JPH0375248A - Grinding method for hydraulic material - Google Patents

Grinding method for hydraulic material

Info

Publication number
JPH0375248A
JPH0375248A JP7191489A JP7191489A JPH0375248A JP H0375248 A JPH0375248 A JP H0375248A JP 7191489 A JP7191489 A JP 7191489A JP 7191489 A JP7191489 A JP 7191489A JP H0375248 A JPH0375248 A JP H0375248A
Authority
JP
Japan
Prior art keywords
hydraulic
powder
particle size
granulated slag
size distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7191489A
Other languages
Japanese (ja)
Inventor
Eiji Oku
奥 栄二
Shigemori Tanaka
田中 茂守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP7191489A priority Critical patent/JPH0375248A/en
Publication of JPH0375248A publication Critical patent/JPH0375248A/en
Pending legal-status Critical Current

Links

Landscapes

  • Disintegrating Or Milling (AREA)
  • Crushing And Grinding (AREA)

Abstract

PURPOSE:To provide the title method intended to facilitate the quality control of hydraulic products, so designed that part of ground hydraulic powder is drawn to measure its size distribution, and the result is put to feedback to control the grinding conditions. CONSTITUTION:Part of hydraulic powder produced by continuously grinding a hydraulic material such as clinker or granulated slag is drawn either continuously or intermittently, distributed to a specified spread and irradiated with laser beams, and, from the intensity of the diffracted light, the size distribution is calculated. Thence, from the result, the production rate of the hydraulic powder with its size not larger than a specified value is determined, and this result is put to feedback to control grinding conditions so that said production rate fall within a specified range, thus accomplishing regulation of the production rate of said kind of powder.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は水硬性材料の粉砕方法に係り、詳しくはセメン
ト用タリンカー粉、高炉セメント用水砕スラグ粉等の水
硬性製品用水硬性粉末の製造に好適な水硬性材料の粉砕
方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method of pulverizing hydraulic materials, and more specifically, to the production of hydraulic powder for hydraulic products such as talinkar powder for cement and granulated slag powder for blast furnace cement. The present invention relates to a suitable method for crushing hydraulic materials.

〔従来の技術〕[Conventional technology]

水硬性粉末である各種セメント用りリンカー粉は石灰石
を主成分とするクリンカー用水硬性材料を粉砕して製造
するし、同じく水硬性粉末である高炉セメント用高炉ス
ラグ粉等の混合セメント用混合材粉は水砕スラグ等の混
合材用水硬性材料(潜在水硬性材料を含む、)を粉砕し
て製造する。
Various cement linker powders, which are hydraulic powders, are manufactured by crushing clinker hydraulic materials whose main component is limestone, and mixed cement powders, such as blast furnace slag powder for blast furnace cement, which are also hydraulic powders. is manufactured by crushing hydraulic materials for mixtures (including latent hydraulic materials) such as granulated slag.

ポルトランドセメントや高炉セメント等の水硬性製品の
水硬特性は、含まれているクリンカー粉、水砕スラグ粉
等の水硬性粉末の被粉砕の程度と密接に関連することが
知られている。(昭和42年1月30日セメント協会研
究所発行 昭和41年セメント技術年報XX)。
It is known that the hydraulic properties of hydraulic products such as Portland cement and blast furnace cement are closely related to the degree of pulverization of the hydraulic powders contained therein, such as clinker powder and granulated slag powder. (Cement Technology Annual Report XX, 1968, published by the Cement Association Research Institute on January 30, 1962).

そこで、各種セメント用りリンカー粉や高炉セメント用
水砕スラグ粉等の水硬性粉末を製造する際に、品質管理
の一環として、水硬性粉末の被粉砕の程度を調節するた
めに、被粉砕の程度の目安として、水硬性粉末のプレー
ン比表面積を測定してフィードバックすることが行われ
ている。
Therefore, when manufacturing hydraulic powders such as linker powder for various cements and granulated slag powder for blast furnace cement, as part of quality control, the degree of pulverization of the hydraulic powder is adjusted. As a guideline, the plain specific surface area of hydraulic powder is measured and fed back.

