JPH0375601B2 - - Google Patents

Info

Publication number
JPH0375601B2
JPH0375601B2 JP63040644A JP4064488A JPH0375601B2 JP H0375601 B2 JPH0375601 B2 JP H0375601B2 JP 63040644 A JP63040644 A JP 63040644A JP 4064488 A JP4064488 A JP 4064488A JP H0375601 B2 JPH0375601 B2 JP H0375601B2
Authority
JP
Japan
Prior art keywords
metal
hours
coating layer
hot
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63040644A
Other languages
Japanese (ja)
Other versions
JPS64202A (en
JPH01202A (en
Inventor
Akihiro Myasaka
Hiroyuki Ogawa
Hiroyuki Pponma
Saburo Kitaguchi
Yutaka Morimoto
Satoshi Araki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP63-40644A priority Critical patent/JPH01202A/en
Priority claimed from JP63-40644A external-priority patent/JPH01202A/en
Priority to EP88103873A priority patent/EP0283877B1/en
Priority to DE88103873T priority patent/DE3881923T2/en
Priority to US07/172,633 priority patent/US4844863A/en
Publication of JPS64202A publication Critical patent/JPS64202A/en
Publication of JPH01202A publication Critical patent/JPH01202A/en
Publication of JPH0375601B2 publication Critical patent/JPH0375601B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は表面被覆金属の製造方法に係り、さら
に詳しくは耐食性、耐高温腐食性、耐酸化性、耐
摩耗性などの特性を有する層で金属の表面を被覆
する方法に関するものである。 [従来の技術] 近年、産業の進歩と技術の発展により材料はま
すます厳しい環境で使用されるようになつてき
た。例えば、エネルギー資源開発では生産流体中
に硫化水素や炭酸ガスを多量に含む石油や天然ガ
ス(いわゆるサワーオイルやサワーガス)が開発
されているが、開発に使用される油井管やライン
パイプなどの材料として低合金鋼では腐食や割れ
を起こすため、ハステロイC−276やインコネル
625(いずれも商品名)といつたニツケル合金が既
に使用されている。しかし、これらの合金は非常
に高価であること大きな難点である。従つて、構
造材の表面にのみこれら合金を合わせ材として使
用し、強度は下地の金属(例えば低合金鋼)で確
保するいわゆるクラツド鋼の使用が考えられる。 クラツド鋼はその形状が管の場合には継目無管
或いは溶接管として、形状が板の場合には圧延板
として種々の製造方法が確立または提案されてい
る。 しかし、いずれも製造プロセスが複雑で歩留ま
りが悪いという難点に加えて、ハステロイC−
276やインコネル625といつたニツケル合金を合わ
せ材とするクラツド鋼、なかでもクラツド鋼管は
製造が非常に困難であつて未だ実用化されていな
い。本発明者等の研究によればその理由は、これ
ら合金の熱化加工時の変形抵抗が母材となる低合
金鋼や炭素鋼のそれに比べて著しく大きいため、
熱間圧延などの通常の製造プロセスでは合わせ材
と母材とを均一に加工できず、両金属が独立に変
形するので、接合することが難しいことにあると
考えられる。 一方、バルブのスピンドル部や往復動型ポンプ
のピストンおよびシリンダーなどの摺動部、ある
いはスラリー輸送用パイプといつた部材では耐摩
耗性が必要であるため、例えばステライト合金
(商品名)などが、肉盛あるいは溶射されて使用
されている。さらに、高温で使用される圧力容器
や鋼管には例えばNi−Cr合金やNi−Cr−Al−Y
合金やCo−Cr−Al−Y合金といつた耐酸化性材
料が、肉盛あるいは溶射によつて被覆される場合
がある。しかし、これらはいずれも最終製品に対
して肉盛あるいは溶射されるため非常にコストの
高いものとなつている。加えて、小径パイプの内
面といつた狭い部分には被覆できないと言う難点
を有している。 ところで、熱間静水圧プレス法は従来からよく
知られた技術であつて、この方法を利用したクラ
ツド製品の提案もなされている。例えば、特開昭
61−223106号公報には、高合金粉末を粉末の固相
線温度以上に加熱すると共にガス加圧して能率よ
く高合金クラツド製品を製造する方法が開示され
ている。しかし、この方法をはじめとして従来報
告ないしは提案されている熱間静水圧プレス法を
利用したクラツド製品の製造方法は何れも最終製
品に被覆するものであつたため、コストが高く、
かつ大型製品や長尺品(例えば12m長さ)の製造
はできないという難点を有していた。 また、特開昭61−190007号公報および特開昭61
−190008号公報には、それぞれ厚肉の可鍛性金属
円筒およびこれと径を異にする薄肉金属円筒によ
つて構成されるカプセル内に粉末を充填して密閉
し、これを冷間等方静水圧によつて加圧して、粉
末を圧縮してビレツトを作り、これを熱間押出し
加工する方法、また、同心円筒状をなす内外2重
壁を有するゴムまたは類似物質の容器内に、可鍛
性金属の円筒材料を一方の容器壁に密着させて収
容すると共に、他方の容器壁と上記円筒材料との
間に粉末材料を充填して密閉し、これを冷間等方
静水圧によつて加圧し、この容器から取り出した
材料をビレツトとして熱間押出しする方法が開示
されている。これらの方法によつても、前述した
ハステロイC−276やインコネル625といつたニツ
ケル合金等の変形抵抗の大きな材料の被覆層を形
成して熱間加工した場合、母材との密着が弱いた
め母材からの剥離や被覆層の割れの発生という難
点は解消されるものではない。 [発明が解決しようとする課題] 本発明はかかる現状に鑑み、耐食性、耐高温腐
食性、耐酸化性、耐摩耗性など表面被覆が目的と
する特性を母材金属に具備せしめた材料を安価に
製造する方法を提供するものである。 [課題を解決するための手段] 本発明者等は上記の目的を達成するべく種々実
験、検討を重ねた結果、ニツケル合金やコバルト
合金のように熱間変形抵抗の著しく大きい材料を
合わせ材とし、低合金鋼や炭素鋼のように熱間変
形抵抗の比較的小さい材料を母材として熱間加工
するためには、熱間加工前において合わせ材と母
材とを金属結合させ、且つ接合界面に充分な接合
強度を持たせておけば、合わせ材と母材とを同時
に且つ均一に熱間加工することが可能であり、さ
らに熱間加工後においても合わせ材と母材とを金
属結合させ、且つ接合界面に充分な接合強度を持
たせることができるのを見出した。さらに、熱間
加工前において合わせ材と母材とを金属結合さ
せ、且つ接合界面に充分な接合強度を持たせる方
法を種々検討した結果、熱間静水圧プレス法(以
下HIP法と言う)が、コスト、接合強度、などの
点で優れていることがわかつた。即ち、被覆せん
とする合わせ材金属の粉末をHIP法によつて母材
上に被覆層として形成せしめると同時に充分な接
合強度を与えることができることを見出した。更
に、被覆金属がハステロイやステライトなどの難
加工性材料であつても、HIPにおいて被覆層中の
気孔を消失せしめておけば、後続の熱間加工を行
なうに充分な熱間加工性を被覆金属に付与できる
ことも見出した。これらを基にして長尺のクラツ
ド製品を製造可能であることを見出した。 更に、本発明者らはHIP後に均熱処理を施すと
被覆層の熱間加工性が一段と改善され、加工量が
著しく多い場合であつても被覆層に割れや疵など
の欠陥を生ずることなく熱間加工できることを見
出した。ここで、均熱処理の目的はHIP処理され
た後の冷却途中に被覆層中に析出した粗大析出物
を熱間加工の直前に固溶・消失させることにある
が、本発明者等の検討によれば被覆金属がNi基
合金あるいはCo基合金からなる場合には均熱処
理として1050〜11240℃で0.5〜10h保持すること
が有効であり、被覆金属がTi基合金からなる場
合には均熱処理として550〜900℃で0.5〜10h保持
することが有効である。いずれの場合において
も、均熱処理後析出物が再び析出しないうちに熱
間加工を行なうことが重要である。 また更に、本発明者らはHIP後に溶体化熱処理
を施すと、前述の均熱処理後、直ちに熱間加工す
る場合と同様に、被覆層の熱間加工性が一段と改
善され、加工量が著しく多い場合であつても被覆
層に割れや疵などの欠陥を生ずることなく熱間加
工できることを見出した、ここで、溶体化熱処理
の目的はHIP処理された後の冷却される途中に被
覆層中に析出した粗大析出物を固溶・消失させる
ことにあるが、本発明者等の検討によれば被覆金
属層がNi基合金あるいはCo基合金からなる場合
には溶体化熱処理として1050〜1240℃で0.5〜10h
保持した後、5deg/sec以上の冷却速度で急冷す
ることが有効であり、被覆金属がTi基合金から
なる場合には溶体化熱処理として550〜900℃で
0.5〜10h保持した後、5deg/sec以上の冷却速度
で急冷することが有効である。 本発明は上記の知見に基づいてなされたもので
その要旨とするところは、金属素材の表面に、該
金属素材よりも大きな熱間変形抵抗を有する他種
金属の粉末を該他種金属の固相線温度以下で300
Kg/cm2以上のガス圧力を負荷する熱間静水圧プレ
スによつて被覆層と形成せしめた後に均熱処理を
加えた後直ちに熱間加工を施して延伸すること、
若しくは上記熱間静水圧プレスによつて被覆層を
形成せしめた後に急流してから溶体化熱処理を加
えた後に、熱間加工を施して延伸することを特徴
とする表面被覆金属の製造方法にある。 ここで「母材」となる金属素材及び「合わせ
材」となる他種金属の種類については格別に制限
されるものではなく、例えば金属素材としては炭
素鋼、低合金鋼、ステンレス鋼、ニツケル及びニ
ツケル合金、コバルト及びコバルト合金、チタン
及びチタン合金などが挙げられる。一方、合わせ
材としては耐食性、耐高温腐食性、耐酸化性、耐
摩耗性などの機能のうち、必要な機能に応じて選
択すればよく、例えばハステロイ、ステライト、
Ni−Cr合金、ステンレス鋼、Fe基超合金、ニツ
ケル及びニツケル合金、コバルト及びコバルト合
金、チタン及びチタン合金などを挙げることがで
きる。 以下本発明を詳細に説明する。 [作用] まず本発明においては金属素材の表面に、他種
金属の被覆層をHIPによつて形成せしめるのであ
るが、他種金属は粉末を用いて、例えば第1図に
示す要領で金属素材1と他種金属粉末2とをカプ
セル3内に充填・密閉し、次いで、熱間静水圧プ
レスして他種金属粉末を被覆層として形成せしめ
ると同時に被覆層と素材金属とを金属結合させる
ことができ、接合界面に充分な接合強度を持たせ
ることができる。この時、次の工程で良好に熱間
加工するためには、被覆層の熱間加工性を確保し
なければならないが、そのためには被覆層内に気
孔を残留させない事が重要であり、密閉容器内を
真空にすることと充分高い温度と圧力で熱間静水
圧プレスすることが重要である。真空度は1×
10-3Torrより高いことが好ましい。 HIP温度は母材金属と合わせ材金属の種類によ
つて異なるが、熱間加工性を良好に保つためには
両方の金属の固相線温度より低い温度でなければ
ならない。それは、固相線温度を超えると冷却時
に成分元素の偏析を生じ、次の工程に於ける熱間
加工性が著しく低下するからである。ただし、
HIP時間を短縮するには、上記温度範囲内で出来
るだけ高い温度とすることが有効である。一方、
HIP圧力は高いほどHIP温度・時間を減少できる
が、300Kg/cm2未満の圧力ではHIP温度・時間を
いかに選択しても他種金属粉末被覆層の焼結が不
充分で熱間加工性を確保できないので、熱間加工
性を良好に保つためには300Kg/cm2以上のHIP圧
力とする必要がある。 被覆金属がNi基合金或いはCo基合金からなる
場合には、HIP温度は1050〜1240℃、HIP時間は
0.5から10hとする必要がある。その理由は、HIP
温度が1050℃未満ではHIP時間が数十時間と著し
く長くなるために実用的ではなく、1240℃を越え
ると前述の理由から熱間加工性が低下するためで
あり、HIP時間が0.5h未満では前記の温度範囲内
でHIP温度をいかに高くしても熱間加工性の良好
な被覆層を得ることは困難だからであり、HIP時
間を10hを超えて更に長くしてもその効果は飽和
しているからである。 また、被覆金属がTi基合金からなり、母材金
属が鉄基合金(低合金鋼、炭素鋼、ステンレス鋼
など)からなる場合にはHIP温度を600〜900℃と
し、HIP時間は0.5〜10hとすることが必要であ
る。その理由は、HIP温度が600℃未満ではHIP
時間が数十時間と著しく長くなるために実用的で
はなく、900℃を超えるとTiとFeとが反応して脆
い化合物を生成するために熱間加工性が低下する
ためであり、HIP時間が0.5h未満では前記の温度
範囲内でHIP温度をいかに高くしても熱間加工性
の良好な被覆層を得ることは困難だからであり、
HIP時間を10hを超えて更に長くしてもその効果
は飽和しているからである。 一方、本発明における均熱処理の目的は、主に
HIP処理後の冷却途中に被覆層中に析出した粗大
析出物を固溶・消失させ、次の工程である熱間加
工における熱間加工性を一段と改善することにあ
る。本発明者等の検討によれば被覆金属がNi基
合金あるいはCo基合金からなる場合には均熱処
理として1050〜1240℃で0.5〜10h保持することが
有効であり、被覆金属がTi基合金からなる場合
には均熱処理として550〜900℃で0.5〜10h保持す
ることが有効である。その理由は、均熱温度が
Ni基合金およびCo基合金で1050℃未満、またTi
基合金で550℃未満では析出物を固溶できないた
めであり、均熱温度がNi基合金およびCo基合金
で1240℃超、Ti基合金で900℃超では被覆層ある
いは接合界面において逆に熱間加工性が低下する
からである。さらに、前記温度範囲において、保
持時間が0.5h未満では均熱処理温度を前記温度範
囲の上限としても析出物を充分固溶させることが
できず、一方保持時間を10h超としてもその効果
はもはや飽和しているので、保持時間は0.5〜10h
とすべきである。また、均熱処理温度に保持した
後に冷却するに際し、加及的速やかに熱間加工し
ないと再び析出物が析出して熱間加工性が低下す
るので、均熱処理後の搬送はできるだけ速くする
ことが臨ましい。 また、本発明における溶体化熱処理の目的は、
前述の均熱処理と同様、主にHIP処理後の冷却時
に被覆層中に析出した粗大析出物を固溶・消失さ
せ、次の工程である熱間加工における熱間加工性
を一段と改善することにある。本発明者等の検討
によれば被覆金属がNi基合金あるいはCo基合金
からなる場合には溶体化熱処理として1050〜1240
℃で0.5〜10h保持した後、5deg/sec以上の冷却
速度で急冷することが有効であり、被覆金属が
Ti基合金からなる場合には溶体化熱処理として
550〜900℃で0.5〜10h保持した後、5deg/sec以
上の冷却速度で急冷することが有効である。その
理由は、溶体化温度がNi基合金およびCo基合金
で1050℃未満、またTi基合金で550℃未満では析
出物を固溶できないためであり、溶体化温度が
Ni基合金およびCo基合金で1240℃超、Ti基合金
で900℃超では被覆層あるいは接合界面において
逆に熱間加工性が低下するからである。さらに、
前記温度範囲において、保持時間が0.5h未満では
溶体化熱処理温度を前記温度範囲の上限としても
析出物を充分固溶させることができず、一方保持
時間を10h超としてもその効果はもはや飽和して
いるので、保持時間は0.5〜10hとすべきである。
また、溶体化熱処理温度に保持した後に冷却する
に際し、冷却速度が5deg/sec未満では冷却途中
に再び析出物が析出して熱間加工性を損なうの
で、冷却速度は5deg/sec以上とする必要があ
る。かかる冷却速度を得るための方法としては、
例えば水冷、強制空冷などを適用することができ
る。 次に本発明においては被覆層形成後均熱処理を
加えた後直ちに熱間加工を行うか、若しくは上記
被覆層形成後溶体化処理を施した後に急冷してか
ら熱間加工を行うのであるが、上記の条件で被覆
層を形成した場合には複合材であつても通常と同
様にして熱間加工することができる。本発明にお
ける熱間加工の目的は被覆した金属素材を延伸す
ることによつて長尺の表面被覆金属を製造した
り、或いは複雑な形状の表面被覆金属を製造する
ことに有り、製品の形状に応じて熱間圧延、熱間
鍛造、熱間押出などの熱間加工法を適用すること
ができる。尚、本発明において熱間加工とは母材
である金属素材及び合わせ材である被覆金属が成
型等の目的で通常加工される温度範囲での加工を
指すが、加工温度の選定に際しては母材及び被覆
層の両方に対して適切な温度を選定する必要があ
る。 本発明においては金属素材の形状が板或いはパ
イプの場合には被覆層を一つの面、例えば板の上
面、パイプの内面、パイプの外面としても良く、
両面即ち板の上・下両面、パイプの内・外両面と
することも可能である。製品が使用される状況に
応じて、一面あるいは両面のうち適切なほうを選
択すれば良い。 その他熱間加工を行なつた後に、例えば母材の
強度、靭性等を調質する目的で行なう焼き入れ焼
き戻し、焼きならし等の熱処理、被覆層の耐食性
を更に改善させる目的で行なう溶体化熱処理や焼
き鈍し等の熱処理、製品の形状を調整する等の目
的で行なう冷間加工など必要に応じて更に他の加
工を加えることもできる。いずれも必要な強度、
靭性、耐食性等に応じて選択することができる。 本発明は腐食性物質に対する抵抗を必要とする
製品、高温酸化に対する抵抗を必要とする製品及
び耐摩耗性を必要とする製品などを製造するため
に応用することができ、例えば管、容器、板およ
び棒など種々の形状に応用することができる。あ
るいはさらに成形、溶接などを行なつて製品を製
造するための素材として使用することも可能であ
ることはいうまでもない。 以下に本発明の実施例について説明する。 [実施例] 実施例 1 第1表に示す材料及び製造条件で熱間加工に供
する素材を製造した。ここで、本発明例No.1〜2
はスラブの上面に被覆層を形成した例、本発明例
No.3はスラブの両面に被覆層を形成した例、本発
明例No.4〜8は中空ビレツトの内面に被覆層を形
成した例、本発明例No.9〜11は中空ビレツトの内
面および外面に被覆層を形成した例である。いず
れも合金粉末を熱間静水圧プレス法によつて金属
素材の表面に被覆層として形成せしめた。各々の
形状を第2図、第3図、第4図及び第5図にそれ
ぞれ示す。第2図はスラブ4の上面に被覆層5を
形成した例である。第3図はスラブ4の上面及び
下面に被覆層5を形成した例である。第4図は中
空ビレツト6の内面に被覆層5を形成した例であ
る。第5図は中空ビレツト6の内面および外面に
被覆層5を形成した例である。 一方、比較例はいずれも合金粉末をHIP法によ
つて中空丸ビレツト内面に被覆層として形成せし
めた例であるが、*を付した点において本発明の
条件を満たしていないものである。 次にこれらの材料を第2表に示す条件で熱間加
工して表面被覆金属を製造した。その結果を第2
表に合わせて示す。また良好に熱間加工できたも
のについては、各種試験を行なつた結果を併せて
第2表に示した。第2表で曲げ試験はJIS G0601
およびJIS Z3124に準じて行ない、接合強さ試験
はJIS H8664に準して行ない、接合部の欠陥長さ
率は断面の光学顕微鏡観察によつて測定した非接
合部の長さを界面の全長で除して求めた。 第2表のうち比較例であるNo.12、No.14およびNo.
16は均熱処理時の温度が低すぎたために、比較例
No.13、No.15、No.17およびNo.18は均熱処理を行なわ
なかつたために、いずれも熱間加工はできたもの
の被覆層中に割れあるいは疵を生じたものであ
る。これに対して本発明に従つて製造した例No.1
〜11の各材料は曲げ試験、接合強さのいずれの特
性にも優れており、断面の光学顕微鏡観察で非接
合部などの欠陥は全く検出されなかつた。また熱
間加工後の断面ミクロ観察結果から、被覆層には
気孔や割れは全くなく、かつ均一で良好な接合界
面が得られていることが確かめられ、著しく加工
量の多い熱間加工であつても優れた表面被覆金属
が得られていることが確認された。
[Industrial Application Field] The present invention relates to a method for producing a surface-coated metal, and more specifically, a method for coating the surface of a metal with a layer having properties such as corrosion resistance, high-temperature corrosion resistance, oxidation resistance, and wear resistance. It is related to. [Prior Art] In recent years, due to industrial progress and technological development, materials have come to be used in increasingly harsh environments. For example, in energy resource development, petroleum and natural gas (so-called sour oil and sour gas) containing large amounts of hydrogen sulfide and carbon dioxide are being developed as production fluids, and the materials used in the development, such as oil country tubular goods and line pipes, are being developed. Hastelloy C-276 and Inconel, as low alloy steels cause corrosion and cracking.
A nickel alloy called 625 (both trade names) is already in use. However, a major disadvantage of these alloys is that they are very expensive. Therefore, it is conceivable to use so-called clad steel, in which these alloys are used as a laminating material only on the surface of the structural material, and the strength is ensured by the underlying metal (for example, low-alloy steel). Various manufacturing methods have been established or proposed for clad steel, such as seamless pipe or welded pipe when the shape is a pipe, and rolled plate when the shape is a plate. However, in addition to the drawbacks of complicated manufacturing processes and low yields, both Hastelloy C-
