微粒子を大気中でも容易に取り扱う
ことを可能にし、半導体超微粒子が有する大きな光非線
形性などの物性を有効に活かすことを可能にする。
<Effects of the Invention> The present invention allows semiconductor ultrafine particles to be easily handled even in the atmosphere, and makes it possible to effectively utilize the physical properties of semiconductor ultrafine particles, such as large optical nonlinearity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の超微粒子の構造を示す断面図、第2図
は本発明に係る超微粒子を製造する装置の一例を示す断
面図、第3図は超微粒子製造装置の他の例を示す断面図
、第4図は従来の超微粒子製造装置を示す断面図である
。 第1図 3:捕集室 6: レーザ光 半導体超微粒子 12:窓 高周波誘導コイル 被膜 l:蒸発室  2:気相成長室 4:半導体原料 5: るつぼ 7:窓  8:半透鏡  9: lO:バイブ  11: ノズル 13: プラズマ室 14..15: 16: モノマー     17: 第 2 図 r2 I3 図 r2
Fig. 1 is a cross-sectional view showing the structure of the ultrafine particles of the present invention, Fig. 2 is a cross-sectional view showing an example of the apparatus for producing ultrafine particles according to the present invention, and Fig. 3 is a cross-sectional view showing another example of the ultrafine particle production apparatus according to the present invention. FIG. 4 is a cross-sectional view showing a conventional ultrafine particle manufacturing apparatus. Figure 1 3: Collection chamber 6: Laser optical semiconductor ultrafine particles 12: Window High frequency induction coil coating l: Evaporation chamber 2: Vapor phase growth chamber 4: Semiconductor raw material 5: Crucible 7: Window 8: Semi-transparent mirror 9: lO: Vibrator 11: Nozzle 13: Plasma chamber 14. .. 15: 16: Monomer 17: Figure 2 r2 I3 Figure r2

Claims (5)

【特許請求の範囲】[Claims] (1)半導体超微粒子の表面に、該半導体に対して実質
的に反応性がなく、かつ酸素に対して不活性な物質から
成る被膜を設けたことを特徴とする半導体超微粒子。
(1) Semiconductor ultrafine particles characterized in that the surface of the semiconductor ultrafine particles is provided with a coating made of a substance that has substantially no reactivity with the semiconductor and is inactive with respect to oxygen.
(2)前記被膜物質が、超微粒子を形成する半導体のバ
ンドギャップに対応する波長の光を透過するように選ば
れている請求項第1項に記載の半導体超微粒子。
(2) The semiconductor ultrafine particles according to claim 1, wherein the coating material is selected to transmit light having a wavelength corresponding to the bandgap of the semiconductor forming the ultrafine particles.
(3)前記被膜物質の融点が、超微粒子を形成する半導
体のそれより低い請求項第1項に記載の半導体超微粒子
(3) The semiconductor ultrafine particles according to claim 1, wherein the melting point of the coating material is lower than that of the semiconductor forming the ultrafine particles.
(4)半導体原料を、不活性ガスを導入した減圧雰囲気
下で加熱蒸発させることにより前記半導体の超微粒子を
生成させ、該超微粒子を、被膜形成物質ガスを導入した
気相成長室に送り、該室を通過中の前記超微粒子にレー
ザ光を照射して、光化学反応により前記物質被膜を前記
超微粒子表面に形成することを特徴とする半導体超微粒
子の製造方法。
(4) producing ultrafine particles of the semiconductor by heating and evaporating the semiconductor raw material in a reduced pressure atmosphere into which an inert gas is introduced, and sending the ultrafine particles to a vapor growth chamber into which a film-forming substance gas is introduced; A method for producing semiconductor ultrafine particles, characterized in that the ultrafine particles passing through the chamber are irradiated with a laser beam to form the substance film on the surface of the ultrafine particles through a photochemical reaction.
(5)半導体原料を、不活性ガスを導入した減圧雰囲気
下で加熱蒸発させることにより前記半導体の超微粒子を
生成させ、該超微粒子をプラズマ室に送るとともに、該
室に高分子モノマーを導入して該室内で高周波放電を行
なうことにより、モノマーの重合体を生成させると同時
に半導体超微粒子表面に付着させることを特徴とする半
導体超微粒子の製造方法。
(5) Generate ultrafine particles of the semiconductor by heating and evaporating the semiconductor raw material in a reduced pressure atmosphere into which an inert gas is introduced, send the ultrafine particles to a plasma chamber, and introduce a polymer monomer into the chamber. A method for producing ultrafine semiconductor particles, which comprises generating a polymer of monomers and simultaneously adhering them to the surface of ultrafine semiconductor particles by performing high-frequency discharge in the chamber.
JP21179489A 1989-08-17 1989-08-17 Ultra fine semiconductor particle and production thereof Pending JPH0376110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21179489A JPH0376110A (en) 1989-08-17 1989-08-17 Ultra fine semiconductor particle and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21179489A JPH0376110A (en) 1989-08-17 1989-08-17 Ultra fine semiconductor particle and production thereof

