JP2689937B2 - Method for producing mercury-based superconductor - Google Patents

Method for producing mercury-based superconductor

Info

Publication number
JP2689937B2
JP2689937B2 JP7023341A JP2334195A JP2689937B2 JP 2689937 B2 JP2689937 B2 JP 2689937B2 JP 7023341 A JP7023341 A JP 7023341A JP 2334195 A JP2334195 A JP 2334195A JP 2689937 B2 JP2689937 B2 JP 2689937B2
Authority
JP
Japan
Prior art keywords
mercury
based superconductor
producing
sintering
superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7023341A
Other languages
Japanese (ja)
Other versions
JPH08198625A (en
Inventor
隆志 眞子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7023341A priority Critical patent/JP2689937B2/en
Publication of JPH08198625A publication Critical patent/JPH08198625A/en
Application granted granted Critical
Publication of JP2689937B2 publication Critical patent/JP2689937B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、各種の超伝導応用装置
や超伝導素子に用いられる水銀系酸化物超伝導材料の製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a mercury-based oxide superconducting material used in various superconducting devices and superconducting devices.

【0002】[0002]

【従来の技術】金属、合金系超伝導体や化合物超伝導体
は、ジョセフソン素子や超伝導マグネット線材、磁気シ
ールド材料として、多く利用されている。これらの実用
化応用装置における冷却手段としては、現在なお液体ヘ
リウムが主流となっている。使用している超伝導材料の
超伝導転移温度(Tc)が上昇し、液体ヘリウムの代わ
りに安価な液体窒素や冷凍機が使えるようになれば、応
用装置の適用範囲が飛躍的に増えると期待されている。
2. Description of the Related Art Metal and alloy type superconductors and compound superconductors are widely used as Josephson devices, superconducting magnet wire rods and magnetic shield materials. Liquid helium is still the mainstream as the cooling means in these practical application devices. If the superconducting transition temperature (Tc) of the superconducting material being used rises and cheap liquid nitrogen or refrigerator can be used instead of liquid helium, it is expected that the applicable range of applied equipment will increase dramatically. Has been done.

【0003】1986年にLa−Ba−Cu−O系で高
温超伝導体が発見されて以来、銅酸化物系超伝導体が注
目を集め、多くの研究者により活発な研究活動が進めら
れ様々な酸化物超伝導体の発表が行われてきた。その中
でも、現在最も高いTcが報告されている材料は水銀系
と称せられる一群の銅酸化物材料である。したがって、
超伝導体の応用を考えるうえで、水銀系酸化物超伝導体
は最も重要な物質であるということができる。
Since the discovery of a high temperature superconductor in the La-Ba-Cu-O system in 1986, copper oxide superconductors have attracted attention, and many researchers have been actively conducting research activities. The announcement of various oxide superconductors has been made. Among them, the materials for which the highest Tc is currently reported are a group of copper oxide materials called mercury-based materials. Therefore,
It can be said that the mercury-based oxide superconductor is the most important substance in considering the application of the superconductor.

【0004】しかし、このように優れた特性を示す水銀
系超伝導体にも合成上の問題点がある。水銀系超伝導体
には、水銀に不定比性、すなわち化学量論組成から僅か
に水銀が欠損した化合物が存在すると考えられている。
このような僅かな欠損は結晶構造や相の安定性を大きく
変化させることはないが、電気的、磁気的性質には大き
な影響を与えるため、この物質の水銀欠損量の制御は実
用上非常に重要な技術である。
However, the mercury-based superconductor having such excellent characteristics also has a problem in synthesis. It is considered that a mercury-based superconductor has a non-stoichiometric ratio to mercury, that is, a compound having a slight mercury deficiency due to its stoichiometric composition.
Although such a slight defect does not significantly change the crystal structure or phase stability, it has a great influence on the electrical and magnetic properties, so controlling the amount of mercury deficiency in this substance is very practical. This is an important technology.

【0005】しかし、焼結体試料を合成する温度域(7
00℃以上)での水銀の蒸気圧は、非常に高いため、通
常の焼成炉での焼結では水銀の多くが試料から抜けてし
まうことは避けられず、最悪の場合にはすべての水銀が
抜けてしまって、目的とする相自体が全くできないこと
もある。そこで、これまでは、石英管等に試料を封入
し、封止切りの状態で焼結を行う方法が採用されてき
た。
However, the temperature range (7
Since the vapor pressure of mercury at temperatures above 00 ° C is extremely high, it is inevitable that most of the mercury will escape from the sample during sintering in a normal firing furnace, and in the worst case, all mercury will be removed. In some cases, the target phase itself cannot be achieved at all. Therefore, a method in which a sample is enclosed in a quartz tube or the like and sintering is performed in a sealed state has been used so far.

【0006】[0006]

【発明が解決しようとする課題】上述した封止切り状態
での合成方法では、一度に大量の試料を合成することが
難しいうえ、合成条件が温度だけで決まってしまうた
め、試料の質を向上させるための条件最適化の設定が困
難で、この方法でも水銀欠損を完全に抑えることはでき
なかった。
With the above-mentioned synthesis method in the sealed state, it is difficult to synthesize a large amount of samples at one time, and the synthesis conditions are determined only by the temperature, so the quality of the sample is improved. Since it is difficult to set the condition optimization to achieve this, it was not possible to completely suppress the mercury deficiency even by this method.

【0007】水銀欠損の対策として、水銀の蒸発を予め
考慮にいれ、目的組成よりも水銀を増やした原料から合
成を行う方法も考えられるが、できるものの組成に関す
る再現性に乏しく、制御も難しい。これらの従来技術で
は合成が水銀の蒸発に関する化学平衡から遠くかけ離れ
た条件で行われてきた。また、他の水銀欠損対策とし
て、気相中の水銀蒸気圧を高めることも考えられる。し
かし、毒性の強い水銀蒸気を高圧状態にして焼成を行う
ことは危険性が高く、採用が困難である。
As a measure against mercury deficiency, a method of considering the evaporation of mercury in advance and synthesizing it from a raw material in which the amount of mercury is larger than the target composition can be considered, but although it is possible, the reproducibility of the composition is poor and control is difficult. In these prior art techniques, synthesis has been carried out at conditions far away from the chemical equilibrium for mercury evaporation. Further, as another measure against mercury deficiency, it is possible to increase the mercury vapor pressure in the gas phase. However, it is difficult to adopt the method in which the highly toxic mercury vapor is fired under high pressure.

【0008】本発明は、このような状況に鑑みてなされ
たものであって、その目的は、水銀欠損の生じることの
ない、容易で大量生産に適した水銀系超伝導体の製造方
法を提供することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a method for producing a mercury-based superconductor which is free from mercury deficiency and suitable for mass production. To do.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本発明によれば、水銀酸化物を含む複数の酸化物の
混合物を焼結して超伝導体を合成する水銀系超伝導体の
製造方法において、焼結を酸素分圧を高めた容器内で行
うことを特徴とする方法、が提供される。
In order to achieve the above object, according to the present invention, there is provided a mercury-based superconductor for synthesizing a superconductor by sintering a mixture of a plurality of oxides including mercury oxide. In the manufacturing method, there is provided a method characterized in that the sintering is performed in a container having an increased oxygen partial pressure.

【0010】[0010]

【作用】本願発明の合成方法においては、高圧の酸素分
圧下において焼成が行われる。焼成時においては、水銀
酸化物は、 HgO(s)←→Hg(g)+(1/2)O2 (但し、sは固体、gは気体を示す) の平衡状態が成立しているものと考えられる。したがっ
て、酸素分圧が高圧な条件下では右辺への反応を抑える
ことができる。すなわち、本発明の方法により、水素抜
けの現象を抑えることができる。
In the synthesizing method of the present invention, firing is performed under a high oxygen partial pressure. At the time of firing, mercury oxide has an equilibrium state of HgO (s) ← → Hg (g) + (1/2) O 2 (where s is a solid and g is a gas). it is conceivable that. Therefore, the reaction to the right side can be suppressed under the condition that the oxygen partial pressure is high. That is, the phenomenon of hydrogen desorption can be suppressed by the method of the present invention.

【0011】また、この方法によれば、酸素分圧と焼成
温度とを制御することにより、微小な水銀欠損の管理を
行うことが可能になる。また、高圧の酸素分圧を付与す
ることは、例えばHIP(High Isostatic Press)装置
を用いることにより容易に実施することができる。した
がって、本発明によれば、高品質の水銀系超伝導体を簡
単な方法で大量に製造することが可能になる。
Further, according to this method, it is possible to control minute mercury deficiency by controlling the oxygen partial pressure and the firing temperature. Further, application of a high oxygen partial pressure can be easily performed by using, for example, a HIP (High Isostatic Press) device. Therefore, according to the present invention, it becomes possible to mass-produce a high-quality mercury-based superconductor by a simple method.

【0012】[0012]

【実施例】次に、本発明の実施例について図面を参照し
て説明する。 [第1の実施例]図1は本発明による試料合成の手順を
示す流れ図である。まず、水銀、バリウム、カルシウ
ム、銅の各酸化物HgO、BaO、CaO、CuOの粉
末を金属元素比で1:2:2:3になるように混合す
る。この混合物をプレス整形した後に金箔で包んでHI
P装置で焼結する。合成条件は、アルゴン:酸素=4:
1の比率の混合気体の雰囲気中で、全圧100〜100
0気圧(最適値:700気圧)、焼成温度700〜95
0℃(最適値:850℃)として、3時間の焼成を行っ
た。
Next, embodiments of the present invention will be described with reference to the drawings. [First Embodiment] FIG. 1 is a flow chart showing the procedure of sample synthesis according to the present invention. First, powders of HgO, BaO, CaO, and CuO oxides of mercury, barium, calcium, and copper are mixed in a metal element ratio of 1: 2: 2: 3. After press-molding this mixture, wrap it in gold foil and HI
Sinter with P equipment. The synthesis condition is argon: oxygen = 4:
In a mixed gas atmosphere having a ratio of 1, the total pressure is 100 to 100.
0 atm (optimum value: 700 atm), firing temperature 700-95
Firing was performed for 3 hours at 0 ° C (optimum value: 850 ° C).

【0013】合成された試料について、粉末x線回折法
(リートベルト解析法)による解析およびEPMA( E
lectron Probe Micro Analizer)による組成分析を行っ
たところ、得られた試料はHgBa2 Ca2 Cu3
8+d であり、不純物析出のない良質なものであることが
判明した。この試料は絶対温度137Kで鋭い超伝導転
移を示すことがわかった。
The synthesized sample was analyzed by powder x-ray diffraction method (Rietveld analysis method) and EPMA (E
lectron Probe Micro Analizer), the obtained sample was HgBa 2 Ca 2 Cu 3 O.
It was 8 + d , which proved to be a good quality with no precipitation of impurities. This sample was found to exhibit a sharp superconducting transition at an absolute temperature of 137K.

【0014】[第2の実施例]HgO、BaO、Ca
O、CuOをHg:Ba:Ca:Cu=1:2:1:2
になるように混合し、所定の形状にプレスした後、金箔
に包んでHIP装置にセットした。アルゴン:酸素=
4:1の比率で混合された混合ガスを全圧で500気圧
になるように調節しながら、800℃まで加熱し、3時
間焼成した。
[Second Embodiment] HgO, BaO, Ca
O and CuO in Hg: Ba: Ca: Cu = 1: 2: 1: 2
The mixture was mixed so as to form a mixture, pressed into a predetermined shape, wrapped in gold foil, and set in a HIP device. Argon: Oxygen =
The mixed gas mixed at a ratio of 4: 1 was heated to 800 ° C. and calcined for 3 hours while adjusting the total pressure to 500 atm.

【0015】得られた試料の粉末x線回折パターンで
は、HgBa2 CaCu26+d 以外の相からのピーク
は観測できずほぼ単一相が得られたことがわかった。ま
た、この試料は、抵抗測定において123Kの超伝導開
始温度(電気抵抗は下がり始める温度)と121Kのゼ
ロ抵抗温度(電気抵抗が完全に消失する温度)を持つ良
好な超伝導転移を示し、マイスナー効果による反磁性磁
化率の測定からもほぼ100%の超伝導体積分率が得ら
れた。これらのことは、Hgの蒸発に伴う不純物相の析
出や超伝導特性の劣化が起こっていないことを示してい
る。
In the powder x-ray diffraction pattern of the obtained sample, it was found that peaks from phases other than HgBa 2 CaCu 2 O 6 + d could not be observed and almost a single phase was obtained. In addition, this sample shows a good superconducting transition having a superconducting start temperature of 123 K (temperature at which electric resistance begins to decrease) and a zero resistance temperature of 121 K (temperature at which electric resistance completely disappears) in resistance measurement, and Meissner From the measurement of the diamagnetic susceptibility by the effect, a superconductor volume fraction of almost 100% was obtained. These facts indicate that the precipitation of the impurity phase and the deterioration of the superconducting properties due to the evaporation of Hg did not occur.

【0016】[比較例]比較のために、第2の実施例と
同一の混合比の材料を同じ温度で1気圧の酸素中で焼成
を行った。得られた試料について解析を行ったところ、
x線回折パターンにHgBa2 CaCu26+d 相から
のピークはほとんどなく、試料は超伝導性を示さない。
これは試料中からほとんど全ての水銀が蒸発してしまっ
たためであり、このことからも高い酸素圧がHgの蒸発
を抑えるのに有用であることがわかる。
[Comparative Example] For comparison, a material having the same mixing ratio as in the second example was fired at the same temperature in oxygen at 1 atm. When the obtained sample was analyzed,
The x-ray diffraction pattern has almost no peaks from the HgBa 2 CaCu 2 O 6 + d phase, and the sample does not show superconductivity.
This is because almost all of the mercury has evaporated from the sample, which also indicates that a high oxygen pressure is useful for suppressing the evaporation of Hg.

【0017】[第3の実施例]HgO、BaO、Ca
O、CuOを金属比でHg:Ba:Ca:Cu=1:
2:2:3になるように混合した。この混合物を所定の
形状にプレスした後、金箔に包んでステンレス製の耐圧
容器にいれた。内部に純酸素を9気圧で充填した後、密
閉し、電気炉で850℃に3時間加熱した。焼成時の内
部の酸素圧は35気圧と見積もられる。
[Third Embodiment] HgO, BaO, Ca
O and CuO are metal ratio Hg: Ba: Ca: Cu = 1: 1.
Mixed to be 2: 2: 3. After pressing this mixture into a predetermined shape, it was wrapped in a gold foil and put in a pressure-resistant container made of stainless steel. After filling the inside with pure oxygen at 9 atm, it was sealed and heated in an electric furnace at 850 ° C. for 3 hours. The internal oxygen pressure during firing is estimated to be 35 atm.

【0018】x線回折パターンより、得られた試料はH
gBa2 Ca2 Cu38+d であることが明らかになっ
た。この試料は135Kの超伝導開始温度と133Kの
ゼロ抵抗温度を示し、磁化率測定から見積もられる超伝
導体積分率もほぼ100%の良好な超伝導体であった。
From the x-ray diffraction pattern, the obtained sample was H
It was revealed to be gBa 2 Ca 2 Cu 3 O 8 + d . This sample was a good superconductor having a superconducting start temperature of 135K and a zero resistance temperature of 133K, and having a superconductor volume fraction estimated from magnetic susceptibility measurement of almost 100%.

【0019】[第4の実施例]HgO、BaO、CuO
を金属比でHg:Ba:Cu=1:2:1になるように
混合した。この混合物を所定の形状にプレスした後、金
箔に包んでHIP装置にセットした。アルゴン:酸素=
4:1の比率で混合された混合ガスを全圧で500気圧
になるように調節しながら、800℃まで加熱し、3時
間焼成した。
[Fourth Embodiment] HgO, BaO, CuO
Were mixed so that the metal ratio was Hg: Ba: Cu = 1: 2: 1. After pressing this mixture into a predetermined shape, it was wrapped in gold foil and set in a HIP device. Argon: Oxygen =
The mixed gas mixed at a ratio of 4: 1 was heated to 800 ° C. and calcined for 3 hours while adjusting the total pressure to 500 atm.

【0020】得られた試料の粉末x線回折パターンで
は、HgBa2 CuO4+d 以外の相からのピークは観測
できずほぼ単一相が得られたことがわかった。また、こ
の試料は、抵抗測定において92Kの超伝導開始温度と
90Kのゼロ抵抗温度を持つ良好な超伝導転移を示し、
マイスナー効果による反磁性磁化率の測定からもほぼ1
00%の超伝導体積分率が得られた。これらのことは、
Hgの蒸発に伴う不純物相の析出や超伝導特性の劣化が
起こっていないことを示している。
In the powder x-ray diffraction pattern of the obtained sample, it was found that peaks from phases other than HgBa 2 CuO 4 + d could not be observed and almost a single phase was obtained. Also, this sample shows a good superconducting transition with a superconducting onset temperature of 92K and a zero resistance temperature of 90K in resistance measurement,
Almost 1 from the measurement of diamagnetic susceptibility by the Meissner effect.
A superconductor volume fraction of 00% was obtained. These things are
It shows that the precipitation of the impurity phase and the deterioration of the superconducting properties due to the evaporation of Hg did not occur.

【0021】[0021]

【発明の効果】以上説明したように、本発明は、水銀系
超伝導体を酸素分圧比を高くした雰囲気中で合成するも
のであるので、本発明によれば、焼成時の試料中の水銀
蒸発を超伝導体が合成される範囲内で完全に抑えること
ができ、良好な超伝導特性を示す試料を一度に大量に得
ることができる。
As described above, according to the present invention, a mercury-based superconductor is synthesized in an atmosphere having a high oxygen partial pressure ratio. Therefore, according to the present invention, mercury in a sample during firing is Evaporation can be completely suppressed within the range where the superconductor is synthesized, and a large amount of samples exhibiting good superconducting properties can be obtained at one time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を説明するための流れ図。FIG. 1 is a flowchart for explaining an embodiment of the present invention.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水銀酸化物を含む複数の酸化物の混合物
を焼結して超伝導体を合成する水銀系超伝導体の製造方
法において、焼結を酸素分圧を高めた容器内で行うこと
を特徴とする水銀系超伝導体の製造方法。
1. In a method for producing a mercury-based superconductor, which comprises synthesizing a superconductor by sintering a mixture of a plurality of oxides including mercury oxide, the sintering is performed in a container having an increased oxygen partial pressure. A method for producing a mercury-based superconductor characterized by the above.
【請求項2】 酸素分圧が20気圧以上の雰囲気中で焼
結を行うことを特徴とする請求項1記載の水銀系超伝導
体の製造方法。
2. The method for producing a mercury-based superconductor according to claim 1, wherein sintering is performed in an atmosphere having an oxygen partial pressure of 20 atm or more.
【請求項3】 酸素と不活性ガスとの混合ガス雰囲気中
で焼結を行うことを特徴とする請求項1記載の水銀系超
伝導体の製造方法。
3. The method for producing a mercury-based superconductor according to claim 1, wherein sintering is performed in a mixed gas atmosphere of oxygen and an inert gas.
【請求項4】 ホット・イソスタティック・プレス装置
または密閉耐圧容器内で焼結を行うことを特徴とする請
求項1記載の水銀系超伝導体の製造方法。
4. The method for producing a mercury-based superconductor according to claim 1, wherein the sintering is performed in a hot isostatic press or a closed pressure-resistant container.
JP7023341A 1995-01-19 1995-01-19 Method for producing mercury-based superconductor Expired - Fee Related JP2689937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7023341A JP2689937B2 (en) 1995-01-19 1995-01-19 Method for producing mercury-based superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7023341A JP2689937B2 (en) 1995-01-19 1995-01-19 Method for producing mercury-based superconductor

Publications (2)

Publication Number Publication Date
JPH08198625A JPH08198625A (en) 1996-08-06
JP2689937B2 true JP2689937B2 (en) 1997-12-10

Family

ID=12107897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7023341A Expired - Fee Related JP2689937B2 (en) 1995-01-19 1995-01-19 Method for producing mercury-based superconductor

Country Status (1)

Country Link
JP (1) JP2689937B2 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JAN.J.APPL.PHYS VOL.32 (1993) PP.L1206−1207 PART2,NO.9A,1 SEPTEMBER 1993

Also Published As

Publication number Publication date
JPH08198625A (en) 1996-08-06

Similar Documents

Publication Publication Date Title
Shao et al. Synthesis of single-phase HgBa2Ca2Cu3O8+ δ superconductor
US5510323A (en) Tl1 (Ba1-x Sr8)2 Ca2 Cu3 Oy oxide superconductor and method of producing the same
US5376623A (en) Method to enhance critical temperature of thallium-based superconductors
Sastry et al. Synthesis and processing of (Hg, Pb) 1Ba2Ca2Cu3Oy superconductors
US5468566A (en) Synthesis of highly phase pure BSCCO superconductors
US5583093A (en) Metal oxide material with Ln, Sr, Cu, O, optionally Ca, and at least one of Fe, Co, Ti, V, Ge, Mo, and W
JP2689937B2 (en) Method for producing mercury-based superconductor
Sastry et al. Synthesis and processing of Bi-doped Hg1Ba2Ca2Cu3Oy superconductors
US5492885A (en) Mercury-thallium-barium-calcium-strontium-copper-oxide 1223 superconductor and method of making same
US5840659A (en) Method of preparing oxide superconductive material
JP3165770B2 (en) Manufacturing method of oxide superconductor
Giannini et al. Partial melting and HIP processing of Bi (2223): bulk and tapes
US5536705A (en) Superconductor with 1212 phase of Hg,Pb,Sr,Ba,Ca,Y,Cu oxide
JP2635704B2 (en) Method for producing Bi-based oxide high-temperature superconductor
Sastry et al. Attempts to fabricate thick HgPb1223 superconducting films on silver
US5371066A (en) Method for oxidizing precursor compounds of superconducting oxides
Wolters et al. Preparation of HgBaCaCuO polycrystals and silver sheathed tapes by a two-zone technique
KR100265031B1 (en) A na-intervened superconductors and their preparing method
KR0119192B1 (en) New high-tc superconductors and process for preparing them
JP2801806B2 (en) Metal oxide material
Podlesnyak et al. From SrCuO2 to Sr8Cu8O20− y: Why Are Superconducting Properties of Infinite-Layer Compounds so Poor?
JPS63176353A (en) Superconductive raw material
EP0436723A1 (en) Oxide superconductor and method of producing the same
KR100928553B1 (en) SUPERCONDUCTING COMPOSITIONS WITH HIGH Tc AND PROCESSES FOR PREPARING BULK MATERIALS COMPRISED OF THE SAME
JP2637617B2 (en) Manufacturing method of superconducting material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070829

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees