JP3116454B2 - Method for producing organic polysilane and / or silicon carbide thin film - Google Patents

Method for producing organic polysilane and / or silicon carbide thin film

Info

Publication number
JP3116454B2
JP3116454B2 JP03256794A JP25679491A JP3116454B2 JP 3116454 B2 JP3116454 B2 JP 3116454B2 JP 03256794 A JP03256794 A JP 03256794A JP 25679491 A JP25679491 A JP 25679491A JP 3116454 B2 JP3116454 B2 JP 3116454B2
Authority
JP
Japan
Prior art keywords
thin film
silicon carbide
organic polysilane
heating
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03256794A
Other languages
Japanese (ja)
Other versions
JPH05306337A (en
Inventor
昌司 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP03256794A priority Critical patent/JP3116454B2/en
Publication of JPH05306337A publication Critical patent/JPH05306337A/en
Application granted granted Critical
Publication of JP3116454B2 publication Critical patent/JP3116454B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Silicon Polymers (AREA)
  • Chemically Coating (AREA)
  • Physical Vapour Deposition (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、有機ポリシラン及び/
又は炭化ケイ素薄膜の製造方法に関する。
The present invention relates to an organic polysilane and / or an organic polysilane.
Alternatively, the present invention relates to a method for producing a silicon carbide thin film.

【従来の技術とその問題点】従来、有機ポリシランは加
熱することによりシリコン系電子材料等に有用な炭化ケ
イ素が得られることが知られているが、主に繊維状、粉
末状の形態で得られている。このうち薄膜状のものは、
プラズマCVD(化学蒸着)法、熱CVD法、スパッタ
リング等の方法で製造されているが、これらの方法では
いずれも薄膜の成長速度が1時間に約1ミクロンという
低速度であり、工業化が難しいことの他、特にCVD法
では原料としてシランを用いるため、毒性や火災の危険
が大きい。またメチルポリシラン等には溶媒に溶かして
塗布するための適当な有機溶媒がない。このような理由
のため、有機ポリシラン薄膜を量産するに足る製造法は
得られていなかった。
2. Description of the Related Art Conventionally, it has been known that silicon carbide useful for silicon-based electronic materials and the like can be obtained by heating organic polysilane, but it is mainly obtained in a fibrous or powdery form. Have been. Of these, the thin film
It is manufactured by methods such as plasma CVD (chemical vapor deposition), thermal CVD, and sputtering. In any of these methods, the growth rate of a thin film is as low as about 1 micron per hour, which makes industrialization difficult. In addition, since silane is used as a raw material particularly in the CVD method, there is a great risk of toxicity and fire. In addition, methylpolysilane and the like do not have a suitable organic solvent for coating by dissolving in a solvent. For these reasons, a production method sufficient for mass-producing an organic polysilane thin film has not been obtained.

【0002】[0002]

【問題を解決するための手段】このような問題点を解決
するため、本発明者は真空槽中での加熱蒸着を行なった
ところ、驚くべきことに、1分程度で数十ミクロンとい
う極めて高速度で有機ポリシラン薄膜を得ることができ
た。得られた薄膜を更に加熱するか、または予め基板を
加熱することにより、様々な組成の有機ポリシラン薄
膜、または炭化ケイ素の薄膜を得ることができる。
In order to solve such problems, the present inventor has performed heating deposition in a vacuum chamber. An organic polysilane thin film could be obtained at a high speed. By further heating the obtained thin film or heating the substrate in advance, an organic polysilane thin film having various compositions or a silicon carbide thin film can be obtained.

【0003】すなわち本発明は、有機ポリシラン原料を
減圧下で加熱し基板上に蒸着することを特徴とする、有
機ポリシラン及び/又は炭化ケイ素薄膜の製造方法に存
する。以下、本発明を詳細に説明する。本発明で用いる
材料は、例えばパーメチルポリシラン([Si(C
32]n)、ポリシラスチレン([Si(CH3
(C65)]n)の他、メチルプロピルポリシラン等、
パーメチルポリシランのメチル基をプロピル基等の側鎖
で置換した、各種の有機ポリシランの粉末を用いるとこ
ができる。
[0003] That is, the present invention resides in a method for producing an organic polysilane and / or silicon carbide thin film, comprising heating an organic polysilane raw material under reduced pressure and depositing it on a substrate. Hereinafter, the present invention will be described in detail. The material used in the present invention is, for example, permethylpolysilane ([Si (C
H 3 ) 2 ] n), polysilastyrene ([Si (CH 3 )
(C 6 H 5 )] n), methylpropylpolysilane, etc.
Various organic polysilane powders obtained by substituting the methyl group of permethyl polysilane with a side chain such as a propyl group can be used.