Publications (1)

Publication Number Publication Date
JPH0376110A true JPH0376110A (en) 1991-04-02

Family

ID=16611718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21179489A Pending JPH0376110A (en) 1989-08-17 1989-08-17 Ultra fine semiconductor particle and production thereof

Country Status (1)

Country Link
JP (1) JPH0376110A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5489449A (en) * 1990-03-28 1996-02-06 Nisshin Flour Milling Co., Ltd. Coated particles of inorganic or metallic materials and processes of producing the same
JP2002526945A (en) * 1998-08-19 2002-08-20 マサチューセッツ・インスティテュート・オブ・テクノロジー Nanoparticle-based electrical, chemical and mechanical structures and methods of making the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5489449A (en) * 1990-03-28 1996-02-06 Nisshin Flour Milling Co., Ltd. Coated particles of inorganic or metallic materials and processes of producing the same
JP2002526945A (en) * 1998-08-19 2002-08-20 マサチューセッツ・インスティテュート・オブ・テクノロジー Nanoparticle-based electrical, chemical and mechanical structures and methods of making the same

Similar Documents

Publication Publication Date Title
JPH0931638A (en) Production of thin film and thin film
JPH077744B2 (en) Evaporation enhancement method from laser heating target
JPH0376110A (en) Ultra fine semiconductor particle and production thereof
JP3358203B2 (en) Method for producing semiconductor ultrafine particles
EP0054189A1 (en) Improved photochemical vapor deposition method
JP3099501B2 (en) Manufacturing method of ultrafine particle dispersion material
Wang et al. Continous wave Nd: YAG laser deposition of CdS thin films
JPH07331412A (en) Optical parts for infrared ray and their production
RU2668246C2 (en) Method for production of diamond-like thin films
Tveryanovich et al. Production of nanodispersed materials and thin films by laser ablation techniques in liquid and in vacuum
US2861896A (en) Method of producing a coated optical filter and the resulting article
JP4022657B2 (en) Method for manufacturing dielectric optical thin film
JPH07278618A (en) Production of composite superfine particle
JPH01104763A (en) Production of thin metal compound film
Yamada et al. Low-temperature deposition of optical films by oxygen radical beam-assisted evaporation
JPS6395102A (en) Production of ultrafine particle
JP3099430B2 (en) Manufacturing method of glass capsule enclosing ultrafine particles
Mohamed et al. Properties of~ Rf Plasma Nitrided Silicon Thin Films at Different Rf Plasma Processing Powers
JPS60178622A (en) Manufacture of semiconductor device
JPS63126234A (en) Manufacture of luminescent material
JPS63152120A (en) Thin film formation
Wijekoon et al. Fabrication of zinc oxide, titanium oxide, and organic-entrapped-silica thin films via laser-assisted molecular beam deposition
JP3116454B2 (en) Method for producing organic polysilane and / or silicon carbide thin film
JP3413892B2 (en) Manufacturing method of ultrafine particle dispersion material
JPH03119326A (en) Optical material