Clad steel made from nickel alloys such as 276 and Inconel 625, especially clad steel pipes, are extremely difficult to manufacture and have not yet been put to practical use. According to research conducted by the present inventors, the reason for this is that the deformation resistance of these alloys during thermal processing is significantly greater than that of the base metals, such as low-alloy steel and carbon steel.
This is thought to be due to the fact that normal manufacturing processes such as hot rolling cannot process the composite material and base material uniformly, and the two metals deform independently, making it difficult to join them. On the other hand, sliding parts such as valve spindles, pistons and cylinders of reciprocating pumps, and parts such as slurry transport pipes require wear resistance, so for example, Stellite alloy (trade name) etc. It is used by overlaying or thermal spraying. Furthermore, for pressure vessels and steel pipes used at high temperatures, for example, Ni-Cr alloy and Ni-Cr-Al-Y
Oxidation resistant materials such as alloys and Co-Cr-Al-Y alloys may be coated by overlay or thermal spraying. However, all of these materials are overlaid or thermally sprayed onto the final product, making them very costly. In addition, it has the disadvantage that it cannot coat narrow areas such as the inner surface of small diameter pipes. Incidentally, the hot isostatic pressing method is a well-known technique, and clad products using this method have also been proposed. For example, Tokukai Akira
Publication No. 61-223106 discloses a method for efficiently manufacturing a high alloy clad product by heating high alloy powder to a temperature higher than the solidus temperature of the powder and pressurizing the high alloy powder with gas. However, this method and other previously reported or proposed methods for manufacturing clad products using hot isostatic pressing methods all involve coating the final product, resulting in high costs;
Another drawback was that it was not possible to manufacture large products or long products (for example, 12 m long). Also, JP-A-61-190007 and JP-A-61
Publication No. 190008 discloses that powder is filled and sealed in a capsule consisting of a thick-walled malleable metal cylinder and a thin-walled metal cylinder with a different diameter, and then the powder is sealed in a cold isostatic A method of compressing the powder into a billet using hydrostatic pressure, which is then hot extruded; A cylindrical material of a malleable metal is housed in close contact with one container wall, and a powder material is filled between the other container wall and the cylindrical material to seal it, and this is then sealed using cold isostatic pressure. A method is disclosed in which the material taken out from the container is hot extruded as a billet. Even with these methods, if a coating layer of a material with high deformation resistance, such as a nickel alloy such as Hastelloy C-276 or Inconel 625, is formed and hot worked, the adhesion to the base material is weak. The problems of peeling from the base material and cracking of the coating layer remain unresolved. [Problems to be Solved by the Invention] In view of the current situation, the present invention provides an inexpensive material in which the base metal has the properties desired by the surface coating, such as corrosion resistance, high-temperature corrosion resistance, oxidation resistance, and abrasion resistance. The present invention provides a method for manufacturing. [Means for Solving the Problem] As a result of various experiments and studies in order to achieve the above object, the present inventors have found that materials with extremely high hot deformation resistance, such as nickel alloys and cobalt alloys, are used as laminated materials. In order to hot-work materials with relatively low hot deformation resistance, such as low-alloy steel or carbon steel, as a base material, the mating material and the base material must be metallically bonded before hot working, and the bonding interface must be If the bonding strength is sufficient, it is possible to hot-work the laminate material and the base material simultaneously and uniformly, and even after hot working, the laminate material and the base material can be metallically bonded. , and it has been found that sufficient bonding strength can be provided at the bonding interface. Furthermore, as a result of investigating various methods for metallically bonding the laminated material and the base material before hot processing and providing sufficient bonding strength at the bonding interface, the hot isostatic pressing method (hereinafter referred to as the HIP method) was developed. It was found to be superior in terms of cost, bonding strength, etc. That is, we have found that it is possible to form a coating layer on a base material by using the HIP method to form the powder of the laminated metal to be coated on the base material, and at the same time provide sufficient bonding strength. Furthermore, even if the coating metal is a difficult-to-process material such as hastelloy or stellite, if the pores in the coating layer are eliminated during HIP, the coating metal will have sufficient hot workability for subsequent hot processing. We also found that it can be applied to We have found that it is possible to manufacture long clad products based on these materials. Furthermore, the present inventors found that applying soaking treatment after HIP further improves the hot workability of the coating layer, and even when the amount of processing is extremely large, the coating layer can be heated without causing defects such as cracks or flaws. I discovered that it can be processed in between. Here, the purpose of the soaking treatment is to dissolve and eliminate coarse precipitates that have precipitated in the coating layer during cooling after HIP treatment, just before hot working. According to this, when the coating metal is made of a Ni-based alloy or a Co-based alloy, it is effective to hold it at 1050 to 11240℃ for 0.5 to 10 hours as a soaking treatment, and when the coating metal is made of a Ti-based alloy, it is effective to hold it as a soaking treatment for 0.5 to 10 hours. It is effective to hold the temperature at 550-900℃ for 0.5-10 hours. In either case, it is important to perform hot working before precipitates precipitate out again after soaking. Furthermore, the present inventors found that when solution heat treatment is applied after HIP, the hot workability of the coating layer is further improved, and the amount of processing is significantly larger, as in the case of hot working immediately after the soaking treatment described above. We have found that hot processing can be performed without causing defects such as cracks and flaws in the coating layer even when the coating layer is hot-processed. The purpose is to dissolve and eliminate coarse precipitates, and according to the study of the present inventors, when the coating metal layer is made of a Ni-based alloy or a Co-based alloy, solution heat treatment at 1050 to 1240°C is performed. 0.5~10h
After holding, it is effective to rapidly cool at a cooling rate of 5 deg/sec or more, and if the coating metal is made of a Ti-based alloy, it is effective to perform a solution heat treatment at 550 to 900 °C.
After holding for 0.5 to 10 hours, it is effective to rapidly cool at a cooling rate of 5 deg/sec or more. The present invention has been made based on the above findings, and the gist thereof is to apply powder of another metal having a higher hot deformation resistance than the metal material to the surface of the metal material. 300 below phase line temperature
Forming a coating layer by hot isostatic pressing applying a gas pressure of Kg/cm 2 or more, applying soaking treatment, and immediately hot working and stretching;
Alternatively, there is a method for producing a surface-coated metal, which comprises forming a coating layer by hot isostatic pressing, followed by rapid flow, solution heat treatment, and then hot working and stretching. . Here, there are no particular restrictions on the types of metal materials that serve as the "base material" and other types of metals that serve as the "laminating material." For example, the metal materials include carbon steel, low alloy steel, stainless steel, nickel, etc. Examples include nickel alloys, cobalt and cobalt alloys, titanium and titanium alloys, and the like. On the other hand, the laminating material may be selected depending on the required functions such as corrosion resistance, high temperature corrosion resistance, oxidation resistance, and wear resistance. For example, hastelloy, stellite,
Examples include Ni-Cr alloys, stainless steel, Fe-based superalloys, nickel and nickel alloys, cobalt and cobalt alloys, titanium and titanium alloys. The present invention will be explained in detail below. [Function] First, in the present invention, a coating layer of other metals is formed on the surface of the metal material by HIP. 1 and the other metal powder 2 are filled and sealed in the capsule 3, and then hot isostatic pressing is performed to form the other metal powder as a coating layer, and at the same time, the coating layer and the raw metal are metallurgically bonded. This allows the bonding interface to have sufficient bonding strength. At this time, in order to perform hot working well in the next process, it is necessary to ensure the hot workability of the coating layer, but for this purpose it is important that no pores remain in the coating layer, and it is important to ensure that the coating layer is not airtight. It is important to create a vacuum inside the container and to perform hot isostatic pressing at a sufficiently high temperature and pressure. Vacuum degree is 1x
Preferably higher than 10 −3 Torr. The HIP temperature differs depending on the types of base metal and composite metal, but in order to maintain good hot workability, the HIP temperature must be lower than the solidus temperature of both metals. This is because if the solidus temperature is exceeded, component elements will segregate during cooling, and hot workability in the next step will be significantly reduced. however,
In order to shorten the HIP time, it is effective to set the temperature as high as possible within the above temperature range. on the other hand,
The higher the HIP pressure, the lower the HIP temperature and time; however, if the pressure is less than 300 kg/ cm2 , no matter how you select the HIP temperature and time, the sintering of the other metal powder coating layer will be insufficient and the hot workability will deteriorate. Therefore, in order to maintain good hot workability, it is necessary to set the HIP pressure to 300 Kg/cm 2 or more. When the coating metal is made of Ni-based alloy or Co-based alloy, the HIP temperature is 1050 to 1240℃, and the HIP time is
It needs to be between 0.5 and 10h. The reason is HIP
If the temperature is less than 1050°C, the HIP time will be extremely long to several tens of hours, making it impractical; if the temperature exceeds 1240°C, hot workability will decrease for the reasons mentioned above, and if the HIP time is less than 0.5h, This is because it is difficult to obtain a coating layer with good hot workability no matter how high the HIP temperature is within the above temperature range, and even if the HIP time is further increased beyond 10 hours, the effect is saturated. Because there is. In addition, if the coating metal is made of a Ti-based alloy and the base metal is made of an iron-based alloy (low alloy steel, carbon steel, stainless steel, etc.), the HIP temperature should be 600 to 900°C and the HIP time should be 0.5 to 10 hours. It is necessary to do so. The reason is that when the HIP temperature is less than 600℃, HIP
This is not practical because the time taken is extremely long, several tens of hours, and when the temperature exceeds 900°C, Ti and Fe react to form a brittle compound, which reduces hot workability. This is because if it is less than 0.5 hours, it is difficult to obtain a coating layer with good hot workability no matter how high the HIP temperature is within the above temperature range.
This is because even if the HIP time is further increased beyond 10 hours, the effect is saturated. On the other hand, the purpose of soaking treatment in the present invention is mainly
The objective is to dissolve and eliminate coarse precipitates that have formed in the coating layer during cooling after HIP treatment, thereby further improving hot workability in the next step of hot working. According to studies conducted by the present inventors, when the coating metal is made of a Ni-based alloy or a Co-based alloy, it is effective to hold it at 1050 to 1240°C for 0.5 to 10 hours as a soaking treatment, and when the coating metal is made of a Ti-based alloy, In such cases, it is effective to hold the temperature at 550 to 900°C for 0.5 to 10 hours as a soaking treatment. The reason is that the soaking temperature is
Below 1050℃ for Ni-based alloys and Co-based alloys, and Ti
This is because precipitates cannot form a solid solution at temperatures below 550°C for base alloys, and when the soaking temperature exceeds 1240°C for Ni-based alloys and Co-based alloys, and above 900°C for Ti-based alloys, heat is generated in the coating layer or bonding interface. This is because machinability deteriorates. Furthermore, in the above temperature range, if the holding time is less than 0.5 hours, the precipitates cannot be sufficiently dissolved even if the soaking temperature is the upper limit of the temperature range, whereas if the holding time exceeds 10 hours, the effect is no longer saturated. Therefore, the retention time is 0.5~10h.
Should be. In addition, when cooling after being held at the soaking temperature, if the hot working is not carried out quickly, precipitates will precipitate again and hot workability will deteriorate, so transportation after soaking should be done as quickly as possible. It's imminent. Furthermore, the purpose of the solution heat treatment in the present invention is to
Similar to the soaking treatment described above, this process mainly dissolves and eliminates coarse precipitates that precipitate in the coating layer during cooling after HIP treatment, further improving hot workability in the next step of hot working. be. According to studies by the present inventors, when the coating metal is made of a Ni-based alloy or a Co-based alloy, the solution heat treatment
It is effective to hold the temperature at ℃ for 0.5 to 10 hours and then rapidly cool it at a cooling rate of 5 deg/sec or more, so that the coated metal is
In the case of Ti-based alloy, it is used as solution heat treatment.
It is effective to hold the temperature at 550 to 900°C for 0.5 to 10 hours and then rapidly cool it at a cooling rate of 5 deg/sec or more. The reason for this is that precipitates cannot be solidly dissolved when the solution temperature is less than 1050°C for Ni-based alloys and Co-based alloys, and below 550°C for Ti-based alloys;
This is because when the temperature exceeds 1240°C for Ni-based alloys and Co-based alloys, and above 900°C for Ti-based alloys, the hot workability of the coating layer or the bonding interface deteriorates. moreover,
In the above temperature range, if the holding time is less than 0.5 hours, the precipitates cannot be sufficiently dissolved even if the solution heat treatment temperature is the upper limit of the temperature range, while if the holding time exceeds 10 hours, the effect is no longer saturated. Therefore, the holding time should be between 0.5 and 10 h.
In addition, when cooling after holding at the solution heat treatment temperature, if the cooling rate is less than 5deg/sec, precipitates will precipitate again during cooling and impair hot workability, so the cooling rate must be 5deg/sec or more. There is. As a method to obtain such a cooling rate,
