JPH0375930B2 - - Google Patents

Info

Publication number
JPH0375930B2
JPH0375930B2 JP13388182A JP13388182A JPH0375930B2 JP H0375930 B2 JPH0375930 B2 JP H0375930B2 JP 13388182 A JP13388182 A JP 13388182A JP 13388182 A JP13388182 A JP 13388182A JP H0375930 B2 JPH0375930 B2 JP H0375930B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetoresistive
core
magnetoresistive film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13388182A
Other languages
Japanese (ja)
Other versions
JPS5924427A (en
Inventor
Yutaka Hayata
Hideo Suyama
Shigemi Imakoshi
Hiroyuki Uchida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP13388182A priority Critical patent/JPS5924427A/en
Publication of JPS5924427A publication Critical patent/JPS5924427A/en
Publication of JPH0375930B2 publication Critical patent/JPH0375930B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3916Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide
    • G11B5/3919Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide the guide being interposed in the flux path
    • G11B5/3922Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide the guide being interposed in the flux path the read-out elements being disposed in magnetic shunt relative to at least two parts of the flux guide structure
    • G11B5/3925Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide the guide being interposed in the flux path the read-out elements being disposed in magnetic shunt relative to at least two parts of the flux guide structure the two parts being thin films

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は磁気抵抗効果を使用した磁気抵抗効果
型磁気ヘツドに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a magnetoresistive magnetic head using the magnetoresistive effect.

背景技術とその問題点 一般に磁気抵抗効果を使用した再生磁気ヘツド
としての磁気抵抗効果型磁気ヘツドが提案されて
いる。この磁気抵抗効果型磁気ヘツドは電磁誘導
型再生磁気ヘツドに比し、狭トラツク再生、短波
長再生、超低速再生が可能である利益がある。こ
の磁気抵抗効果型磁気ヘツドとして第1図及び第
2図に示す如き基板の磁気記録媒体摺接面とは離
れた位置に磁気抵抗効果素子を設けた所謂リアタ
イプの磁気抵抗効果型磁気ヘツドが提案されてい
る。即ち第1図及び第2図に於いて、1は一方の
コアを構成するNi−Znフエライト、Mn−Znフ
エライト等のフエライト基板を示し、このフエラ
イト基板1上の後述する磁気抵抗効果膜4の対応
部に相当する所定位置にSiO2又はAl2O3の絶縁層
2aを設け、この絶縁層2a上の磁気テープ3の
摺接面3aより所定距離例えば10μm以上離れた
位置にコ字状に所定幅例えば5〜10μm幅のNi−
Fe系合金、Ni−Co系合金等の磁気抵抗効果を有
する磁気抵抗効果膜4をスパツタリングにより被
着する。この磁気抵抗効果膜4の信号検出部4a
の両端部よりAu膜5をこの磁気抵抗効果膜4上
に積層してこの磁気テープ3の摺接面3aとは反
対側に導出し、これにより磁気抵抗効果膜4に電
流を流すと共に再生信号を取り出す様にする。又
この磁気抵抗効果膜4の信号検出部4a上にこの
磁気抵抗効果膜4と抵抗値の略等しい例えばチタ
ン、タンタル、クロム等の膜5aを積層し、これ
に電流を流して所定のバイアス磁界を生ずる如く
する。又この場合この代りにこの磁気抵抗効果膜
4の信号検出部4a上にAuの縞状の膜所謂バー
バーポールを設けて所定のバイアス磁界を生ずる
様にしても良い。次に磁気回路を構成する後述す
る他方のコアとフエライト基板1との接合部1a
を除いて、フエライト基板1、磁気抵抗効果膜4
上全面にヘツド磁気ギヤツプに相当する例えば
0.2〜0.5μmの厚さのSiO2又はAl2O3の絶縁層2b
を被着する。この絶縁層2b上に磁気抵抗効果膜
4の信号検出部4aを跨ぐ如く、そのトラツク幅
lに相当する例えば数10μm〜数100μmの幅の他
方のコアを構成する透磁率μが大で抗磁力Hcの
小さい例えばパーマロイ、モリブデンパーマロ
イ、センダスト、Co−Zr、Fe−B等のアモルフ
アス膜等を厚さ例えば2〜3μmで磁気テープ3の
摺接面3aより所定長スパツター又は蒸着により
コア磁性体層6を被着する。この場合このコア磁
性体層6の磁気抵抗効果膜4の信号検出部4a上
に対応する部分に2〜5μmのギヤツプ6aを形成
し、このギヤツプ6aにより磁気テープ3よりの
再生磁束が良好に磁気抵抗効果膜4に供給される
如くなす。又この場合磁気テープ3の摺接面3a
に於いてフエライト基板1の端部とコア磁性体層
6の端部とでヘツド磁気ギヤツプ7を構成する如
くすると共にこのコア磁性体層6の後部をフエラ
イト基板1に接続し、このコア磁性体層6とフエ
ライト基板1とで磁気回路を構成する如くする。
BACKGROUND TECHNOLOGY AND PROBLEMS Generally, a magnetoresistive magnetic head has been proposed as a reproducing magnetic head that uses the magnetoresistive effect. This magnetoresistive magnetic head has the advantage of being capable of narrow track reproduction, short wavelength reproduction, and ultra-low speed reproduction compared to electromagnetic induction type reproduction magnetic heads. As shown in FIGS. 1 and 2, this magnetoresistive head is a so-called rear type magnetoresistive head in which a magnetoresistive element is provided at a position away from the sliding contact surface of a substrate with a magnetic recording medium. Proposed. That is, in FIGS. 1 and 2, numeral 1 indicates a ferrite substrate such as Ni-Zn ferrite or Mn-Zn ferrite constituting one core, and a magnetoresistive film 4, which will be described later, on this ferrite substrate 1. An insulating layer 2a of SiO 2 or Al 2 O 3 is provided at a predetermined position corresponding to the corresponding portion, and a U-shape is provided at a predetermined distance, for example, 10 μm or more away from the sliding surface 3a of the magnetic tape 3 on this insulating layer 2a. Ni- with a predetermined width, for example, 5 to 10 μm
A magnetoresistive film 4 having a magnetoresistive effect, such as Fe-based alloy or Ni-Co-based alloy, is deposited by sputtering. Signal detection section 4a of this magnetoresistive film 4
An Au film 5 is laminated on the magnetoresistive film 4 from both ends of the magnetic tape 3 and led out to the side opposite to the sliding surface 3a of the magnetic tape 3, thereby allowing a current to flow through the magnetoresistive film 4 and transmitting a reproduced signal. Make sure to take it out. Further, a film 5a made of titanium, tantalum, chromium, etc., which has approximately the same resistance value as the magnetoresistive film 4, is laminated on the signal detection portion 4a of the magnetoresistive film 4, and a current is passed through this film to generate a predetermined bias magnetic field. so that it occurs. In this case, instead of this, an Au striped film, so-called barber pole, may be provided on the signal detection portion 4a of the magnetoresistive film 4 to generate a predetermined bias magnetic field. Next, a joint 1a between the other core and the ferrite substrate 1, which will be described later and constitutes a magnetic circuit.
Except for ferrite substrate 1, magnetoresistive film 4
For example, the upper surface corresponds to a head magnetic gap.
Insulating layer 2b of SiO 2 or Al 2 O 3 with a thickness of 0.2-0.5 μm
be coated with. On this insulating layer 2b, the other core with a width of several tens of μm to several hundreds of μm corresponding to the track width l is formed so as to straddle the signal detection part 4a of the magnetoresistive film 4. The core magnetic material layer is formed by sputtering or vapor-depositing an amorphous film having a low Hc such as Permalloy, Molybdenum Permalloy, Sendust, Co-Zr, Fe-B, etc. to a thickness of 2 to 3 μm from the sliding contact surface 3a of the magnetic tape 3. 6 is applied. In this case, a gap 6a of 2 to 5 μm is formed in a portion of the core magnetic layer 6 that corresponds to the signal detecting portion 4a of the magnetoresistive film 4, and this gap 6a allows the magnetic flux from the magnetic tape 3 to be transferred to a good magnetic field. It is made so that it is supplied to the resistance effect film 4. In this case, the sliding surface 3a of the magnetic tape 3
The end of the ferrite substrate 1 and the end of the core magnetic layer 6 form a head magnetic gap 7, and the rear part of the core magnetic layer 6 is connected to the ferrite substrate 1. The layer 6 and the ferrite substrate 1 constitute a magnetic circuit.

その後全面に亘つてSiO2の絶縁層2cを被着
すると共にこの絶縁層2c上に接着剤8等により
フエライト基板1と硬度の略々等しいガラス板、
セラミツク板等の保護板9を被着する。
Thereafter, an insulating layer 2c of SiO 2 is applied over the entire surface, and a glass plate having approximately the same hardness as the ferrite substrate 1 is coated on this insulating layer 2c with an adhesive 8 or the like.
A protective plate 9 such as a ceramic plate is applied.

斯る従来のリアタイプの磁気抵抗効果型磁気ヘ
ツドは磁気抵抗効果膜4が直接磁気テープに接触
しないので、この磁気抵抗効果膜が摩耗すること
がない。
In such a conventional rear type magnetoresistive magnetic head, the magnetoresistive film 4 does not come into direct contact with the magnetic tape, so the magnetoresistive film does not wear out.

然しながら斯る従来のリアタイプ磁気抵抗効果
型磁気ヘツドにあつては、フエライト基板1を一
方のコアとして使用しているので磁気抵抗効果膜
4を絶縁層2a上に形成せざるを得ず、この絶縁
層2a上にこの磁気抵抗効果膜4を形成するとき
は絶縁層2aの表面の粗度が大きく、この影響に
より抗磁力Hcの小さい磁気抵抗効果膜を安定に
作ることが困難であり、又耐摩耗の点からして、
フエライト基板1は比較的硬度が小さいので磁気
テープ摺接面3aより磁気抵抗効果膜4までの距
離を比較的大きく10μm以上とる必要があり、こ
の為再生磁気効率の非常に悪い磁気回路をなし良
好な再生信号が得られない欠点があつた。
However, in such a conventional rear type magnetoresistive magnetic head, since the ferrite substrate 1 is used as one core, the magnetoresistive film 4 has to be formed on the insulating layer 2a. When forming this magnetoresistive film 4 on the insulating layer 2a, the surface roughness of the insulating layer 2a is large, and this influence makes it difficult to stably produce a magnetoresistive film with a small coercive force Hc. In terms of wear resistance,
Since the ferrite substrate 1 has relatively low hardness, the distance from the magnetic tape sliding contact surface 3a to the magnetoresistive film 4 must be relatively large, 10 μm or more, which results in a magnetic circuit with very poor reproduction magnetic efficiency, resulting in a good result. The drawback was that a good playback signal could not be obtained.

発明の目的 本発明は斯る点に鑑み再生効率を改善した良好
な再生信号の得られるリアタイプの磁気抵抗効果
型磁気ヘツドを提案せんとするものである。
OBJECTS OF THE INVENTION In view of the above, the present invention proposes a rear type magnetoresistive magnetic head that improves reproduction efficiency and provides a good reproduction signal.

発明の概要 本発明は非磁性基板例えばサフアイア基板上に
この非磁性基板の磁気記録媒体摺接面とは離れた
位置に磁気抵抗効果素子を形成し、この磁気抵抗
効果素子と磁気的に結合される第1のコアと、こ
の磁気記録媒体摺接面に臨む磁気ギヤツプを有す
る磁気回路を形成する如く第2のコアを設けると
共にこの磁気回路を非磁性基板と挾む如くこの非
磁性基板に対向する保護板を設ける様にし、再生
磁気効率の良い磁気回路を構成し、良好な再生信
号が得られる様にしたものである。
Summary of the Invention The present invention forms a magnetoresistive element on a non-magnetic substrate, such as a sapphire substrate, at a position away from the sliding contact surface of the magnetic recording medium of the non-magnetic substrate, and magnetically couples the magnetoresistive element with the magnetic recording medium. A second core is provided to form a magnetic circuit having a magnetic gap facing the sliding contact surface of the magnetic recording medium, and a second core is provided facing the non-magnetic substrate so as to sandwich the magnetic circuit with the non-magnetic substrate. A protective plate is provided to form a magnetic circuit with high reproduction magnetic efficiency, and a good reproduction signal can be obtained.

実施例 以下第3図を参照しながら本発明磁気抵抗効果
型磁気ヘツドの一実施例につき説明しよう。この
第3図に於いて第1図及び第2図に対応する部分
には同一符号を付し、その詳細説明は省略する。
Embodiment An embodiment of the magnetoresistive magnetic head of the present invention will be described below with reference to FIG. In FIG. 3, parts corresponding to those in FIGS. 1 and 2 are designated by the same reference numerals, and detailed explanation thereof will be omitted.

第3図に於いて、10は非磁性基板例えばサフ
アイア基板を示し、このサフアイア基板10上の
磁気テープ3の摺接面3aより所定距離例えば2
〜5μm離れた位置に第1図、第2図同様のコ字状
の所定幅例えば5〜10μm幅のNi−Fe系合金、
Ni−Co系合金等の磁気抵抗効果を有する磁気抵
抗効果膜4をスパツタリングにより被着する。
In FIG. 3, numeral 10 indicates a non-magnetic substrate such as a sapphire substrate, and a predetermined distance, e.g. 2
At a position ~5 μm apart, a U-shaped Ni-Fe alloy with a predetermined width of, for example, 5 to 10 μm, similar to FIGS. 1 and 2, is placed.
A magnetoresistive film 4 having a magnetoresistive effect, such as a Ni--Co alloy, is deposited by sputtering.

この場合サフアイア基板10の表面は滑らかな
ので抗磁力Hcの小さい磁気抵抗効果膜4を安定
に作ることができる。この磁気抵抗効果膜4の信
号検出部の両端部より第1図、第2図と同様に
Au膜をこの磁気抵抗効果膜4上に積層してこの
磁気テープ3の摺接面3aとは反対側に導出し、
これにより磁気抵抗効果膜4に電流を流す様にす
ると共に再生信号を取り出す様にする。
In this case, since the surface of the sapphire substrate 10 is smooth, the magnetoresistive film 4 having a small coercive force Hc can be stably produced. From both ends of the signal detection part of this magnetoresistive film 4, similar to FIGS. 1 and 2,
An Au film is laminated on this magnetoresistive film 4 and led out to the side opposite to the sliding surface 3a of this magnetic tape 3,
This causes a current to flow through the magnetoresistive film 4 and allows a reproduced signal to be extracted.

又この磁気抵抗効果膜4の信号検出部4a上に
この磁気抵抗効果膜4と抵抗値の略等しい例えば
チタンの膜5aを積層し、これにも電流が流れる
様にして所定のバイアス磁界が生ずる如くする。
又この場合この代りに磁気抵抗効果膜4の信号検
出部4aの信号検出部4a上にAuのバーバーポ
ールを設けて所定のバイアス磁界を生ずる様にし
ても良い。
Further, a film 5a made of, for example, titanium, which has approximately the same resistance value as the magnetoresistive film 4, is laminated on the signal detecting portion 4a of the magnetoresistive film 4, and a current flows through this film as well, thereby generating a predetermined bias magnetic field. Do as you like.
In this case, instead of this, an Au barber pole may be provided on the signal detecting section 4a of the magnetoresistive film 4 to generate a predetermined bias magnetic field.

この磁気抵抗効果膜4、サフアイア基板10の
全面に亘つてSiO2、Al2NO3等の絶縁層11aを
被着する。
An insulating layer 11a of SiO 2 , Al 2 NO 3 or the like is deposited over the entire surface of the magnetoresistive film 4 and the sapphire substrate 10 .

この絶縁層11a上に磁気抵抗効果膜4の信号
検出部4aを跨ぐ如く、磁気テープ3のトラツク
幅lに相当する例えば数10μm〜数100μmの幅の
一方のコアを構成する透磁率μが大で抗磁力Hc
の小さい例えばパーマロイ、モリブデンパーマロ
イ、センダスト、アモルフアス等を厚さ例えば2
〜3μmで磁気テープ3の摺接面3aより所定長ス
パツター又は蒸着によりコア磁性体層12を被着
する。この場合このコア磁性体層12の磁気抵抗
効果膜4の信号検出部4a上に対応する部分に2
〜5μmのギヤツプ12aを形成し、このギヤツプ
12aにより磁気テープ3よりの再生磁束が良好
に磁気抵抗効果膜4の信号検出部4aに供給され
る如くなす。
On this insulating layer 11a, a magnetic permeability μ constituting one core having a width of, for example, several tens of μm to several hundreds of μm, corresponding to the track width l of the magnetic tape 3 is formed so as to straddle the signal detection portion 4a of the magnetoresistive film 4. Coercive force Hc
For example, permalloy, molybdenum permalloy, sendust, amorphous, etc. with a thickness of 2
The core magnetic layer 12 is deposited to a predetermined length from the sliding contact surface 3a of the magnetic tape 3 by sputtering or vapor deposition to a thickness of ~3 μm. In this case, a portion of the magnetoresistive film 4 of the core magnetic layer 12 corresponding to the signal detection portion 4a is
A gap 12a of ~5 .mu.m is formed so that the reproduced magnetic flux from the magnetic tape 3 can be well supplied to the signal detecting section 4a of the magnetoresistive film 4 through the gap 12a.

次にこのコア磁性体層12の後方部の磁気回路
を構成する後述する他方のコアを構成するコア磁
性体層と接合する部分を除きコア磁性体層12、
絶縁層11a上全面にSiO2又はAl2O3の絶縁層1
1bを被着する。この場合絶縁層11bは磁気テ
ープ3の摺接面3aの近傍に於いてはヘツド磁気
ギヤツプ7に相当する例えば0.2〜0.5μmの厚さと
し、コア磁性体層12のギヤツプ12aの上部に
於いては中盛となる如くする。
Next, the core magnetic layer 12 except for the portion bonded to the core magnetic layer constituting the other core, which will be described later, constituting the magnetic circuit in the rear part of the core magnetic layer 12,
An insulating layer 1 of SiO 2 or Al 2 O 3 is formed on the entire surface of the insulating layer 11a.
1b is applied. In this case, the insulating layer 11b has a thickness of, for example, 0.2 to 0.5 μm near the sliding surface 3a of the magnetic tape 3, which corresponds to the head magnetic gap 7, and the thickness above the gap 12a of the core magnetic layer 12 has a thickness of 0.2 to 0.5 μm. Make sure it is medium-sized.

この絶縁層11b上にコア磁性体層12と重な
る如く磁気テープ3のトラツク幅lに相当する例
えば数10μm〜数100μmの幅の他方のコアを構成
する透磁率μが大で抗磁力Hcの小さい例えばパ
ーマロイ、モリブデンパーマロイ、センダスト、
アモルフアス等を厚さ例えば2〜3μmで磁気テー
プ3の摺接面3aより所定長スパツター又は蒸着
により他方のコア磁性体層13を被着する。この
場合磁気テープ3の摺接面3aに於いて、一方の
コア磁性体層12の端部と他方のコア磁性体層1
3の端部とでヘツド磁気ギツプ7を構成する如く
すると共にこの一方及び他方のコア磁性体層12
及び13の夫々の後部を接合して、このコア磁性
体層12及び13で磁気回路を構成する如くす
る。
On this insulating layer 11b, the other core with a width of several tens of μm to several hundred μm corresponding to the track width l of the magnetic tape 3 is formed so as to overlap with the core magnetic layer 12. The magnetic permeability μ is large and the coercive force Hc is small. For example, permalloy, molybdenum permalloy, Sendust,
The other core magnetic layer 13 is coated with amorphous amorphous or the like to a thickness of, for example, 2 to 3 μm from the sliding surface 3a of the magnetic tape 3 by sputtering or vapor deposition. In this case, on the sliding contact surface 3a of the magnetic tape 3, the end of one core magnetic layer 12 and the other core magnetic layer 1
3 to form a head magnetic gap 7, and the core magnetic layer 12 on one side and the other side
and 13 are joined to each other, so that the core magnetic layers 12 and 13 form a magnetic circuit.

その上に全面に亘つてSiO2又はAl2O3の絶縁層
11cを被着すると共にこの絶縁層11c上に接
着剤8等により非磁性基板10と硬度の略同じ本
例に於いてサフアイア板の保護板14を被着す
る。
An insulating layer 11c of SiO 2 or Al 2 O 3 is applied over the entire surface of the insulating layer 11c, and a sapphire plate having approximately the same hardness as the non-magnetic substrate 10 is bonded onto this insulating layer 11c using an adhesive 8 or the like. A protective plate 14 is applied.

本例に依れば第1図、第2図例と同様に磁気テ
ープ3に記録された信号を再生することができ
る。
According to this example, signals recorded on the magnetic tape 3 can be reproduced in the same manner as in the examples shown in FIGS. 1 and 2.

この場合本例に依れば滑らかな表面のサフアイ
ア基板10の上に直接に磁気抵抗効果膜4を形成
しているので抗磁力Hcの比較的小さい磁気抵抗
効果膜を安定して形成することができると共にサ
フアイア基板10,14は比較的硬度が大きいの
で耐摩耗性が良く、この為、磁気テープ3の摺接
面3aより磁気抵抗効果膜4までの距離を比較的
小さく2〜5μmとすることができ、再生磁気効率
の良い磁気回路を得ることができ、従来に比し感
度を大幅に増大することができ、良好な再生信号
を得ることができる。
In this case, according to this example, since the magnetoresistive film 4 is formed directly on the smooth surface of the sapphire substrate 10, it is possible to stably form a magnetoresistive film with a relatively small coercive force Hc. In addition, the sapphire substrates 10 and 14 have relatively high hardness and therefore have good wear resistance. Therefore, the distance from the sliding contact surface 3a of the magnetic tape 3 to the magnetoresistive film 4 should be relatively small, 2 to 5 μm. Therefore, it is possible to obtain a magnetic circuit with high reproduction magnetic efficiency, and the sensitivity can be greatly increased compared to the conventional one, and a good reproduction signal can be obtained.

更に本例に依ればサフアイア基板10,14を
使用しているので、このサフアイア基板10,1
4は熱伝導が良好であり、良好に熱発散をするこ
とができこの為発熱による熱雑音も低減すること
ができる。
Furthermore, according to this example, since the sapphire substrates 10, 14 are used, the sapphire substrates 10, 1
No. 4 has good heat conduction and can dissipate heat well, so that thermal noise due to heat generation can also be reduced.

第4図及び第5図は夫々本発明の他の実施例を
示す。
FIGS. 4 and 5 show other embodiments of the present invention, respectively.

この第4図に於いては第3図例に於いて磁気抵
抗効果膜4、サフアイア基板10の全面に亘つて
SiO2、Al2O3等の絶縁層11aを被着した後、こ
の絶縁層11aをこの磁気抵抗効果膜4の周囲だ
けを残して除去し、一方のコア磁性体層12を直
接サフアイア基板10上に形成し、その他は第3
図同様に構成したものである。
In this FIG. 4, the magnetoresistive film 4 and the entire surface of the sapphire substrate 10 in the example of FIG.
After depositing an insulating layer 11a of SiO 2 , Al 2 O 3 or the like, this insulating layer 11a is removed leaving only the periphery of the magnetoresistive film 4, and one core magnetic layer 12 is directly attached to the sapphire substrate 10. form the top, and the others form the third
The structure is similar to the one shown in the figure.

この第4図に於いても第3図同様の作用効果が
得られると共にこの第4図例に於いては表面が滑
らかなサフアイア基板10上に直接一方のコア磁
性体層12を形成するので抗磁力Hcの小さい安
定なコア磁性体層12を得ることができ、更に磁
気テープ3の摺接面3aに於いて、絶縁層11a
がないのでそれだけ磁気ヘツドを薄くできると共
に耐摩耗性が向上する利益がある。
In the example shown in FIG. 4, the same effect as shown in FIG. 3 can be obtained, and in the example shown in FIG. A stable core magnetic layer 12 with a small magnetic force Hc can be obtained, and furthermore, on the sliding contact surface 3a of the magnetic tape 3, an insulating layer 11a can be obtained.
This has the advantage that the magnetic head can be made thinner and wear resistance is improved.

又第5図は第3図に於いてバイアス磁界発生用
のチタンの膜5aを設けることなく、複数の上述
磁気ヘツドの一方及び他方のコア磁性体層12及
び13間に共通に例えばAuのバイアスライン1
5を設け、これに所定の電流を流す様にし、全ト
ラツクに対する複数の磁気ヘツドに一括してバイ
アス磁界を供給したものである。
In addition, FIG. 5 shows a structure in which, unlike FIG. 3, the titanium film 5a for generating a bias magnetic field is not provided, and a bias layer of, for example, Au is commonly used between the core magnetic layers 12 and 13 of one and the other of the plurality of magnetic heads. line 1
5, a predetermined current is passed through this, and a bias magnetic field is supplied to a plurality of magnetic heads for all tracks at once.

尚上述の実施例に依れば非磁性基板としてサフ
アイア基板を用いたが、表面粗度が良く、熱伝導
性が良いものであれば他のものも用いることがで
きる。特に表面粗度は100Å以下が好ましい。例
えばコーニング社製フオトセラム(商品名)等の
ガラスセラミツク(結晶化ガラス)を用いること
ができる。この場合、保護板14も同じものを用
いるのが好ましいのは言うまでもない。
Although a sapphire substrate was used as the nonmagnetic substrate in the above embodiment, other substrates may be used as long as they have good surface roughness and good thermal conductivity. In particular, the surface roughness is preferably 100 Å or less. For example, glass ceramic (crystallized glass) such as Photoceram (trade name) manufactured by Corning Corporation can be used. In this case, it goes without saying that it is preferable to use the same protection plate 14 as well.

発明の効果 本発明に依れば抗磁力Hcの比較的小さい磁気
抵抗効果膜4を安定に形成することができると共
に磁気テープ3の摺接面3aより磁気抵抗効果膜
までの距離を比較的小さくすることができ、再生
磁気効率の良い磁気回路を得ることができ、従来
に比し感度を大幅に増大することができ、良好な
再生信号を得ることができる。更に熱雑音も低減
することができる。
Effects of the Invention According to the present invention, the magnetoresistive film 4 having a relatively small coercive force Hc can be stably formed, and the distance from the sliding surface 3a of the magnetic tape 3 to the magnetoresistive film can be made relatively small. This makes it possible to obtain a magnetic circuit with high reproduction magnetic efficiency, greatly increase the sensitivity compared to the conventional one, and obtain a good reproduction signal. Furthermore, thermal noise can also be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の磁気抵抗効果型磁気ヘツドの例
を示す横断面図、第2図は第1図の−線断面
図、第3図は本発明磁気抵抗効果型磁気ヘツドの
一実施例を示す横断面図、第4図及び第5図は
夫々本発明の他の実施例を示す横断面図である。 3は磁気テープ、4は磁気抵抗効果膜、7は磁
気ギヤツプ、10及び14は夫々サフアイア基
板、11a,11b,11cは夫々絶縁層、12
及び13は夫夫一方及び他方のコア磁性体層であ
る。
FIG. 1 is a cross-sectional view showing an example of a conventional magnetoresistive magnetic head, FIG. 2 is a cross-sectional view taken along the line -- in FIG. 1, and FIG. 3 is an embodiment of the magnetoresistive magnetic head of the present invention. 4 and 5 are cross-sectional views showing other embodiments of the present invention, respectively. 3 is a magnetic tape, 4 is a magnetoresistive film, 7 is a magnetic gap, 10 and 14 are sapphire substrates, 11a, 11b, 11c are insulating layers, 12
and 13 are core magnetic layers on one side and the other side.

Claims (1)

【特許請求の範囲】[Claims] 1 非磁性基板上に該非磁性基板の磁気記録媒体
摺接面とは離れた位置に磁気抵抗効果素子を形成
し、該磁気抵抗効果素子と磁気的に結合される第
1のコアと、上記磁気記録媒体摺接面に臨む磁気
ギヤツプを有する磁気回路を形成する如く第2の
コアを設けると共に上記磁気回路を上記非磁性基
板と挾む如くこの非磁性基板に対向する保護板を
設けたことを特徴とする磁気抵抗効果型磁気ヘツ
ド。
1. A magnetoresistive element is formed on a non-magnetic substrate at a position away from the sliding contact surface of the magnetic recording medium of the non-magnetic substrate, and a first core magnetically coupled to the magnetoresistive element and the magnetic A second core is provided to form a magnetic circuit having a magnetic gap facing the sliding contact surface of the recording medium, and a protective plate is provided facing the non-magnetic substrate so as to sandwich the magnetic circuit with the non-magnetic substrate. Features a magnetoresistive magnetic head.
JP13388182A 1982-07-31 1982-07-31 Magneto-resistance effect type magnetic head Granted JPS5924427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13388182A JPS5924427A (en) 1982-07-31 1982-07-31 Magneto-resistance effect type magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13388182A JPS5924427A (en) 1982-07-31 1982-07-31 Magneto-resistance effect type magnetic head

Publications (2)

Publication Number Publication Date
JPS5924427A JPS5924427A (en) 1984-02-08
JPH0375930B2 true JPH0375930B2 (en) 1991-12-03

Family

ID=15115262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13388182A Granted JPS5924427A (en) 1982-07-31 1982-07-31 Magneto-resistance effect type magnetic head

Country Status (1)

Country Link
JP (1) JPS5924427A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6132215A (en) * 1984-07-25 1986-02-14 Hitachi Ltd Magnetoresistance effect type head
JPS6266414A (en) * 1985-09-19 1987-03-25 Seiko Epson Corp Magnetic head
JPS6337811A (en) * 1986-07-30 1988-02-18 Toshiba Corp Yoke type magnetoresistance effect type thin film magnetic head

Also Published As

Publication number Publication date
JPS5924427A (en) 1984-02-08

Similar Documents

Publication Publication Date Title
US5684658A (en) High track density dual stripe magnetoresistive (DSMR) head
US5722157A (en) Method of making an induction and magnetoresistance type composite magnetic head
JPH07192229A (en) Compound magnetic reluctance head
US5436779A (en) Integrated yoke magnetoresistive transducer with magnetic shunt
JPS63304416A (en) Magneto-resistance effect type playback head
JP2505465B2 (en) Yoke type thin film magnetic head
JPH0375930B2 (en)
JPH0291807A (en) Composite thin-film magnetic head
JPH06274833A (en) Magneto-resistance effect type magnetic head
JP2565250B2 (en) Magnetic head
JPS62145527A (en) Compound type thin film magnetic head
JPH0473210B2 (en)
JP2814741B2 (en) Perpendicular magnetization type magnetoresistance element and magnetoresistance effect type magnetic head using the same
JPS61134913A (en) Magnetoresistance type thin film head
JPH03286413A (en) Magneto-resistance effect type head
JPS60256907A (en) Thin film magnetic head
JP2755186B2 (en) Magnetoresistive head
JPS6087412A (en) Vertical magnetic recording head
KR100226579B1 (en) A m.i.g magnetic head and method for fabricating thereof
JPS61134912A (en) Thin film type magnetic head
JPS59221824A (en) Magnetoresistance effect type magnetic head
JPS60115014A (en) Magnetic head for vertical magnetization
JPH011114A (en) thin film magnetic head
JPH0234081B2 (en) JIKIHETSUDO
JPH0516642Y2 (en)