【0004】これらの原料粉末を、真空槽中で加熱す
る。加熱方法は、場合に応じて種々の方法を採用して良
いが、一般的には通電発熱体の利用、例えばボート型ヒ
ーターに原料粉末をのせて、通電する方法が簡便であ
る。温度は材料により異なるが、粉末が融けて液状にな
る程度で充分である。真空槽内であるので比較的短時間
で液化するが、具体的には数分間、数十アンペア通電の
オーダーで液化する。
[0004] These raw material powders are heated in a vacuum chamber. As the heating method, various methods may be employed depending on the case. In general, however, it is convenient to use a current-carrying heating element, for example, a method in which raw material powder is placed on a boat-type heater and current is applied. The temperature varies depending on the material, but it is sufficient that the powder is melted and becomes liquid. Since it is in a vacuum chamber, it liquefies in a relatively short time. Specifically, it liquefies in the order of several tens of amperes for several minutes.

【0005】本発明は、減圧下で行なうことを特徴とす
る。この場合の「減圧下」とは、具体的には10-2To
rr程度の減圧下であれば、常圧で行なった場合に比べ
成長速度が大きく速まるが、10-4Torr程度まで減
圧すれば、残存気体中の不純物の薄膜への混入の危険も
ほとんどなくなり、また膜の成長速度の面からも大変好
ましい。10-6Torr以下の、実質的真空状態で行な
えば、成長速度も飛躍的に高まる。このように、本発明
は真空状態で行なうのが最も望ましい。
The present invention is characterized in that the process is performed under reduced pressure. In this case, “under reduced pressure” is specifically 10 −2 To
If a reduced pressure of about rr, quickened greater growth rate than in the case of performing at normal pressure, if reduced to about 10 -4 Torr, almost no danger of contamination of the thin film of impurities in the residual gas, It is also very preferable from the viewpoint of film growth rate. If the deposition is carried out in a substantially vacuum state of 10 -6 Torr or less, the growth rate will be drastically increased. As described above, the present invention is most preferably performed in a vacuum state.

【0006】蒸着に際しては、真空槽中に、原料粉末を
のせたヒーターに対向した近接位置に基板を置く。原料
粉末との距離は、特に限定されるものではないが通常2
0cm以下、より好ましくは1〜15cmが適当であ
る。基板の種類は、用途に応じて広い範囲から選択され
るが、例えば石英ガラス、シリコンウェハーの他、スラ
イドガラス等を用いることができる。その他、有機ポリ
シランを蒸着しようとするものであって、加熱温度で変
形、変質、変態等の変化をしないものであれば使用する
ことができる。
In vapor deposition, a substrate is placed in a vacuum chamber at a position close to a heater on which raw material powder is placed. Although the distance from the raw material powder is not particularly limited, it is usually 2
0 cm or less, more preferably 1 to 15 cm is appropriate. The type of the substrate is selected from a wide range depending on the application. For example, a quartz glass, a silicon wafer, or a slide glass can be used. In addition, any organic polysilane to be deposited can be used as long as it does not change such as deformation, alteration, and transformation at the heating temperature.

【0007】また蒸着の際、基板を加熱することにより
得られる薄膜の組成を変化させることができる。高温に
なるほど高分子中の水素原子が抜けるため、蒸着時の基
板温度を変化させることにより、薄膜の組成と同時に薄
膜の発光波長も変化させることができ、発光素子の製造
の際は好都合である。また蒸着時に基板を加熱する方法
の他、既に得られた薄膜を更に加熱することによって
も、加熱方法によって様々な組成の薄膜を得ることがで
きる。
In addition, the composition of the thin film obtained by heating the substrate during the deposition can be changed. The higher the temperature, the more hydrogen atoms in the polymer are released. Therefore, by changing the substrate temperature at the time of vapor deposition, the emission wavelength of the thin film can be changed simultaneously with the composition of the thin film, which is convenient when manufacturing a light emitting device. . In addition to the method of heating the substrate at the time of vapor deposition, by further heating the already obtained thin film, thin films of various compositions can be obtained by the heating method.

【0008】この場合、不活性ガス雰囲気下、特にアル
ゴン、ヘリウム雰囲気下で加熱することにより、酸素原
子、窒素原子等の薄膜中への導入を防ぐことができる。
800〜1000℃まで加熱すれば、炭化ケイ素薄膜を
得ることができる。
In this case, by heating in an inert gas atmosphere, especially in an argon or helium atmosphere, introduction of oxygen atoms, nitrogen atoms, etc. into the thin film can be prevented.
By heating to 800 to 1000 ° C., a silicon carbide thin film can be obtained.

【0009】[0009]

【実施例】本発明を実施例により更に詳細に説明する
が、本発明に要旨を越えない限り、これに限定されるも
のではない。
EXAMPLES The present invention will be described in more detail with reference to Examples, but it should not be construed that the invention is limited thereto without departing from the gist of the invention.

【実施例1】パーメチルポリシラン([Si(C
32n、n〜20000)粉末約1g(耳かき数杯
分)をモリブデンボート型ヒーターにのせ、10cm離
して石英ガラス基板及び単結晶シリコンウエハー基板と
ともに液体窒素トラップのついた油拡散ポンプ及び油回
転ポンプにより排気できる真空槽中に配し、10-6To
rr以下に排気した。モリブデンボート型ヒーターに2
0〜30Aの直流電流を約2分流し、パーメチルポリシ
ランを基板上に蒸着させたところ、約5μmの薄膜を得
た。(原料が液化してからは約10秒で蒸着したので実
際の膜成長速度は数十μm/分となる。)単結晶シリコ
ンウエハー上に得られた薄膜を赤外吸収測定(透過型、
600−3500cm-1)、X線回折及びアルゴンイオ
ンレーザー(488.0及び514.5nmのマルチラ
イン)で、石英ガラス基板上に得られた物質を可視吸収
(200−900nm)により測定した。第1図は得ら
れた赤外吸収スペクトル、第2図はX線回折パターン
(カッコ内はパーメチルポリシラン粉末のもの)、第3
図は可視吸収スペクトルである。単結晶シリコンウエハ
ーにアルゴンイオンレーザーを照射したところ、室温で
可視発光(赤色)が認められた。
Example 1 Permethylpolysilane ([Si (C
H 3 ) 2 ] n , n to 20,000) About 1 g (several cups of earpick) of powder is placed on a molybdenum boat type heater, and an oil diffusion pump equipped with a liquid nitrogen trap together with a quartz glass substrate and a single crystal silicon wafer substrate at a distance of 10 cm. And placed in a vacuum chamber that can be evacuated by an oil rotary pump and 10 -6 To
It exhausted to rr or less. 2 for molybdenum boat type heater
When a direct current of 0 to 30 A was passed for about 2 minutes to deposit permethylpolysilane on the substrate, a thin film of about 5 μm was obtained. (The actual film growth rate is several tens of μm / min since the material was vaporized in about 10 seconds after the material was liquefied.) Infrared absorption measurement (transmission type,
600-3500Cm -1), by X-ray diffraction and argon ion laser (488.0 and 514.5nm multiline), and the material obtained on the quartz glass substrate was measured by visible absorption (200-900Nm). FIG. 1 shows the obtained infrared absorption spectrum, FIG. 2 shows the X-ray diffraction pattern (the permethyl polysilane powder is shown in parentheses), and FIG.
The figure is a visible absorption spectrum. When the single crystal silicon wafer was irradiated with an argon ion laser, visible light emission (red) was observed at room temperature.

【0010】[0010]

【発明の効果】本発明により、有機発光素子、光IC、
スイッチ等の光非線形材料、絶縁膜、センサー、感光体
ドラムとして有用な有機ポリシラン及び炭化ケイ素の薄
膜を、極めて高速度で得ることができる。
According to the present invention, an organic light emitting device, an optical IC,
A thin film of organic polysilane and silicon carbide useful as an optical nonlinear material such as a switch, an insulating film, a sensor, and a photosensitive drum can be obtained at an extremely high speed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1で得られた薄膜の赤外吸収スペクトル
を示す図
FIG. 1 shows an infrared absorption spectrum of a thin film obtained in Example 1.

【図2】X線回折パターンを示す図FIG. 2 shows an X-ray diffraction pattern.

【図3】可視吸収スペクトルを示す図FIG. 3 shows a visible absorption spectrum.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C08G 77/00 C01B 31/36 C23C 14/12 C23C 20/08 H01L 21/316 ──────────────────────────────────────────────────続 き Continued on the front page (58) Fields investigated (Int. Cl. 7 , DB name) C08G 77/00 C01B 31/36 C23C 14/12 C23C 20/08 H01L 21/316

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 有機シラン原料を減圧下で加熱するこ
とにより基板上に蒸着することを特徴とする有機ポリシ
ランの製造方法。
1. A method for producing an organic polysilane, comprising heating an organic silane raw material under reduced pressure to deposit the organic silane on a substrate.
【請求項2】 有機シラン原料を減圧下で加熱するこ
とにより基板上に蒸着して得られた有機ポリシラン薄膜
を更に加熱することを特徴とする、炭化ケイ素薄膜の製
造方法。
2. A method for producing a silicon carbide thin film, comprising heating an organic silane raw material under reduced pressure to further heat an organic polysilane thin film obtained by vapor deposition on a substrate.
JP03256794A 1991-10-03 1991-10-03 Method for producing organic polysilane and / or silicon carbide thin film Expired - Fee Related JP3116454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03256794A JP3116454B2 (en) 1991-10-03 1991-10-03 Method for producing organic polysilane and / or silicon carbide thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03256794A JP3116454B2 (en) 1991-10-03 1991-10-03 Method for producing organic polysilane and / or silicon carbide thin film

Publications (2)

Publication Number Publication Date
JPH05306337A JPH05306337A (en) 1993-11-19
JP3116454B2 true JP3116454B2 (en) 2000-12-11

Family

ID=17297537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03256794A Expired - Fee Related JP3116454B2 (en) 1991-10-03 1991-10-03 Method for producing organic polysilane and / or silicon carbide thin film

Country Status (1)

Country Link
JP (1) JP3116454B2 (en)

Also Published As

Publication number Publication date
JPH05306337A (en) 1993-11-19

Similar Documents

Publication Publication Date Title
US5149596A (en) Vapor deposition of thin films
Randhawa et al. SnO2 films prepared by activated reactive evaporation
US5607722A (en) Process for titanium nitride deposition using five-and six-coordinate titanium complexes
JP3193372B2 (en) Vapor deposition method for depositing an organometallic compound layer on a substrate
Muranaka et al. Preparation by reactive deposition and some physical properties of amorphous tin oxide films and crystalline SnO2 films
US5019552A (en) Long-laser-pulse method of producing thin films
JP2814445B2 (en) Selective low-temperature chemical vapor deposition of gold.
JP2003158307A (en) Method for producing superconducting material
JP3502504B2 (en) Method for depositing silicon oxide layer
US5368681A (en) Method for the deposition of diamond on a substrate
JP3116454B2 (en) Method for producing organic polysilane and / or silicon carbide thin film
US20040092131A1 (en) Method for depositing a fluorine-doped silica film
JPH02217473A (en) Forming method of aluminum nitride film
US5876790A (en) Vacuum evaporation method for producing textured C60 films
JPS60197730A (en) Formation of polyimide film
Kester et al. Ion beam assisted deposition of cubic boron nitride thin films
JPH06116097A (en) Thin film of impurity added organopolysilane or silicon carbide and its production
Whangbo et al. Effect of oxidized Al prelayer for the growth of polycrystalline Al2O3 films on Si using ionized beam deposition
JP3465848B2 (en) Production method of thin film using organometallic complex
Umezu et al. Deposition of silicon nitride films by pulsed laser ablation of the Si target in nitrogen gas
JPS6316464B2 (en)
JPH05263219A (en) Production of copper indium selenide thin film
Lougdali et al. Physical properties of metalorganic thin films
JP3275360B2 (en) Film formation method
Tu et al. Characterization Of Reactively Rf-Sputtered Tantalum Oxide Waveguides

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071006

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081006

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees