JPH0376060B2 - - Google Patents

Info

Publication number
JPH0376060B2
JPH0376060B2 JP56037602A JP3760281A JPH0376060B2 JP H0376060 B2 JPH0376060 B2 JP H0376060B2 JP 56037602 A JP56037602 A JP 56037602A JP 3760281 A JP3760281 A JP 3760281A JP H0376060 B2 JPH0376060 B2 JP H0376060B2
Authority
JP
Japan
Prior art keywords
signal
counter
period
zero
zero crossing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56037602A
Other languages
Japanese (ja)
Other versions
JPS57152259A (en
Inventor
Fumiaki Mukoyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP56037602A priority Critical patent/JPS57152259A/en
Priority to US06/318,496 priority patent/US4517519A/en
Publication of JPS57152259A publication Critical patent/JPS57152259A/en
Publication of JPH0376060B2 publication Critical patent/JPH0376060B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H19/00Networks using time-varying elements, e.g. N-path filters
    • H03H19/004Switched capacitor networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying
    • H04L27/14Demodulator circuits; Receiver circuits
    • H04L27/156Demodulator circuits; Receiver circuits with demodulation using temporal properties of the received signal, e.g. detecting pulse width
    • H04L27/1563Demodulator circuits; Receiver circuits with demodulation using temporal properties of the received signal, e.g. detecting pulse width using transition or level detection

Description

【発明の詳細な説明】 本発明の論理回路によるカウンタを用いた
FSK復調回路に関する。
[Detailed Description of the Invention] Using a counter based on the logic circuit of the present invention
Regarding FSK demodulation circuit.

周波数変復調によるFSK通信方式は最も一般
的にデータ通信に用いられ、FSK変復調装置
(MODEM)に対する期待も大きい。しかしFSK
モデムは従来周波数弁別方式、PLL方式等アナ
ログ的な手法が採られていたため個別部品の数や
調整箇所を多く、小形化、長期安定性、低価格化
を困難にしていた。これに対しデシタル2値信号
に対応した周波数を水晶発振による高安定信号の
分周比を変える事で変調し、復調に於てはフイル
タを通つた信号の零交差点(ゼロクロス)を検出
しその周期をカウンタによりカウントしカウント
値の大小により原2値信号を得る方式が考えら
れ、これらの回路を集積回路化して小形化、信頼
性の向上、低価格化、低消費電力を実現する事が
考えられている。ところが復調に関してはカウン
タ方式はノイズによるゼロクロス周期の誤差に敏
感でS/N比の小さな信号の復調は符号歪の増大
や復調不能になるといつた欠点を有している。こ
の問題は低速モデムの全二重通信機能に於て、周
波数分割された帯域の対向バンドへの洩れ、つま
り送信キヤリアの受信キヤリアへの影響を受け易
くなる。音響カツプラモデムに於ては送信キヤリ
アが電話器を通して自己の受信マイクロホンに戻
つてくるサイドトーンのノイズに対しより影響大
となる。又回線による特性やノイズ、外部の音響
としての騒音に対しても厳しい注意を払う必要が
ある。
The FSK communication system, which uses frequency modulation and demodulation, is the most commonly used for data communications, and there are high expectations for FSK modulation and demodulation equipment (MODEM). But FSK
Conventional modems have used analog methods such as frequency discrimination and PLL methods, which require a large number of individual parts and adjustment points, making it difficult to downsize, maintain long-term stability, and lower prices. On the other hand, the frequency corresponding to the digital binary signal is modulated by changing the frequency division ratio of the highly stable signal generated by crystal oscillation, and during demodulation, the zero crossing of the signal that has passed through the filter is detected and its period is A method has been considered in which the original binary signal is obtained by counting the number of signals using a counter and determining the magnitude of the count value, and the idea is to integrate these circuits to realize miniaturization, improved reliability, lower price, and lower power consumption. It is being However, with regard to demodulation, the counter method is sensitive to errors in the zero-cross period due to noise, and has the disadvantage that demodulation of a signal with a small S/N ratio increases code distortion and makes demodulation impossible. This problem occurs when the full-duplex communication function of a low-speed modem is susceptible to leakage of the frequency-divided band to the opposite band, that is, the influence of the transmitting carrier on the receiving carrier. In an acoustic coupler modem, the transmitting carrier is more susceptible to sidetone noise returning through the telephone to its own receiving microphone. It is also necessary to pay strict attention to line characteristics and noise, as well as external noise.

本発明は上記の欠点を改善するものであつてカ
ウンタによる方式であつてもノイズレベルの大き
な信号の復調を可能にするものである。本発明に
より変復調回路のIC化が容易になり効果は非常
に大きい。又フイルタについも最近オペアンプ、
コンデンサ、半導体スイツチにより構成し特性は
IC内部の高精度な容量比及びスイツチングのク
ロツク周波数により定めて極めて精度良くIC化
されるフイルタが実用化されスイツチト・キヤバ
シスタ・フイルタ(SOF)と呼ばれ、フイルタ
を変復調部と同一のICに収めた1チツプ化が可
能になつている。
The present invention improves the above-mentioned drawbacks and makes it possible to demodulate signals with a large noise level even when using a counter method. The present invention makes it easy to integrate a modulation/demodulation circuit into an IC, which has a very large effect. Also, regarding filters, operational amplifiers have recently been introduced.
It consists of a capacitor and a semiconductor switch, and its characteristics are
A filter that can be fabricated into an IC with extremely high precision determined by the highly accurate capacitance ratio inside the IC and the switching clock frequency has been put into practical use and is called a switched capacitor filter (SOF), in which the filter is housed in the same IC as the modulation/demodulation section. It is becoming possible to integrate into a single chip.

以下図面により本発明の詳細な説明を行なう。
第1図は本発明のFSK復調回路のブロツク図で
ある。
The present invention will be explained in detail below with reference to the drawings.
FIG. 1 is a block diagram of an FSK demodulation circuit according to the present invention.

受信アンプ1、バンドパスフイルタ2、リミツ
タ3、コンパレータ4、復調回路5より成る。受
信信号は振巾がクリツプレベルを越えない範囲で
増巾された後バンドパスフイルタで対向バンドの
信号及びその他諸々のノイズが除去されオペアン
プ等の飽和を避けるためリミツタにより振巾制限
されてコンパレータにより周期値にFSK情報を
含んだデシタル値になる。ゼロクロス情報はコン
パレータのレベルの変化点より得られ復調回路の
カウンタでゼロクロス周期間基本クロツクをカウ
ントした値によりデシタル的に復調される。よつ
て従来のアナログ復調方式と比較してIC化が容
易で無調整化され長期的は変動も生じない。
It consists of a receiving amplifier 1, a bandpass filter 2, a limiter 3, a comparator 4, and a demodulation circuit 5. The received signal is amplified to the extent that its amplitude does not exceed the clip level, then a band-pass filter removes the signal of the opposite band and other noises, the amplitude is limited by a limiter to avoid saturation of the operational amplifier, etc., and the amplitude is limited by a comparator. It becomes a digital value that includes FSK information in the period value. Zero cross information is obtained from the point of change in the level of the comparator, and is digitally demodulated by a value obtained by counting the basic clock during the zero cross period by a counter in the demodulation circuit. Therefore, compared to conventional analog demodulation methods, it is easier to integrate into an IC, requires no adjustment, and does not cause fluctuations over the long term.

第2図は本発明のゼロクロス周期検出のタイミ
ングチヤートである。受信FSK信号FSはコンパ
レータによりFSの正負がデシタル値ZC1に変換
される。更にZC1の立ち上り、立ち下りの点よ
り微分した信号ZC2を得てカウンタのリセツト、
読み出しに用いる。
FIG. 2 is a timing chart of zero-cross period detection according to the present invention. The received FSK signal FS is converted into a digital value ZC1 by a comparator. Furthermore, the counter is reset by obtaining a signal ZC2 differentiated from the rising and falling points of ZC1.
Used for reading.

第3図は本発明のカウンタ選択回路の実施例で
ある。DタイプFF6,7,9,10、排他的オ
アゲート8、4分の1分周回路11、アンドゲー
ト12〜15より成り、6〜8によりゼロクロス
周期検出の微分信号ZC2が得られる。ZC2を整
形、遅延した信号ZC3は分周回路11により出
力S1,S2,S3,S4を順次選択的に出力す
る。又ZC3を主クロツクで更に遅延した信号
Rを先のS1〜S4と理論積を取る事で各カウン
タに対するリセツト信号R1〜R4を生成する。
第4図は本発明のカウンタ選択回路の実施例のタ
イミングチヤートである。
FIG. 3 shows an embodiment of the counter selection circuit of the present invention. It consists of D-type FFs 6, 7, 9, and 10, an exclusive OR gate 8, a quarter frequency divider circuit 11, and AND gates 12 to 15, and 6 to 8 provide a differential signal ZC2 for zero-cross cycle detection. A signal ZC3 obtained by shaping and delaying ZC2 is selectively output in sequence as outputs S1, S2, S3, and S4 by a frequency dividing circuit 11. Further, reset signals R1 to R4 for each counter are generated by logically multiplying the signal R obtained by further delaying ZC3 by the main clock and the previous signals S1 to S4.
FIG. 4 is a timing chart of an embodiment of the counter selection circuit of the present invention.

ゼロクロス周期信号であるZC3及びその遅延
信号Rに同期してS1→S2と選択出力を得ると
共に各々のリセツト、読み出し信号R1,R2が
得られる。R1〜R4がS1〜S4の選択の選択
出力に対し主クロツク分遅延されているのは回
路上の遅れを考慮し選択出力が充分安定した後そ
のカウンタに対しリセツトと読み出しを行なうた
めである。
In synchronization with the zero-cross period signal ZC3 and its delayed signal R, selection outputs are obtained in the order of S1→S2, and respective reset and read signals R1 and R2 are obtained. The reason why R1 to R4 are delayed by the main clock period with respect to the selection outputs of S1 to S4 is to take account of delays in the circuit and reset and read out the counters after the selection outputs have become sufficiently stable.

第5図は本発明の実施例のカウンタの回路図で
ありN個のカウンタ(N=4)より構成される。
各カウンタ16〜19は各々復調2進信号「1」
「0」の判別回路を有する。カウンタ16に着目
すれば所定ビツト数のリツプルカウンタから
「1」、「0」のしきい値を検出するゲート20、
該出力を記憶するオアゲート21、DタイプFF
22、アンドゲート23より成る。カウンタ値は
主クロツクφの分解能によりカウントアツプされ
「1」、「0」のしきい値を越えた点でFSK信号の
低周波数側の信号と判別されて記憶される。クロ
ツクφの位相であるのはカウンタ選択回路がで
動作してS1,R1を出力し又FF22のクロツ
クものためカウンタ変化時と位相をづらし誤動
作を防止するためである。24から29のFF及
びアンドゲートは22,23と同様の働きをす
る。カウンタ16の動作に戻つて説明するとカウ
ンタ16の選択はS1出力時に行なわれS1の直
後にR1によりリセツトされるためFF22の出
力はカウンタ16がリセツト前1サイクルのS1
+S2+S3+S4の周期値がゲート20のしき
い値を越えたかどうかをホールドしている。よつ
てFF22の出力は読み出し信号としてアンドゲ
ート23とS1により選択されてオアゲート30
を通し出力処理回路へ送られる。FF22の出力
はS1の間判別結果を示している訳であるが非選
択時S2に於てR2によりリセツトされ次のカウ
ント値を記憶するために待機する。カウンタ17
〜19は全く16と同じ動作を行なうがカウンタ
17はS2+S3+S4+S1、カウンタ18は
S3+S4+S1+S2、カウンタ19はS4+
S1+S2+S3と時間巾はゼロクロス検出周期
の4倍であるが各々ゼロクロ周期の1周期分づら
してカウントし、結果の読み出しはゼロクロス周
期毎に新規に得られるものである。
FIG. 5 is a circuit diagram of a counter according to an embodiment of the present invention, which is composed of N counters (N=4).
Each counter 16 to 19 receives a demodulated binary signal "1"
It has a "0" discrimination circuit. Focusing on the counter 16, there is a gate 20 that detects thresholds of "1" and "0" from a ripple counter of a predetermined number of bits;
OR gate 21 that stores the output, D type FF
22 and an AND gate 23. The counter value is counted up according to the resolution of the main clock φ, and when it exceeds the threshold value of "1" or "0", it is determined that it is a signal on the low frequency side of the FSK signal and is stored. The reason why the clock φ is in phase is that the counter selection circuit operates and outputs S1 and R1, and since it is also the clock of the FF 22, the phase is shifted from when the counter changes to prevent malfunction. The FFs and AND gates 24 to 29 function similarly to 22 and 23. Returning to the operation of the counter 16, the selection of the counter 16 is made at the time of S1 output, and is reset by R1 immediately after S1, so the output of FF22 is S1 of one cycle before the counter 16 is reset.
It is held whether the period value of +S2+S3+S4 exceeds the threshold value of the gate 20. Therefore, the output of the FF 22 is selected as a read signal by the AND gate 23 and S1 and sent to the OR gate 30.
is sent to the output processing circuit. The output of the FF 22 indicates the discrimination result during S1, but when it is not selected, it is reset by R2 in S2 and waits to store the next count value. counter 17
~19 performs exactly the same operation as 16, but counter 17 has S2+S3+S4+S1, counter 18 has S3+S4+S1+S2, and counter 19 has S4+.
Although the time span S1+S2+S3 is four times the zero-crossing detection period, each is counted one zero-crossing period at a time, and the results are read out anew for each zero-crossing period.

オアゲート30の出力はDタイプFF31,3
2,33、排他的オアゲート34、オアゲート3
5より成る出力処理回路に入力される。FF31,
32,33はゼロクロス周期検出毎のクロツク
に応じてデータを取り込む。FF31とFF33の
出力が異なると排他的オアゲート34は「H」を
出力し、オアゲート35でクロツクがFF31
に入力されるのを禁止する。禁止期間中FF31
の出力は固定であるがその出力はによりFF3
3の出力に現れ、排他的オアゲート34の出力が
「L」となるため、の禁止は解除される。出力
処理回路はノイズが極端に増加した場合等に出力
OUTが急激に変化しない様FF31のデータが2
つ前のデータと同じ時に信号の2クロツク分は
クロツクを禁止してオアゲート30からの出力を
受けつけずにOUTの出力をホールドさせるもの
である。出力OUTはFSK信号の周波数の高い方
の信号の時「H」レベルを出力し周波数の低い方
の信号の時「L」レベルである2値信号として復
調出力する。又OUTの出力変化点はによりR
の立ち下がりによつて得られるがこれは各カウン
タのカウント動作がRの立ち上りまで継続してい
るのでRによりリセツトされた後に各22,2
4,26,28の出力を取り込み安定出力を得
る。
The output of the OR gate 30 is D type FF31,3
2, 33, exclusive or gate 34, or gate 3
The signal is input to an output processing circuit consisting of 5. FF31,
32 and 33 take in data in accordance with the clock every time a zero-cross cycle is detected. If the outputs of FF31 and FF33 are different, the exclusive OR gate 34 outputs "H", and the OR gate 35 changes the clock to FF31.
prohibited from being entered. FF31 during the ban period
The output of is fixed, but the output depends on FF3
Since the output of the exclusive OR gate 34 becomes "L", the inhibition of is released. Output processing circuit outputs when noise increases extremely.
The data of FF31 is set to 2 so that OUT does not change suddenly.
At the same time as the previous data, the clock is inhibited for two clocks of the signal, and the output from the OR gate 30 is not accepted and the output from OUT is held. The output OUT outputs an "H" level when the FSK signal has a higher frequency, and outputs a demodulated binary signal as a "L" level when a lower frequency signal is present. Also, the output change point of OUT is R
This is obtained by the falling edge of R, but since the counting operation of each counter continues until the rising edge of R, after being reset by R, each 22, 2
The outputs of 4, 26, and 28 are taken in to obtain a stable output.

本発明は以上の様に4周期のゼロクロス周期の
値に依り復調するものであるが本発明の効果につ
いて詳述するとゼロクロス検出点で本来の信号と
ノイズが加算されてゼロクロス検出周期誤差が生
じ符号歪、符号誤まりとなる。このノイズによる
周期誤差はノイズと信号のハイレベルの比で定ま
りノイズレベルが大きければ周期誤差も増加する
事は言うまでもない。しかしこの誤差は各ゼロク
ロス点で同等であるので複数個のゼロクロス周期
でカウントC信号の周期値を累積させれば相対的
にS/N比が向上する。つまりカウンタ値に於て
判別したい周波数はN倍になるのに対しノイズに
よる誤差はゼロクロス検出周期1個を取つたのと
同じくカウンタのスタートの点とストツプ点によ
る誤差でありS/NがN倍向上し4倍であれば
12dBも向上する。更に本発明の利点は複数個の
カウンタで複数個のゼロクロス検出周期を累積さ
せて判別する点によりFSK信号変化時の差を増
大できる事でやはりS/N比の向上及び判別精度
を高められる事である。つまりFSK信号はフイ
ルタ、回線の影響で比較的ゆるやかに連続的に変
化し、これをT1→T2→T3→T4→T5とし
T1>T2>T3>T4>T5とすればカウンタ
のカウンタ出力はT1+T2+T3+T4から次
のゼロクス検出周期でT2+T3+T4+T5と
いつた変化を取る。するとゼロスロス検出による
カウンタ値の変化の差はT1−T5と大きくなり
隣り合つたT1とT2の差よりも拡大され検出精
度が高まる。
As described above, the present invention performs demodulation based on the value of the four zero-crossing periods. To explain the effects of the present invention in detail, the original signal and noise are added at the zero-crossing detection point, resulting in a zero-crossing detection period error, and the code is This results in distortion and sign errors. It goes without saying that the periodic error due to this noise is determined by the ratio of the noise to the high level of the signal, and as the noise level increases, the periodic error also increases. However, since this error is the same at each zero-crossing point, the S/N ratio can be relatively improved by accumulating the period value of the count C signal over a plurality of zero-crossing periods. In other words, the frequency that we want to determine in the counter value is N times larger, but the error due to noise is the same as one zero-cross detection period, and it is an error due to the start point and stop point of the counter, so the S/N is improved by N times. If it is 4 times
It also improves by 12dB. A further advantage of the present invention is that by accumulating multiple zero-cross detection periods using multiple counters for discrimination, it is possible to increase the difference when the FSK signal changes, thereby improving the S/N ratio and the discrimination accuracy. It is. In other words, the FSK signal changes relatively slowly and continuously due to the influence of the filter and line.If this is T1→T2→T3→T4→T5 and T1>T2>T3>T4>T5, the counter output of the counter is T1+T2+T3+T4. The change from T2+T3+T4+T5 is taken in the next Xerox detection cycle. Then, the difference in the change in the counter value due to zero-sloss detection becomes T1-T5, which is larger than the difference between adjacent T1 and T2, and the detection accuracy increases.

又本発明の他の利点の複数個のカウンタが偶数
個で構成されているため、ある1個のカウンタに
着目すれば常に同一のトリガ方向のゼロクロスコ
ンパレータ出力で動作している事である。これは
コンパレータのゼロクロス点を完全に+側と−側
の中点に取るのが困難で多少のアンバランズを生
じ易い点を補正するものである。又リミツタに於
ても+側と−側のバランスと保つて振巾制限する
のも容易でないのでやはり本発明の同方向トリガ
のみでカウントするのは効果が著しい。
Another advantage of the present invention is that since the plurality of counters are an even number, if one focuses on a particular counter, it always operates with the zero cross comparator output in the same trigger direction. This is to correct the point where it is difficult to set the zero-crossing point of the comparator perfectly at the midpoint between the + side and the - side, which tends to cause some unbalance. Furthermore, since it is not easy to maintain a balance between the + side and the - side and limit the amplitude of the limiter, counting only with the trigger in the same direction according to the present invention is extremely effective.

以上のように、本発明によれば、多くのゼロク
ロス点で判別結果を得られるため、復調出力の位
相歪(位相ずれ)を改善できるとともに、複数の
ゼロクロス点間でカウントした結果に基づいて判
別するので、判別するしきい値でノイズマージン
が増加し、S/Nが改善される。
As described above, according to the present invention, since discrimination results can be obtained at many zero-crossing points, phase distortion (phase shift) of the demodulated output can be improved, and discrimination can be performed based on the results counted between multiple zero-crossing points. Therefore, the noise margin increases at the threshold for discrimination, and the S/N ratio is improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例のFSK復調回路のブ
ロツク図である。第2図は本発明のゼロクロス検
出方法のタイミングチヤートである。第3図は本
発明のFSK復調回路の実施例に於けるカウンタ
選択回路の回路図である。第4図は本発明の
FSK復調回路の実施例に於けるカウンタ選択回
路のタイミングチヤートである。第5図は本発明
のFSK復調回路の実施例に於ける復調回路のカ
ウンタ周辺の回路図である。 1……受信アンプ、2……バンドパスフイル
タ、3……リミツタ、4……コンパレータ、5…
…復調回路、FS……FSK信号、ZC1……ゼロク
ロスコンパレータ出力信号、11……4分の1分
周回路、16,17,18,19……復調カウン
タ及び判別回路。
FIG. 1 is a block diagram of an FSK demodulation circuit according to an embodiment of the present invention. FIG. 2 is a timing chart of the zero-cross detection method of the present invention. FIG. 3 is a circuit diagram of a counter selection circuit in an embodiment of the FSK demodulation circuit of the present invention. Figure 4 shows the present invention.
3 is a timing chart of a counter selection circuit in an embodiment of an FSK demodulation circuit. FIG. 5 is a circuit diagram around the counter of the demodulation circuit in an embodiment of the FSK demodulation circuit of the present invention. 1...Reception amplifier, 2...Band pass filter, 3...Limiter, 4...Comparator, 5...
...Demodulation circuit, FS...FSK signal, ZC1...Zero cross comparator output signal, 11...1/4 frequency divider circuit, 16, 17, 18, 19...Demodulation counter and discrimination circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 原2値信号に対応する異なる周波数より成る
FSK信号に含まれる零交差点を検出する検出回
路と、該検出回路が検出した連続する前記零交差
点の間の期間中のクロツク信号のカウントを、連
続するN+1(Nは複数の一定値)個の前記零交
差点の間のN個の期間分行うN個の周期カウンタ
と、前記検出回路が前記零交差点を検出するのに
応じて、前記N個の周期カウンタの中からカウン
トを開始させる周期カウンタを順次選択する選択
回路と、前記検出回路が前記零交差点を検出する
のに応じて、カウントを終了した前記周期カウン
タのカウント値からの判別結果を出力する回路と
を備え、連続した前記零交差点の検出に応じて連
続して順次カウントを開始する前記N個の周期カ
ウンタの中の2つの周期カウンタは、前記零交差
点の間のN−1個の期間分重複してカウントし、
前記判別結果に基づいて前記原2値信号の復調信
号を得ることを特徴とするFSK復調回路。
1 Consists of different frequencies corresponding to the original binary signal
A detection circuit that detects a zero crossing point included in an FSK signal and a clock signal count during the period between the consecutive zero crossing points detected by the detection circuit are counted at consecutive N+1 (N is a plurality of constant values) times. N period counters that operate for N periods between the zero crossing points; and a period counter that starts counting from among the N period counters in response to the detection circuit detecting the zero crossing point. A selection circuit that sequentially selects the zero crossing points, and a circuit that outputs a determination result from the count value of the period counter that has finished counting in response to the detection circuit detecting the zero crossing points, Two period counters among the N period counters that sequentially start counting in response to detection overlap and count for N-1 periods between the zero crossings,
An FSK demodulation circuit characterized in that a demodulated signal of the original binary signal is obtained based on the determination result.
JP56037602A 1980-11-07 1981-03-16 Fsk demodulating circuit Granted JPS57152259A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP56037602A JPS57152259A (en) 1981-03-16 1981-03-16 Fsk demodulating circuit
US06/318,496 US4517519A (en) 1980-11-07 1981-11-05 FSK Demodulator employing a switched capacitor filter and period counters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56037602A JPS57152259A (en) 1981-03-16 1981-03-16 Fsk demodulating circuit

Publications (2)

Publication Number Publication Date
JPS57152259A JPS57152259A (en) 1982-09-20
JPH0376060B2 true JPH0376060B2 (en) 1991-12-04

Family

ID=12502113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56037602A Granted JPS57152259A (en) 1980-11-07 1981-03-16 Fsk demodulating circuit

Country Status (1)

Country Link
JP (1) JPS57152259A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7253600B2 (en) * 2005-07-19 2007-08-07 Cambridge Analog Technology, Llc Constant slope ramp circuits for sample-data circuits

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5612161A (en) * 1979-07-10 1981-02-06 Tamura Electric Works Ltd Demodulation system for frequency shift signal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5612161A (en) * 1979-07-10 1981-02-06 Tamura Electric Works Ltd Demodulation system for frequency shift signal

Also Published As

Publication number Publication date
JPS57152259A (en) 1982-09-20

Similar Documents

Publication Publication Date Title
US4517519A (en) FSK Demodulator employing a switched capacitor filter and period counters
US4551846A (en) FSK Demodulation circuit
US4280224A (en) Bit synchronizer with early and late gating
US4057759A (en) Communication receiving apparatus
JPH0120823B2 (en)
JPS6016145B2 (en) Clock signal extraction method
JP3122104B2 (en) Variable rate square matched filter
CA1243083A (en) Fsk demodulator
JP2771354B2 (en) Demodulator
JPH0376060B2 (en)
JPS58107754A (en) Energy synchronized demodulator circuit
JPS61269547A (en) Data signal demodulator
US4599735A (en) Timing recovery circuit for synchronous data transmission using combination of L Bi phase and modified biphase codes
JPS642259B2 (en)
US7468601B2 (en) Direct phase and frequency demodulation
JPS6259266B2 (en)
JP3153253B2 (en) Method and apparatus for detecting frequency-modulated or phase-modulated signal
JPS5826241B2 (en) Frequency selection circuit
JPH0622291B2 (en) Digital FM demodulator
RU2017339C1 (en) Discrete fm detector
RU1803976C (en) Automatic frequency tuning device
SU1401630A1 (en) Phase synchronization device
RU2402874C2 (en) Amplitude telegraphy signal incoherent reception device
JPS60151876A (en) Information reproducer
JPS60248087A (en) Sampling clock reproducing circuit