JPH0375260A - Production of high-temperature superconductor of oxide - Google Patents
Production of high-temperature superconductor of oxideInfo
- Publication number
- JPH0375260A JPH0375260A JP1211327A JP21132789A JPH0375260A JP H0375260 A JPH0375260 A JP H0375260A JP 1211327 A JP1211327 A JP 1211327A JP 21132789 A JP21132789 A JP 21132789A JP H0375260 A JPH0375260 A JP H0375260A
- Authority
- JP
- Japan
- Prior art keywords
- superconductor
- superconducting
- constituent elements
- container
- capillary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002887 superconductor Substances 0.000 title claims abstract description 41
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 19
- 239000000203 mixture Substances 0.000 claims abstract description 19
- 239000000470 constituent Substances 0.000 claims abstract description 9
- 239000007769 metal material Substances 0.000 claims abstract description 3
- 238000000034 method Methods 0.000 claims description 17
- 238000010438 heat treatment Methods 0.000 claims description 6
- 238000007789 sealing Methods 0.000 claims description 4
- 238000010304 firing Methods 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 13
- 239000007789 gas Substances 0.000 abstract description 11
- 239000010453 quartz Substances 0.000 abstract description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 8
- 229910052797 bismuth Inorganic materials 0.000 abstract description 2
- 239000002994 raw material Substances 0.000 abstract description 2
- 229910052716 thallium Inorganic materials 0.000 abstract description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract 1
- 229910052745 lead Inorganic materials 0.000 abstract 1
- 239000001301 oxygen Substances 0.000 abstract 1
- 229910052760 oxygen Inorganic materials 0.000 abstract 1
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 9
- 239000012071 phase Substances 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 230000002194 synthesizing effect Effects 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 4
- 239000013078 crystal Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005538 encapsulation Methods 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 238000003746 solid phase reaction Methods 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、酸化物高温超伝導体の製造方法に関する。特
に、揮発性の高い成分を構成元素中に有する酸化物高温
超伝導体の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing an oxide high temperature superconductor. In particular, the present invention relates to a method for producing an oxide high-temperature superconductor having a highly volatile component among its constituent elements.
[従来の技術及び発明が解決しようとする問題点]酸化
物超伝導体の合成法には、固相反応法、融液反応法、気
相反応法がある。筒便な方法として、固相反応法が用い
られる場合が多い、然し乍ら、揮発性成分、例えば、p
b%Tl、Biなどを含む超伝導体の合成では、焼結時
に、特性の成分即ち揮発性成分のみが揮発し、全体の組
成が化学量論組成からずれる場合が多かった。従って、
あらかじめ、揮発性成分を過剰に加え、大気中で合成す
る方法、又は真空封入法で合成されてきた。揮発性成分
を過剰に加えるだけでは、組成制御が囚備であるという
問題、また、揮発性成分が、Tlのように、有害物質で
ある場合、揮発性ガスの回収に特に注意する必要があっ
た。一方、真空封入法では、化学量論組成からの組成ず
れは、避けられるものの、超伝導体の特性が、合成時の
高真空、H8、Ar%N、などの雰囲気に大きく左右さ
れ、特に、減圧下では超伝導特性が劣化するという問題
があった。[Prior Art and Problems to be Solved by the Invention] Methods for synthesizing oxide superconductors include solid phase reaction methods, melt reaction methods, and gas phase reaction methods. As a convenient method, solid phase reaction methods are often used, however, volatile components, e.g.
In the synthesis of superconductors containing b% Tl, Bi, etc., only characteristic components, that is, volatile components, volatilize during sintering, and the overall composition often deviates from the stoichiometric composition. Therefore,
It has been synthesized by adding an excessive amount of volatile components in advance and synthesizing in the air, or by vacuum sealing. Simply adding an excessive amount of volatile components poses the problem of poor composition control, and when the volatile components are hazardous substances such as Tl, special attention must be paid to the recovery of volatile gases. Ta. On the other hand, in the vacuum encapsulation method, although deviations from the stoichiometric composition can be avoided, the properties of the superconductor are greatly affected by the high vacuum during synthesis, the atmosphere such as H8, Ar%N, etc. There was a problem that the superconducting properties deteriorated under reduced pressure.
従って、揮発性成分の揮発量を抑え、雰囲気ガスの調整
ができる方法が望まれてきた。Therefore, there has been a desire for a method that can suppress the amount of volatile components volatilized and adjust the atmospheric gas.
本発明は、上記のような技術的課題を解決するため、揮
発性成分の揮発を抑え、雰囲気ガスの調整を必要とする
超伝導体の製造法を提供することを目的にする。In order to solve the above-mentioned technical problems, the present invention aims to provide a method for manufacturing a superconductor that suppresses volatilization of volatile components and requires adjustment of atmospheric gas.
[発明の構成]
[問題点を解決するための手段]
本発明は、上記の技術的な課題の解決のために、構成元
素中に揮発性の高い成分を有する超伝導体の製造法にお
いて、構成元素よりなる混合体を成形した成形体を、該
成形体と反応を起こし難い金属材で、つつみ、更に、こ
のつつみを封入用筒状容器に入れ、この耐大筒状容器の
一方の端部を密閉し、その反対側の端部を毛細管状にし
、この耐大筒状容器を、ガスフロー可能な熱処理で焼成
することを特徴とする前記超伝導体の製造法を提供する
。[Structure of the Invention] [Means for Solving the Problems] In order to solve the above technical problems, the present invention provides a method for producing a superconductor having a highly volatile component among its constituent elements. A molded body obtained by molding a mixture of constituent elements is wrapped with a metal material that does not easily react with the molded body, and the wrapped body is placed in a cylindrical container for enclosure, and one end of the large cylindrical container is wrapped. The present invention provides a method for producing the superconductor, characterized in that the opposite end is made into a capillary shape, and this large cylindrical container is fired by heat treatment that allows gas flow.
本発明による超伝導体の製造方法によると、TIなどの
揮発性の高い元素を構成元素に含む超伝導材料を所望の
組成割合に混合し、所定の形状に成形し、その成形体を
、白金等の高温で超伝導材料と反応しない材料でつつん
で、それを、石英筒状体等の封入容器に入れる。この封
入容器は、・方の端部を密閉し、他方の端を毛細管状に
する。そして、超伝導成形体を、中に有するこのような
封入容器を、ガスフローの可能な熱処理手段により、熱
処理する。すると熱処理により、超伝導材料の組成のず
れがほとんどない超伝導体が、得られる。According to the method for manufacturing a superconductor according to the present invention, a superconducting material containing a highly volatile element such as TI as a constituent element is mixed in a desired composition ratio, molded into a predetermined shape, and the molded body is made of platinum. The superconducting material is wrapped in a material that does not react with the superconducting material at high temperatures, such as, and placed in an enclosure such as a quartz cylinder. This enclosure is sealed at one end and shaped like a capillary tube at the other end. Then, such a sealed container having the superconducting molded body therein is heat-treated by a heat-treating means capable of gas flow. Then, by heat treatment, a superconductor with almost no deviation in the composition of the superconducting material can be obtained.
ここで、高温で超伝導材料と反応し難い材料には、白金
の他に、金(Au)、銀(Ag)等の金属箔を用いるこ
とができる。Here, as the material that does not easily react with the superconducting material at high temperatures, metal foils such as gold (Au) and silver (Ag) can be used in addition to platinum.
また、以上の熱処理する手段は、ガスフローの可能な管
状炉等が好適な熱処理炉である。Further, as the above heat treatment means, a suitable heat treatment furnace is a tubular furnace or the like that allows gas flow.
更に、本発明の超伝導体の製法を、従来製法と比較して
、詳細に説明すると、以下のようである。Furthermore, the method for manufacturing a superconductor of the present invention will be explained in detail in comparison with a conventional manufacturing method as follows.
即ち、従来の超伝導体の合成方法では、揮発性成分によ
る組成のずれを抑えること、合成時の雰囲気ガスの調整
を同時に行なうことが困難であった。この対策としては
、従来、揮発性成分を過剰に加える方法又は真空封入法
が取られた。過剰に加える方法では、組成ずれを正確に
制御することが困難であり、真空封入法では、密閉容器
を用いるため、雰囲気の制御ができなかった。That is, in conventional methods for synthesizing superconductors, it is difficult to suppress deviations in composition due to volatile components and to simultaneously adjust atmospheric gas during synthesis. Conventionally, as a countermeasure against this problem, a method of adding an excessive amount of volatile components or a vacuum sealing method has been taken. With the method of adding too much, it is difficult to accurately control the composition deviation, and with the vacuum sealing method, the atmosphere cannot be controlled because a closed container is used.
これに対して、本発明に従うと、例えば、T l sO
s、B a Cu O@、Ca g Cu OsをTj
!:Ba:Ca:Cu−2:2:2:3の組成割合にな
るように配合した混合粉末を成形し、そのまま、第1U
gJA%Bに示すように、成形した試料1を白金容器2
に入れ、更に、石英管3に入れる。この石英管3は、一
方の端を封入し、他の一方の端は、図示のように、キャ
ピラリ(毛細管)状にしたものである。更に、この石英
管3を第1図Bに示すように、ガスフ0−6のある管状
電気炉5中に入れ、f#!素フロー6中で、905℃で
10分間焼結した。In contrast, according to the present invention, for example, T l sO
s, B a Cu O @, Ca g Cu Os Tj
! :Ba:Ca:Cu-2:2:2:3 mixed powder was molded, and as it was, the 1st U.
As shown in gJA%B, molded sample 1 is placed in platinum container 2.
and further into quartz tube 3. This quartz tube 3 has one end sealed and the other end shaped like a capillary as shown in the figure. Further, as shown in FIG. 1B, this quartz tube 3 is placed in a tubular electric furnace 5 equipped with gas valves 0-6, and f#! Sintering was performed at 905° C. for 10 minutes in elementary flow 6.
次に、従来の製法による超伝導体と、本発明の製法によ
る超伝導体について、得られる超伝導体の特性を比較す
るために、従来法による試料と本発明による試料の二つ
の試料のX線回折パターンを第2図(A)、CB)に示
す、第2図(A)は、従来法と同じように、単に真空封
入で合成した超伝導体試料のxa回折パターンを示し、
第2図(B)は、上記のように、本発明により合成した
超伝導体試料のX線回折パターンを示す。Next, in order to compare the properties of the superconductors obtained by the conventional manufacturing method and the superconductor by the manufacturing method of the present invention, two samples, one by the conventional method and the other by the present invention, were Linear diffraction patterns are shown in Figures 2 (A) and CB). Figure 2 (A) shows the xa diffraction pattern of a superconductor sample synthesized simply by vacuum encapsulation, as in the conventional method.
FIG. 2(B) shows the X-ray diffraction pattern of a superconductor sample synthesized according to the present invention, as described above.
更に、第3@は、以上の従来法による試料(A)と本発
明による試料(B)について、温度に対する抵抗率の変
化を測定した結果をグラフに表わしたものである。Furthermore, the third @ is a graph showing the results of measuring changes in resistivity with respect to temperature for the sample (A) obtained by the conventional method and the sample (B) according to the present invention.
第2図(A)から、従来の製法の開放形式では、超伝導
体の組成のずれが見られ、低Tc相(2212相)と、
高Tc相(2223相)の混在相が見られ、そして、1
10Kから電気抵抗値の低下を示し、零抵抗は得られて
いない。From Figure 2 (A), in the open format of the conventional manufacturing method, there is a deviation in the composition of the superconductor, with a low Tc phase (2212 phase),
A mixed phase of high Tc phase (2223 phase) was observed, and 1
The electrical resistance value decreased from 10K, and zero resistance was not obtained.
これに対して、本発明によるキャピラリ形式で製造され
た酸化物超伝導体では、第2図(B)に示すX線回折パ
ターンによる観察では、高い臨界温度の相の単一相が得
られ、また、第3図のグラフの曲a(B)に示すように
、その臨界温度も115にであった。On the other hand, in the oxide superconductor produced in the capillary format according to the present invention, a single phase with a high critical temperature is obtained as observed by the X-ray diffraction pattern shown in FIG. 2(B). Further, as shown in curve a(B) of the graph in FIG. 3, the critical temperature was also 115.
本発明による製造方法を用いると、酸化物高温超伝導体
の組成のずれが避けられ、再現性良く、所望の組成の超
伝導体を作成することができ、超伝導特性のすぐれた超
伝導試料の合成が可能となった。By using the production method according to the present invention, deviations in the composition of oxide high-temperature superconductors can be avoided, superconductors with desired compositions can be produced with good reproducibility, and superconducting samples with excellent superconducting properties can be produced. became possible to synthesize.
本発明は、Tl系超伝導体の合成に限定されるものでは
なく、揮発性元素を含有する超伝導体のすべての合成に
利用できるものである。The present invention is not limited to the synthesis of Tl-based superconductors, but can be used for all synthesis of superconductors containing volatile elements.
次に、本発明の酸化物超伝導体の作製方法を具体的に実
施例により説明するが、本発明はそれらによって限定さ
れるものではない。Next, the method for producing an oxide superconductor of the present invention will be specifically explained using Examples, but the present invention is not limited thereto.
[X厘必コ
Tl sos、B a O,C,u O,Carc u
Osの原料粉末を、元素割合で
Tj!:Ba:Ca:Cu−2:2:1:2.2:2:
2:3及び2:2:3:4の3種の組成配分の試料を作
成するように混合した後に、100 M p aの圧力
で加圧し、8−ΦX3111のプレットに成形した。こ
の成形プレットを白金カプセルに入れた後に、石英管に
入れ、−−Hの端を密閉し、他の端をキャピラリ状にし
た。これを管状炉5(第1図(AI、(B)参照)に入
れ、flHfガスフa−6中で、10分間焼成した。[
Os raw material powder in elemental proportions Tj! :Ba:Ca:Cu-2:2:1:2.2:2:
After mixing to prepare samples with three compositional distributions of 2:3 and 2:2:3:4, they were pressurized at a pressure of 100 MPa and formed into 8-ΦX3111 pellets. This molded pellet was placed in a platinum capsule and then placed in a quartz tube, the --H end was sealed, and the other end was made into a capillary shape. This was placed in a tubular furnace 5 (see FIG. 1 (AI, (B)) and fired for 10 minutes in a flHf gas furnace A-6.
以、Eのようにして得られた3種の酸化物超伝導焼結体
試料をX1m回折で観察した。その各々のX線回折パタ
ーンを、第4図(1)、■及び0)に示す。Hereinafter, the three types of oxide superconducting sintered body samples obtained as in E were observed by X1m diffraction. The respective X-ray diffraction patterns are shown in FIG. 4 (1), ■ and 0).
これらのX線回折パターンから、い11れも各々の単一
相が得られていることが分かる。From these X-ray diffraction patterns, it can be seen that each single phase was obtained in each case.
更に、この3種の酸化物超伝導体試料の臨界温度を測定
した。3種の超伝導体試料の臨界温度は、−1;記の順
に、100K、115K及び100にであった。この値
は、各々の単結晶試料作成で確認された臨界温度値とほ
ぼ等しいものであった。Furthermore, the critical temperatures of these three types of oxide superconductor samples were measured. The critical temperatures of the three superconductor samples were −1; 100 K, 115 K, and 100 K, in the order listed. This value was approximately equal to the critical temperature value confirmed in the preparation of each single crystal sample.
更に、allの試料のうらのTj!:Ba:Ca:Cu
−2:2:3:4の配分組成の超伝導体試料の結品#1
IT1ついては、透過型電子−顕微鏡で観察した。その
透過電子me鏡の写真を、
第5図(A)、(B’)、(C)に示す、第5閃(A)
、(B)、(C)は各々、[0丁0]、[1TO]及び
[3丁0]の面の電子線回折パターンを示す、第5図各
図から、得られた酸化物超伝導焼結体は、結晶性のすぐ
れた焼結体であることが明らかにされた。Furthermore, Tj! on the back of all samples! :Ba:Ca:Cu
- Superconductor sample #1 with distribution composition of -2:2:3:4
IT1 was observed using a transmission electron microscope. The photograph of the transmission electron mirror is shown in Figure 5 (A), (B'), and (C).
, (B), and (C) show the electron beam diffraction patterns of the [0-0], [1-0], and [3-0] planes, respectively. It was revealed that the sintered body had excellent crystallinity.
このように、組成のずれの見られない、超伝導特性のす
ぐれた超伝導試料が得られることが分かった。In this way, it was found that a superconducting sample with excellent superconducting properties without any deviation in composition could be obtained.
[発明の効果]
本発明の酸化物超伝導体の合成方法により、次のような
顕著な技術的効果が得られた。[Effects of the Invention] The method for synthesizing an oxide superconductor of the present invention provided the following remarkable technical effects.
第1に、従来の酸化物超伝導体作製法における超伝導材
料組成のずれがほとんど見られない酸化物超伝導体の作
製方法を提供できる。First, it is possible to provide a method for producing an oxide superconductor in which there is almost no deviation in superconducting material composition in conventional methods for producing an oxide superconductor.
第2に、即ち、構成元素の揮発を抑え、雰囲気制御を同
時に行なうことにより、超伝導特性のすぐれた超伝導体
試料を再現性良く合成する方法を提供する。Second, the present invention provides a method for synthesizing superconductor samples with excellent superconducting properties with good reproducibility by simultaneously suppressing volatilization of constituent elements and controlling the atmosphere.
第1図(A)、(B)は、本発明による酸化物高温超伝
導体の製造のための装置と熱処理法を示す模式断面図で
ある。
第2図(A>、(B)は、本発明による酸化物超伝導体
と比較例による超伝導体の各々のx111回折パターン
を示す。
第3図は、本発明による酸化物超伝導体と比較例によも
超伝導体の各々について、温度に対する電気抵抗率を測
定した結果を示すグラフである。
第4図(υ、■及び■は、本発明により製造された3種
の酸化物超伝導体の結晶性を観察したX線p11折パタ
ーンをとったものである。
第5図(A)、(B)、(C)は、本発明により製造さ
れた酸化物超伝導体の結晶構造を明らかにするためにそ
の各々に示す方向の結晶面について観察された透過電子
顕微鏡写真である。
〔主要部分の符号の説明〕
i 、、、、、、超伝導体試料
2 、、、、、、白金箔(反応しない材料による)つつ
み3 、、、、、、石英管(封入容器)
4 、、、、、、毛細管状端部FIGS. 1A and 1B are schematic cross-sectional views showing an apparatus and a heat treatment method for producing an oxide high-temperature superconductor according to the present invention. Figure 2 (A>, (B) shows the x111 diffraction patterns of the oxide superconductor according to the present invention and the superconductor according to the comparative example, respectively. Figure 3 shows the x111 diffraction patterns of the oxide superconductor according to the present invention and This is a graph showing the results of measuring the electrical resistivity versus temperature for each of the superconductors in Comparative Example. This is an X-ray p11 fold pattern obtained by observing the crystallinity of the conductor. Figures 5 (A), (B), and (C) show the crystal structure of the oxide superconductor produced according to the present invention. These are transmission electron micrographs taken of the crystal planes in the directions shown in each direction to clarify the following. [Explanation of symbols of main parts] , Platinum foil (made of non-reactive material) wrapping 3 , Quartz tube (enclosed container) 4 , Capillary end
Claims (1)
製造法において、 構成元素よりなる混合体を成形した成形体 を、該成形体と反応を起こし難い金属材でつつみ、更に
、このつつみを封入用筒状容器に入れ、この封入筒状容
器の一方の端部を密閉し、その反対側の端部を毛細管状
にし、この封入筒状容器を、ガスフロー可能な熱処理手
段で焼成することを特徴とする前記超伝導体の製造法。1. In a method for manufacturing a superconductor having a highly volatile component among its constituent elements, a molded body made of a mixture of the constituent elements is wrapped in a metal material that does not easily react with the molded body, and then this wrapping is further wrapped. Putting it in a cylindrical enclosure, sealing one end of the cylindrical enclosure, making the opposite end into a capillary shape, and firing the cylindrical enclosure with a heat treatment means that allows gas flow. A method for producing the superconductor, characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1211327A JPH07115923B2 (en) | 1989-08-18 | 1989-08-18 | Manufacturing method of oxide high temperature superconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1211327A JPH07115923B2 (en) | 1989-08-18 | 1989-08-18 | Manufacturing method of oxide high temperature superconductor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0375260A true JPH0375260A (en) | 1991-03-29 |
JPH07115923B2 JPH07115923B2 (en) | 1995-12-13 |
Family
ID=16604119
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1211327A Expired - Lifetime JPH07115923B2 (en) | 1989-08-18 | 1989-08-18 | Manufacturing method of oxide high temperature superconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07115923B2 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH029719A (en) * | 1988-03-08 | 1990-01-12 | Internatl Business Mach Corp <Ibm> | Superconductive material |
-
1989
- 1989-08-18 JP JP1211327A patent/JPH07115923B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH029719A (en) * | 1988-03-08 | 1990-01-12 | Internatl Business Mach Corp <Ibm> | Superconductive material |
Also Published As
Publication number | Publication date |
---|---|
JPH07115923B2 (en) | 1995-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Shao et al. | Synthesis of single-phase HgBa2Ca2Cu3O8+ δ superconductor | |
US5468566A (en) | Synthesis of highly phase pure BSCCO superconductors | |
US5376623A (en) | Method to enhance critical temperature of thallium-based superconductors | |
JPH0375260A (en) | Production of high-temperature superconductor of oxide | |
König et al. | Doped Tl-1223 Superconductors | |
JP2635704B2 (en) | Method for producing Bi-based oxide high-temperature superconductor | |
Xu et al. | Synthesis and thermal stabilization of nearly single-phase superconductor by Tl substitution | |
US5318745A (en) | Oxide superconductor and manufacturing method thereof via HIP and controlling the oxygen partial pressure | |
JP5916009B2 (en) | Whisker crystal of iron-based superconductor and manufacturing method thereof | |
Kumari et al. | On the synthesis and characterization of superconducting films prepared through spray pyrolysis | |
JP2689937B2 (en) | Method for producing mercury-based superconductor | |
JPH0238359A (en) | Production of superconductor | |
JPH04149060A (en) | Production of oxide superconductor | |
JPH0572721B2 (en) | ||
JPH0388724A (en) | Production of bismuth-containing oxide superconducting thin film | |
JPH0393664A (en) | Production of oxide superconductor | |
EP0436723B1 (en) | Oxide superconductor and method of producing the same | |
JP2821568B2 (en) | Method for producing superconducting whisker composite | |
Carter et al. | Solubility of calcium in lanthanum chromite | |
Amm et al. | The influence of metallic interfaces on the properties of superconductors | |
JPH03146417A (en) | Oxide superconductor | |
JPH02153823A (en) | Production of oxide superconductor | |
JPH0292827A (en) | Production of bi oxide superconductor | |
JPH02184507A (en) | Production of oxide superconducting material | |
JPH03131521A (en) | Oxide superconductor and production thereof |