〔発明が解決しようとする!II!l)しかし、本発明
者が拭験したところ、例えば、水砕スラグ粉を含む水硬
性製品である高炉セメントの水硬特性とその水砕スラグ
粉のプレーン比表面積との間には、概略的な相関関係は
あるものの、ばらつきが大きく、高炉セメント用水砕ス
ラグ粉の品質管理において、水砕スラグ粉のブレーン比
表面積は、被粉砕の程度の目安としては十分とはいえな
かった。
[Invention tries to solve it! II! l) However, according to the inventor's experiments, for example, there is a general difference between the hydraulic properties of blast furnace cement, which is a hydraulic product containing granulated slag powder, and the plain specific surface area of the granulated slag powder. Although there is a strong correlation, there are large variations, and in quality control of granulated slag powder for blast furnace cement, the Blaine specific surface area of granulated slag powder cannot be said to be a sufficient indicator of the degree of pulverization.

また、クリンカー粉のブレーン比表面積とそのクリンカ
ー粉を含むセメントの水硬特性とについても同様の傾向
があったあった。
Further, there was a similar tendency regarding the Blaine specific surface area of clinker powder and the hydraulic properties of cement containing the clinker powder.

本発明の目的は水硬性製品の品質管理を容易にできる水
硬性材料の粉砕方法を提供することにある。また、水硬
性材料を粉砕して水硬性粉末を製造する際に、その水硬
性粉末を含む水硬性製品の水硬特性と密接に関連する、
水硬性粉末の物性を調節する水硬性材料の粉砕方法を提
供することにある。
An object of the present invention is to provide a method for pulverizing hydraulic materials that facilitates quality control of hydraulic products. In addition, when producing hydraulic powder by crushing hydraulic materials, it is necessary to
An object of the present invention is to provide a method for pulverizing a hydraulic material that adjusts the physical properties of a hydraulic powder.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者は上記のような課題を解決するため研究を行い
、水硬性材料である水砕スラグを粉砕する際に特定粒径
以下の水砕スラグ粉の生成割合を調節すれば、この水砕
スラグ粉を用いて高炉セメントを製造した際の水硬特性
を管理できることを見出し本発明を完成した。すなわち
、本発明は水硬性材料を連続的に粉砕して水硬性製品用
水硬性粉末を製造するにあたり、製造した水硬性粉末の
一部を連続的又は断続的に取り出して粒径分布を測定し
、測定結果を粉砕条件にフィードバックして粉砕条件を
wI御し、特定粒径以下の水硬性粉末の生成割合を特定
範囲に調節することを特徴とする水硬性材料の粉砕方法
である。
The present inventor conducted research to solve the above-mentioned problems, and found that by adjusting the production ratio of granulated slag powder with a specific particle size or less when pulverizing granulated slag, which is a hydraulic material, this granulated slag can be improved. The present invention was completed by discovering that hydraulic properties can be controlled when blast furnace cement is produced using slag powder. That is, the present invention involves continuously or intermittently taking out a part of the manufactured hydraulic powder to measure the particle size distribution when continuously pulverizing a hydraulic material to produce a hydraulic powder for hydraulic products. This method of pulverizing a hydraulic material is characterized in that the measurement results are fed back to the pulverizing conditions to control the pulverizing conditions, and the production ratio of hydraulic powder having a specific particle size or less is adjusted within a specific range.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明で用いる水硬性材料としては、タリンカー、石膏
及び石灰石等の水硬性を有する無機物質並びに水砕スラ
グ及びフライアッシュ等の潜在水硬性を有する無機物質
がある。
Hydraulic materials used in the present invention include inorganic materials that have hydraulic properties such as tallinker, gypsum, and limestone, and inorganic substances that have latent hydraulic properties such as granulated slag and fly ash.

水硬性材料を連続的に粉砕するためには、縦型ローラミ
ルやチェーブミル等の粉砕機を用いるが、縦型ローラミ
ルを用いると得られる水硬性粉末の粒径分布がシャープ
になるので被粉砕の程度を調節しやすい。
In order to continuously grind hydraulic materials, a grinder such as a vertical roller mill or a chave mill is used. However, when a vertical roller mill is used, the particle size distribution of the resulting hydraulic powder becomes sharper, so the degree of grinding is reduced. Easy to adjust.

次に、連続的に製造している水硬性粉末から粒径分布測
定用サンプルとして一部を連続的又は断続的に取り出す
ためにはスクリューサンプラー等のサンリング装置を用
いる。スクリューサンプラーは、周囲にねじ山状の突起
を備え且つ先端が水硬性粉末に接触する回転軸を有して
おり、咳回転軸を回転することにより水硬性粉末の一部
をねじ山状の突起により無差別に掻き出せる。また、水
硬性粉末を取り出さないときには、この回転軸を逆向き
に回転すれば、スクリューサンプラー内に水硬性粉末が
入ることを防げる。ねじ山状の突起により掻き出した水
硬性粉末は回転軸の回転に伴ってねじ山状の突起に沿っ
て後方に移動し水硬性粉末の製造及び搬送のサイクルか
ら取り出される、なお、サンプリング装置は、粉砕機の
被粉砕物質出口以降の被粉砕物質搬送工程に接続する。
Next, a sampling device such as a screw sampler is used to continuously or intermittently take out a portion of the continuously produced hydraulic powder as a sample for particle size distribution measurement. The screw sampler has a rotating shaft with thread-like protrusions around its periphery and a tip that contacts the hydraulic powder, and by rotating the rotating shaft, a part of the hydraulic powder is transferred to the thread-like protrusions. It can be scraped out indiscriminately. Further, when the hydraulic powder is not taken out, by rotating this rotating shaft in the opposite direction, it is possible to prevent the hydraulic powder from entering the screw sampler. The hydraulic powder scraped out by the thread-like protrusion moves backward along the thread-like protrusion as the rotating shaft rotates, and is taken out from the hydraulic powder production and transportation cycle. Connected to the material conveyance process after the material outlet of the crusher.

水硬性粉末の粒径分布は、一定の広さの空間に分散した
一定量のサンプルにレーザーを照射して、回折光の強度
から粒径分布を算出するレーザー弐粒径分布測定装置を
用いて測定できる。このレーザー弐粒径分布測定装置を
用いるときには、サンプリング装置によって取り出した
水硬性粉末から、一定量を量りとるための工程が必要で
あるが、定量フィーダーを用いれば容易にできる。また
、粒径分布を連続的に測定することは、取り出したサン
プル用水硬性粉末の流量を一定に保ちながら連続的に粒
径分布測定装置に供給することにより可能である。
The particle size distribution of hydraulic powder is measured using a laser particle size distribution measurement device that irradiates a certain amount of sample dispersed in a certain area with a laser and calculates the particle size distribution from the intensity of the diffracted light. Can be measured. When using this laser particle size distribution measuring device, a step is required to measure out a fixed amount from the hydraulic powder taken out by the sampling device, but this can be easily done by using a quantitative feeder. Furthermore, the particle size distribution can be continuously measured by continuously supplying the sample hydraulic powder taken out to the particle size distribution measuring device while keeping the flow rate constant.

本発明では測定した粒径分布から特定粒径以下の水硬性
粉末の生成割合を求め、この生成割合が特定範囲の値に
なるように粉砕条件を制御する。
In the present invention, the production ratio of hydraulic powder having a specific particle size or less is determined from the measured particle size distribution, and the grinding conditions are controlled so that this production ratio falls within a specific range.

例えば、粉砕機として縦型ローラミルを用いる場合には
、被粉砕物をミル内で分級するセパレーターの回転速度
、ローラの加圧力の大きさ及び原料の投入速度等を制御
することにより、被粉砕物の特定粒径以下のものの生成
割合を調節できる0例えば、被粉砕物の特定粒径以下の
ものの生成割合を大きくすることは、セパレーターの回
転速度を大きくすること、ローラーの加圧力を大きくす
ること又は原料の投入速度を小さくすることにより可能
である。
For example, when using a vertical roller mill as a pulverizer, the rotation speed of the separator that classifies the pulverized material within the mill, the magnitude of the pressing force of the rollers, the input speed of raw materials, etc. can be controlled to For example, increasing the generation rate of particles with a specific particle size or less in the material to be crushed can be achieved by increasing the rotational speed of the separator or increasing the pressure applied by the rollers. Alternatively, this can be done by reducing the raw material input speed.

本発明において、例えば、本発明で高炉セメント用の水
砕スラグ粉を製造するにあたり、粒径16μm以下の水
砕スラグ粉の生成割合を調節すると、この水砕スラグ粉
を原料として用いた高炉全1フ18種のモルタル圧縮強
さを管理できる。また、粒径6μm以下のものの生成割
合を調節すると、高炉セメン)B種の水和熱を管理でき
る。参考までに、本発明の粉砕方法で製造した水砕スラ
グ粉の粒径16μm以下の生成割合と高炉全1フ18種
の材令28日モルタル圧縮強さとの関係を表すグラフを
第1図に示す、また、粒径6μm以下の生成割合と高炉
セメン)B種の材令7日水和熱との関係を表すグラフを
第2図に示す、それぞれの相関係数は0.990及び0
.948であり、ばらつきが極めて小さかった。一方、
水砕スラグ粉のブレーン比表面積と高炉全1フ18種の
材令28日モルタル圧縮強さとの間の相関係数は0.9
11であり、ばらつきが大きかった。ただし、高炉全1
フ18種の製造にあたっては、クリカー粉として同一の
粒径分布を有し、ブレーン比表面積が3600aJ/g
であるものを用い、クリンカー粉と水砕スラグ粉の配合
割合は1重量部対1重量部とし、高炉上メン)8種中の
二酸化硫黄含有量が2.0%となる量の石膏を配合した
。また、モルタル圧縮強さ及び水和熱の測定はJIS5
201及びJIS5203に準じて行った。
In the present invention, for example, when producing granulated slag powder for blast furnace cement in the present invention, if the production ratio of granulated slag powder with a particle size of 16 μm or less is adjusted, the whole blast furnace using this granulated slag powder as a raw material can be Can manage 18 types of mortar compressive strength in one frame. In addition, by adjusting the production ratio of particles with a particle size of 6 μm or less, the heat of hydration of blast furnace cement) B type can be controlled. For reference, Figure 1 shows a graph showing the relationship between the proportion of granulated slag powder with a particle size of 16 μm or less produced by the crushing method of the present invention and the compressive strength of 28-day mortar for all 18 types of blast furnaces. Figure 2 shows a graph showing the relationship between the production ratio of particles with a particle size of 6 μm or less and the heat of hydration at the age of 7 days for B type blast furnace cement.The respective correlation coefficients are 0.990 and 0.
.. 948, and the variation was extremely small. on the other hand,
The correlation coefficient between the Blaine specific surface area of granulated slag powder and the 28-day mortar compressive strength of all 18 types of blast furnace furnaces is 0.9.
11, and there was a large variation. However, all blast furnaces
In the production of 18 types of flour, it has the same particle size distribution as clicker powder and a Blaine specific surface area of 3600aJ/g.
The mixing ratio of clinker powder and granulated slag powder was 1 part by weight to 1 part by weight, and an amount of gypsum was added so that the sulfur dioxide content of the 8 types of blast furnace tops was 2.0%. did. In addition, the measurement of mortar compressive strength and heat of hydration is JIS5
201 and JIS5203.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、水砕スラグ等の水硬性材料を粉砕して
水硬性製品用水硬性粉末を製造するにあたって、水硬性
製品の水硬特性との相関関係の大きい特定粒径以下もの
の生成割合を!I節するので、水硬性製品の品質管理を
容易にできる。
According to the present invention, when producing hydraulic powder for hydraulic products by pulverizing hydraulic materials such as granulated slag, the production rate of particles with a specific particle size or smaller, which has a large correlation with the hydraulic properties of hydraulic products, can be reduced. ! Section I, making it easy to control the quality of hydraulic products.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、粒径16μm以下の水砕スラグ粉の生成割合
と高炉全1フ18種の材令28日モルタル圧縮強度との
関係を表すグラフであり、第2図は粒径6μm以下の水
砕スラグ粉の生成割合と高炉セメン)B種の材令7日水
相熱との関係を表すグラフである。
Figure 1 is a graph showing the relationship between the production rate of granulated slag powder with a particle size of 16 μm or less and the compressive strength of 28-day mortar for all 18 types of blast furnaces. It is a graph showing the relationship between the production ratio of granulated slag powder and the 7-day water phase heat of blast furnace cement) B type material.

Claims (1)

【特許請求の範囲】[Claims] 1、水硬性材料を連続的に粉砕して水硬性製品用水硬性
粉末を製造するにあたり、製造した水硬性粉末の一部を
連続的又は断続的に取り出して粒径分布を測定し、測定
結果を粉砕条件にフィードバックして粉砕条件を制御し
、特定粒径以下の水硬性粉末の生成割合を特定範囲に調
節することを特徴とする水硬性材料の粉砕方法。
1. When manufacturing hydraulic powder for hydraulic products by continuously crushing hydraulic materials, a part of the manufactured hydraulic powder is continuously or intermittently taken out, the particle size distribution is measured, and the measurement results are reported. A method for pulverizing a hydraulic material, characterized by controlling the pulverizing conditions by feeding back to the pulverizing conditions, and adjusting the generation ratio of hydraulic powder having a specific particle size or less within a specific range.
JP7191489A 1989-03-27 1989-03-27 Grinding method for hydraulic material Pending JPH0375248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7191489A JPH0375248A (en) 1989-03-27 1989-03-27 Grinding method for hydraulic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7191489A JPH0375248A (en) 1989-03-27 1989-03-27 Grinding method for hydraulic material

Publications (1)

Publication Number Publication Date
JPH0375248A true JPH0375248A (en) 1991-03-29

Family

ID=13474282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7191489A Pending JPH0375248A (en) 1989-03-27 1989-03-27 Grinding method for hydraulic material

Country Status (1)

Country Link
JP (1) JPH0375248A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008184341A (en) * 2007-01-29 2008-08-14 Takuma Co Ltd Method and apparatus for regulating particle size of water-granulated slag
JP2012206921A (en) * 2011-03-30 2012-10-25 Ube Industries Ltd Cement manufacturing device
JP2013029323A (en) * 2011-07-26 2013-02-07 Fuji Electric Co Ltd Pharmaceutical manufacturing control device, pharmaceutical manufacturing control method, pharmaceutical manufacturing control program and pharmaceutical manufacturing system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008184341A (en) * 2007-01-29 2008-08-14 Takuma Co Ltd Method and apparatus for regulating particle size of water-granulated slag
JP2012206921A (en) * 2011-03-30 2012-10-25 Ube Industries Ltd Cement manufacturing device
JP2013029323A (en) * 2011-07-26 2013-02-07 Fuji Electric Co Ltd Pharmaceutical manufacturing control device, pharmaceutical manufacturing control method, pharmaceutical manufacturing control program and pharmaceutical manufacturing system

Similar Documents

Publication Publication Date Title
Öner A study of intergrinding and separate grinding of blast furnace slag cement
US9067824B1 (en) Modification of pozzolanic chemistry through blending
US20220106227A1 (en) Modification of properties of pozzolanic materials through blending
Hosten et al. An industrial comparative study of cement clinker grinding systems regarding the specific energy consumption and cement properties
Mucsi et al. Mechanical activation of cement in stirred media mill
GB2138319A (en) A method and plant for the grinding together of two or more brittle substances with different grindability
NO163223B (en) PROCEDURE FOR PREPARING A DRY CEMENT MIXTURE.
Ipek The effects of grinding media shape on breakage rate
Hosten et al. Grindability of mixtures of cement clinker and trass
KR870000105A (en) 2-stage grinding method and apparatus
JPH0375248A (en) Grinding method for hydraulic material
JPH05147984A (en) Production of high strength cement
US5201471A (en) Method for operating a rod mill to obtain uniform product slurry
JP3715995B2 (en) Cement manufacturing method
Zunino et al. Processing of calcined clays for applications in cementitious materials: the use of grinding aids and particle classification after grinding
JPS5521581A (en) Method of manufacturing material for sintered mineral
JPH0351665B2 (en)
US20040134387A1 (en) Additives for the building industry obtained from plant by-products or waste and manufacturing process thereof
RU2013131C1 (en) Method of preparation of cast hardening insertion in ball mill
KR910010093B1 (en) Method for controlling of the particle size for sintering coke dust
Rebmann et al. Influence of Aggregate Particle Size Distribution on Mixing Behavior and Rheological Properties of Low-Binder Concrete
JPH07256139A (en) Crushing control method
JPH03236407A (en) Method and device for controlling pulverization of reduced iron powder for powder metallurgy
Feliks et al. Study on vibratory crushing and granulation of limestone
JP2775486B2 (en) Cement clinker grinding method