For example, water cooling, forced air cooling, etc. can be applied. Next, in the present invention, hot working is performed immediately after applying soaking treatment after forming the coating layer, or hot working is performed after rapid cooling after applying solution treatment after forming the above-mentioned covering layer. When the coating layer is formed under the above conditions, even composite materials can be hot worked in the same manner as usual. The purpose of the hot working in the present invention is to produce a long surface-coated metal by stretching the coated metal material, or to produce a surface-coated metal with a complicated shape. Accordingly, hot processing methods such as hot rolling, hot forging, and hot extrusion can be applied. In the present invention, hot working refers to processing in the temperature range in which the metal material as the base material and the coating metal as the bonding material are normally processed for purposes such as forming. Appropriate temperatures need to be selected for both the temperature and the coating layer. In the present invention, when the shape of the metal material is a plate or a pipe, the coating layer may be formed on one surface, for example, the upper surface of the plate, the inner surface of the pipe, or the outer surface of the pipe.
It is also possible to use both sides, ie, the upper and lower sides of the plate, and the inner and outer sides of the pipe. Depending on the situation in which the product is used, one or both sides may be selected as appropriate. After other hot working, heat treatments such as quenching, tempering, and normalizing are performed for the purpose of refining the strength and toughness of the base metal, and solution treatment is performed for the purpose of further improving the corrosion resistance of the coating layer. Other processing may be added as necessary, such as heat treatment such as heat treatment and annealing, and cold processing for the purpose of adjusting the shape of the product. Both require strength,
It can be selected depending on toughness, corrosion resistance, etc. The present invention can be applied to manufacture products that require resistance to corrosive substances, products that require resistance to high temperature oxidation, and products that require wear resistance, such as pipes, containers, plates, etc. It can be applied to various shapes such as rods and rods. It goes without saying that it is also possible to further perform molding, welding, etc. and use it as a material for manufacturing products. Examples of the present invention will be described below. [Examples] Example 1 A material to be subjected to hot working was manufactured using the materials and manufacturing conditions shown in Table 1. Here, invention examples No. 1 to 2
is an example in which a coating layer is formed on the upper surface of a slab, an example of the present invention
No. 3 is an example in which a coating layer is formed on both sides of the slab, Invention examples No. 4 to 8 are examples in which a coating layer is formed on the inner surface of a hollow billet, and Invention examples No. 9 to 11 are examples in which a coating layer is formed on the inner surface of a hollow billet. This is an example in which a coating layer is formed on the outer surface. In each case, alloy powder was formed as a coating layer on the surface of a metal material by hot isostatic pressing. The respective shapes are shown in FIGS. 2, 3, 4, and 5, respectively. FIG. 2 shows an example in which a coating layer 5 is formed on the upper surface of the slab 4. FIG. 3 shows an example in which a coating layer 5 is formed on the upper and lower surfaces of the slab 4. FIG. 4 shows an example in which a coating layer 5 is formed on the inner surface of a hollow billet 6. FIG. 5 shows an example in which a coating layer 5 is formed on the inner and outer surfaces of a hollow billet 6. On the other hand, all of the comparative examples are examples in which alloy powder was formed as a coating layer on the inner surface of a hollow round billet by the HIP method, but they do not meet the conditions of the present invention in the points marked with *. These materials were then hot worked under the conditions shown in Table 2 to produce surface coated metals. The second result is
Shown in the table. Table 2 also shows the results of various tests for those that could be hot-worked well. In Table 2, the bending test is based on JIS G0601.
The bonding strength test was conducted in accordance with JIS H8664, and the defect length ratio of the bonded portion was calculated using the length of the non-bonded portion measured by optical microscopic observation of the cross section as the total length of the interface. It was calculated by dividing. Comparative examples No. 12, No. 14 and No. 2 in Table 2.
16 is a comparative example because the temperature during soaking treatment was too low.
No. 13, No. 15, No. 17, and No. 18 were not subjected to soaking treatment, so although they were all able to be hot worked, cracks or flaws occurred in the coating layer. On the other hand, Example No. 1 manufactured according to the invention
Each of the materials No. 11 to 11 had excellent properties in both bending tests and bonding strength, and no defects such as non-bonded parts were detected in cross-sectional observation using an optical microscope. In addition, the cross-sectional microscopic observation results after hot working confirmed that there were no pores or cracks in the coating layer, and that a uniform and good bonding interface was obtained. It was confirmed that a metal with an excellent surface coating was obtained.

【表】【table】

【表】【table】

【表】 *1 均熱処理直後に熱間加工したものであるから均
熱処理温度に等しい。
*2 目標製品寸法:母材部外径60.4φ(mm)、被覆厚
さ0.2(mm)
実施例 2 第3表に示す材料及び製造条件で熱間加工に供
する素材を製造した。ここで、本発明例No.1〜2
はスラブの上面に被覆層を形成した例、本発明例
No.3はスラブの両面に被覆層を形成した例、本発
明例No.4〜8は中空ビレツトの内面に被覆層を形
成した例、本発明例No.9〜11は中空ビレツトの内
面および外面に被覆層を形成した例である。何れ
も合金粉末を熱間静水圧プレス法によつて金属素
材の表面に被覆層として形成せしめた。各々の形
状を第2図、第3図、第4図及び第5図にそれぞ
れ示す。第2図はスラブ4の上面に被覆層5を形
成した例である。第3図はスラブ4の上面及び下
面に被覆層5を形成した例である。第4図は中空
ビレツト6の内面に被覆層5を形成した例であ
る。第5図は中空ビレツト6の内面および外面に
被覆層5を形成した例である。 一方、比較例はいずれも合金粉末をHIP法によ
つて中空ビレツト内面に被覆層とし形成せしめた
例であるが、*を付した点において本発明の条件
を満たしていないものである。 次にこれらの材料を第4表に示す条件で熱間加
工して表面被覆金属を製造した。その結果を第4
表に合わせて示す。また良好に熱間加工できたも
のについては、各種試験を行なつた結果を併せて
第4表に示した。第4表で曲げ試験はJIS G0601
およびJIS Z 3124に準じて行ない、接合強さ試
験はJIS H 8664に準じて行ない、接合部の欠陥
長さ率は断面の光学顕微鏡観察によつて測定した
非接合部分の長さを接合部の全長で除して求め
た。 第4表のうち比較例であるNo.12、No.15およびNo.
18は溶体化熱処理時の温度が低すぎたために、比
較例No.13、No.16およびNo.19は溶体化熱処理後の冷
却速度が小さすぎたために、比較例No.14、No.17、
No.20およびNo.21は溶体化熱処理を行なわなかつた
ために、いずれも熱間加工はできたものの被覆層
に割れあるいは疵を生じたものである。これに対
して本発明に従つて製造した例No.1〜11の各材料
は曲げ試験、接合強さのいずれの特性にも優れて
おり、断面の光学顕微鏡観察で非接合部などの欠
陥は全く検出されなかつた。また熱間加工後の断
面のミクロ観察結果から、被覆層には気孔や割れ
は全くなく、かつ均一で良好な接合界面が得られ
ていることが確かめられ、著しく加工量の多い熱
間加工であつても優れた表面被覆金属が得られて
いることが確認された。
[Table] *1 Since it was hot worked immediately after soaking treatment, it is equal to the soaking temperature.
*2 Target product dimensions: Base material outer diameter 60.4φ (mm), coating thickness 0.2 (mm)
Example 2 A material to be subjected to hot working was manufactured using the materials and manufacturing conditions shown in Table 3. Here, invention examples No. 1 to 2
is an example in which a coating layer is formed on the upper surface of a slab, an example of the present invention
No. 3 is an example in which a coating layer is formed on both sides of the slab, Invention examples No. 4 to 8 are examples in which a coating layer is formed on the inner surface of a hollow billet, and Invention examples No. 9 to 11 are examples in which a coating layer is formed on the inner surface of a hollow billet. This is an example in which a coating layer is formed on the outer surface. In each case, alloy powder was formed as a coating layer on the surface of a metal material by hot isostatic pressing. The respective shapes are shown in FIGS. 2, 3, 4, and 5, respectively. FIG. 2 shows an example in which a coating layer 5 is formed on the upper surface of the slab 4. FIG. 3 shows an example in which a coating layer 5 is formed on the upper and lower surfaces of the slab 4. FIG. 4 shows an example in which a coating layer 5 is formed on the inner surface of a hollow billet 6. FIG. 5 shows an example in which a coating layer 5 is formed on the inner and outer surfaces of a hollow billet 6. On the other hand, all of the comparative examples are examples in which alloy powder was formed as a coating layer on the inner surface of a hollow billet by the HIP method, but they do not satisfy the conditions of the present invention in the points marked with *. These materials were then hot worked under the conditions shown in Table 4 to produce surface coated metals. The result is the fourth
Shown in the table. Table 4 also shows the results of various tests for those that could be successfully hot worked. In Table 4, the bending test is based on JIS G0601.
The joint strength test was conducted according to JIS H 8664, and the defect length ratio of the joint was determined by calculating the length of the unbonded part measured by observing the cross section with an optical microscope. It was calculated by dividing by the total length. Comparative examples No. 12, No. 15 and No. 4 in Table 4.
Comparative Examples No. 14, No. 17 because the temperature during solution heat treatment was too low for Comparative Example No. 18, and because the cooling rate after solution heat treatment was too low for Comparative Examples No. 13, No. 16, and No. 19. ,
No. 20 and No. 21 were not subjected to solution heat treatment, so although both were able to be hot worked, cracks or flaws occurred in the coating layer. On the other hand, the materials of Examples Nos. 1 to 11 manufactured according to the present invention were excellent in both the bending test and bonding strength, and there were no defects such as non-bonded parts when cross-sectionally observed with an optical microscope. It was not detected at all. In addition, microscopic observation of the cross section after hot working confirmed that there were no pores or cracks in the coating layer, and that a uniform and good bonding interface was obtained. It was confirmed that a metal with an excellent surface coating was obtained.

【表】【table】

【表】【table】

【表】 [発明の効果] 以上述べたように本発明によれば優れた特性を
有する表面被覆金属の製造が可能であり、産業の
発展に貢献するところ極めて大である。
[Table] [Effects of the Invention] As described above, according to the present invention, it is possible to produce a surface-coated metal having excellent properties, and it greatly contributes to the development of industry.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は金属素材の表面に他種金属の被覆層を
形成するための熱間静水圧プレスにおける充填要
領を示す図である。第2図、第3図、第4図及び
第5図は何れも本発明方法に従う加工素材の積層
要領を示す断面図である。 1……金属素材、2……他種金属粉末、3……
カプセル、4……スラブ、5……被覆層、6……
中空ビレツト。
FIG. 1 is a diagram showing a filling procedure in hot isostatic pressing for forming a coating layer of another metal on the surface of a metal material. 2, 3, 4, and 5 are all cross-sectional views showing the procedure for laminating processed materials according to the method of the present invention. 1...metal material, 2...other metal powder, 3...
Capsule, 4... Slab, 5... Covering layer, 6...
Hollow billet.

Claims (1)

【特許請求の範囲】 1 金属素材の表面に、該金属素材よりも大きな
熱間変形抵抗を有する他種金属の粉末を該他種金
属の固相線温度以下で300Kg/cm2以上のガス圧を
負荷する熱間静水圧プレスによつて被覆層として
形成せしめ、均熱処理を加えた後直ちに熱間加工
を施して延伸することを特徴とする表面被覆金属
の製造方法。 2 他種金属被覆層の形成が金属素材の両面にわ
たる請求項1記載の方法。 3 他種金属がNi基合金からなり、熱間静水圧
プレスとして1050〜1240℃で0.5〜10h保持して処
理し、さらに均熱処理として1050〜1240℃で0.5
〜10h保持する請求項1または2記載の方法。 4 他種金属がCo基合金からなり、熱間静水圧
プレスとして1050〜1240℃で0.5〜10h保持して処
理し、さらに均熱処理として1050〜1240℃で0.5
〜10h保持する請求項1または2記載の方法。 5 他種金属がTi基合金からなり、熱間静水圧
プレスとして600〜900℃で0.5〜10h保持して処理
し、さらに均熱処理として550〜900℃で0.5〜10h
保持する請求項1または2記載の方法。 6 金属素材の表面に、該金属素材よりも大きな
熱間変形抵抗を有する他種金属の粉末を該他種金
属の固相線温度以下で300Kg/cm2以上のガス圧を
負荷する熱間静水圧プレスによつて被覆層として
形成せしめ、溶体化熱処理を加えた後に急冷して
から熱間加工を施して延伸することを特徴とする
表面被覆金属の製造方法。 7 他種金属被覆層の形成が金属素材の両面にわ
たる請求項6記載の表面被覆金属の製造方法。 8 他種金属がNi基合金からなり、熱間静水圧
プレスとして1050〜1240℃で0.5〜10h保持して処
理し、さらに溶体化熱処理として1050〜1240℃で
0.5〜10h保持した後5deg/sec以上の冷却速度で
急冷する請求項6または7記載の表面被覆金属の
製造方法。 9 他種金属がCo基合金からなり、熱間静水圧
プレスとして1050〜1240℃で0.5〜10h保持して処
理し、さらに溶体化熱処理として1050〜1240℃で
0.5〜10h保持した後5deg/sec以上の冷却速度で
急冷する請求項6または7記載の表面被覆金属の
製造方法。 10 他種金属がTi基合金からなり、熱間静水
圧プレスとして600〜900℃で0.5〜10h保持して処
理し、さらに溶体化熱処理として550〜900℃で
0.5〜10h保持した後5deg/sec以上の冷却速度で
急冷する請求項6または7記載の表面被覆金属の
製造方法。
[Claims] 1. Powder of another metal having a higher hot deformation resistance than the metal material is applied to the surface of the metal material at a gas pressure of 300 Kg/cm 2 or more at a temperature below the solidus temperature of the other metal. 1. A method for producing a surface-coated metal, which is formed as a coating layer using a hot isostatic press under a load of 100% by weight, and immediately subjected to hot working and stretched after soaking. 2. The method according to claim 1, wherein the other metal coating layer is formed on both sides of the metal material. 3 The other metal is made of Ni-based alloy, and is treated by hot isostatic pressing at 1050 to 1240°C for 0.5 to 10 hours, and then soaked for 0.5 hours at 1050 to 1240°C.
3. The method according to claim 1 or 2, wherein the holding time is maintained for ~10 hours. 4 The other metal is made of a Co-based alloy, and is treated by hot isostatic pressing at 1050 to 1240°C for 0.5 to 10 hours, and then soaked for 0.5 hours at 1050 to 1240°C.
3. The method according to claim 1 or 2, wherein the holding time is maintained for ~10 hours. 5 The other metal is made of a Ti-based alloy and is treated by hot isostatic pressing at 600 to 900°C for 0.5 to 10 hours, and then soaked at 550 to 900°C for 0.5 to 10 hours.
3. The method according to claim 1 or 2, wherein: 6. Powder of another metal having a higher hot deformation resistance than that of the metal material is applied to the surface of the metal material by applying a gas pressure of 300 kg/cm 2 or more at a temperature below the solidus temperature of the other metal. 1. A method for producing a surface-coated metal, which comprises forming a coating layer using a hydraulic press, subjecting it to solution heat treatment, quenching it, then subjecting it to hot working and stretching. 7. The method for producing a surface-coated metal according to claim 6, wherein the other metal coating layer is formed on both sides of the metal material. 8 The other metal is made of a Ni-based alloy and is treated by hot isostatic pressing at 1050 to 1240°C for 0.5 to 10 hours, and then heated to 1050 to 1240°C as solution heat treatment.
8. The method for producing a surface-coated metal according to claim 6 or 7, wherein the temperature is maintained for 0.5 to 10 hours and then rapidly cooled at a cooling rate of 5 deg/sec or more. 9 The other metal is made of a Co-based alloy and is treated by hot isostatic pressing at 1050 to 1240°C for 0.5 to 10 hours, and then heated to 1050 to 1240°C as solution heat treatment.
8. The method for producing a surface-coated metal according to claim 6 or 7, wherein the temperature is maintained for 0.5 to 10 hours and then rapidly cooled at a cooling rate of 5 deg/sec or more. 10 The other metal is made of a Ti-based alloy and is treated by hot isostatic pressing at 600 to 900°C for 0.5 to 10 hours, and then heated to 550 to 900°C as solution heat treatment.
8. The method for producing a surface-coated metal according to claim 6 or 7, wherein the temperature is maintained for 0.5 to 10 hours and then rapidly cooled at a cooling rate of 5 deg/sec or more.
JP63-40644A 1987-03-25 1988-02-25 Method for producing surface coated metal Granted JPH01202A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63-40644A JPH01202A (en) 1987-03-25 1988-02-25 Method for producing surface coated metal
EP88103873A EP0283877B1 (en) 1987-03-25 1988-03-11 Method of producing clad metal tubes.
DE88103873T DE3881923T2 (en) 1987-03-25 1988-03-11 Process for the production of coated metal pipes.
US07/172,633 US4844863A (en) 1987-03-25 1988-03-24 Method of producing clad metal

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP6912787 1987-03-25
JP62-69127 1987-03-25
JP62-74485 1987-03-30
JP62-74484 1987-03-30
JP63-40644A JPH01202A (en) 1987-03-25 1988-02-25 Method for producing surface coated metal

Publications (3)

Publication Number Publication Date
JPS64202A JPS64202A (en) 1989-01-05
JPH01202A JPH01202A (en) 1989-01-05
JPH0375601B2 true JPH0375601B2 (en) 1991-12-02

Family

ID=

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141082A (en) * 1974-10-05 1976-04-06 Hitachi Shipbuilding Eng Co JUGOSOSOCHI
JPS619938A (en) * 1984-06-22 1986-01-17 Hitachi Metals Ltd Hot working method of hardly hot workable material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141082A (en) * 1974-10-05 1976-04-06 Hitachi Shipbuilding Eng Co JUGOSOSOCHI
JPS619938A (en) * 1984-06-22 1986-01-17 Hitachi Metals Ltd Hot working method of hardly hot workable material

Also Published As

Publication number Publication date
JPS64202A (en) 1989-01-05

Similar Documents

Publication Publication Date Title
US4966748A (en) Methods of producing clad metals
US4844863A (en) Method of producing clad metal
US5056209A (en) Process for manufacturing clad metal tubing
EP2272616B1 (en) Clad stainless steel substrates and method for making same
TWI357444B (en) Zirconium-cladded steel plates, and elements of ch
US20030070278A1 (en) Composite billet and method of manufacturing same for production of clad piping and tubing
US20110017339A1 (en) Method for rolled seamless clad pipes
CN112958626A (en) Sheath suitable for rolling TiAl alloy and preparation method thereof
US20110017807A1 (en) Method for rolled seamless clad pipes
JPH0375601B2 (en)
Behrens et al. Tailored Forming of hybrid bulk metal components
JPH01202A (en) Method for producing surface coated metal
JPH04365817A (en) Production of surface coated metal
EP1025919B1 (en) Method for producing multilayer thin-walled bellows
JPH02163306A (en) Manufacture of surface coating metal
JP2580099B2 (en) Hot isostatic pressing method
JPH0364405A (en) Manufacture of surface coated metal
US4714499A (en) Full length forging method for producing large section, large mass cylindrical sleeves of alloy 625
JPS63114954A (en) Manufacture of surface coated metal
JPH05287320A (en) Hot isostatic pressing method
JPH0361305A (en) Manufacture of surface-coated metal
JPH04350176A (en) Manufacture of surface coated metal
JPH0790329A (en) Manufacture of surface coating metal
JPH05295407A (en) Production of double pipe
JPH05237538A (en) Production of surface coated metal

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees