JP3715995B2 - Cement manufacturing method - Google Patents

Cement manufacturing method Download PDF

Info

Publication number
JP3715995B2
JP3715995B2 JP09043594A JP9043594A JP3715995B2 JP 3715995 B2 JP3715995 B2 JP 3715995B2 JP 09043594 A JP09043594 A JP 09043594A JP 9043594 A JP9043594 A JP 9043594A JP 3715995 B2 JP3715995 B2 JP 3715995B2
Authority
JP
Japan
Prior art keywords
clinker
pulverization
property
particle size
conditions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09043594A
Other languages
Japanese (ja)
Other versions
JPH07267699A (en
Inventor
健一 長野
光弘 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP09043594A priority Critical patent/JP3715995B2/en
Publication of JPH07267699A publication Critical patent/JPH07267699A/en
Application granted granted Critical
Publication of JP3715995B2 publication Critical patent/JP3715995B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、セメントの製造方法に関する。
【0002】
【従来の技術】
セメントの製造において、粉砕の果たす役割は極めて大きく、例えば、セメント仕上げ工程でのクリンカ粉砕に必要な電力費は製造直接比のかなりの部分を占め、これの低減は大きな課題の一つである。このため粉砕機や分級機等に種々の改良が加えられ、かなりの成果を上げてきている。
【0003】
一方、セメントクリカの被粉砕性は、原料条件(鉱物、化学成分、細かさ)、焼成条件、冷却条件などによって、生成するクリンカの性状(空隙の量と分布、ガラス相量、鉱物組成、鉱物の形態、大きさ、結晶構造等)が一様でなく、同じクリンカでもかなり変動するものである。このクリンカの被粉砕性を的確に測定し、易粉砕性のクリンカを焼成するための的確な原料条件や焼成条件等を定めることができれば、消費電力の低減に大きく寄与することができる。
【0004】
従来、砕料の被粉砕性を示すものとして、粉砕しやすさを尺度とするもの(粉砕能)と粉砕しにくさを尺度とするもの(粉砕抵抗)があり、種々の方法が提案されている。代表的なものにボンド(Bond)の粉砕仕事指数があり、その詳細な試験方法がJIS、M4002に規定されている。この粉砕仕事指数は、所定細かさまでの粉砕に要する粉砕仕事量を測定することによって得られる砕料の粉砕抵抗を表すもので、粉砕回路設計の基礎として広く利用されているほか、現場粉砕機の操業実績から、計算式により粉砕仕事指数を算出し、試験ミルでの実測値との差が、現場粉砕機の機械効率の差を表すものとして現場粉砕機の操業指針として利用されている。
【0005】
【発明が解決しようとする課題】
上述するように、粉砕仕事指数は、実用上の価値が大きいものであるが、実際の現場プロセスにおいては、粉砕仕事指数で評価した被粉砕性を前述したセメントクリンカの性状と対応づけ、易粉砕性のクリンカを焼成するための的確な原料条件や焼成条件等を定めるなどのアクションに結付けることができないものであり、これを直接的な電力低減に活用することができなかった。
【0006】
又、粉砕仕事指数は、煩雑な実験条件に加え、かなりの労力と時間、及び多量の砕料を用いて測定しなければならないこともあり、これを簡略化すると共に、実プラントにおける所望製品粒度に対応した被粉砕性を示す指数もいくらか提案されている。例えば、セメントクリンカの被粉砕性は、クリンカを一定時間、同一条件で粉砕した後のブレーン値(比表面積)や、所定ブレーン値を得るために必要な消費エネルギーを被粉砕性指数として表しているが、いずれも、所望製品粒度に対応するブレーン値まで一挙にクリンカを粉砕して被粉砕性を評価しており、基本的には、前記ボンドの粉砕仕事指数と同様であり、これを電力低減に活用することができない。
【0007】
この発明の目的は、上記事情に鑑み、クリンカの被粉砕性を的確に評価し、この評価に基いて、クリンカの被粉砕性を改善し、セメント仕上工程での粉砕の原価低減を可能とするセメントの製造方法を提供することにある。
【0008】
上述の問題を解決するために、この発明のセメント製造方法によれば、キルン下流側からクリンカを採取し、該クリンカの被粉砕性を被粗砕性と被微粉砕性に分けてそれぞれ個別評価することにより、被粗砕性若しくは被微粉砕性のいずれか劣るほうを改善すべく、クリンカを焼成するための原料条件または焼成条件を調整してクリンカのフリーライム量および/または容重を制御すること(請求項1)、キルン下流側からクリンカを採取し、該クリンカを被粗砕性評価のためのクリンカと、該被粗砕性評価クリンカよりも細かい被微粉砕性評価のためのクリンカに粒度調整して、それぞれ所定条件で粉砕試験を実施するとともに粉砕したクリンカの粒度特性を測定し、該粒度特性に基づいて前記クリンカの被粉砕性を被粗砕性と被微粉砕性に分けてそれぞれ個別評価することにより、被粗砕性若しくは被微粉砕性のいずれか劣るほうを改善すべく、クリンカを焼成するための原料条件または焼成条件を調整してクリンカのフリーライム量および/または容重を制御すること(請求項2)を特徴とする。
【0009】
【作用】
クリンカの被粉砕性を評価するに当り、クリンカを粗粉砕域及び微粉砕域において、所定条件で粉砕試験をし、それぞれの領域でのクリンカの被粉砕性、即ち、被粗砕性と被微粉砕性を求める。クリンカの被粉砕性は、粗粉砕域と微粉砕域では相反する現象を示し、求めた被粗砕性と被微粉砕性をそれぞれ個別評価することにより、セメントキルンの操作条件を適切に制御し、クリンカの被粉砕性の改善に結付けることができる。
【0010】
【実施例】
以下、この発明の実施例を説明する。図1において、石灰石、粘土、珪石、鉄原料等が調合されたセメント原料10は、サスペンションプレヒータ(SP、NSP)付キルン、クーラ等を備えた焼成工程20で中間製品30としてのセメントクリンカが生成され、ついで、粉砕機、分級機等を備えたセメント仕上工程40で石膏等を加えて粉砕調整され、最終製品50として出荷される。このような一般的なセメント製造設備において、焼成工程20におけるキルン下流側、すなわち、仕上工程40の上流側で、砕料としてセメントクリンカ1が採取され、後述するようにクリンカ1の被粉砕性を被粗砕性と被微粉砕性に分けてそれぞれ個別評価60する。このクリンカ1の被粉砕性評価60に基いて矢印Aで示すように、焼成工程20におけるキルンを制御、例えば、キルンバーナの燃料量、空気量、キルン回転数及びキルン内通風量等を制御する。こうして焼成工程20で被粗砕性若しくは被微粉砕性に優れたクリンカ1を生成し、後段の仕上工程40での粉砕の原価低減を可能とする。
【0011】
次に、クリンカ1の被粉砕性評価60の詳細を図2に基いて説明する。現場粉砕機入口等から採取されるセメントクリンカ1は、被粗砕性試験2及び被微粉砕性試験3に供される。被粗砕性試験2及び被微粉砕性試験3では、それぞれ粒度調整手段4a、4b、秤量手段5a、5b、粉砕手段6a、6b及び粉砕したクリンカの粒度特性測定手段7a、7bからなる試験設備を備え、評価部8でクリンカの粒度特性から被粗砕性と被微粉砕性をそれぞれ個別評価する。
【0012】
粒度調整手段4a、4bは、粉砕手段6a、6bでの最も好ましいクリンカの粉砕開始時粒度を調整して、被粗砕性試験2及び被微粉砕性試験3を効果的にしかも試験誤差を極力少なくするための条件設定をするもので、ジョークラッシャーやロールクラッシャー等の粉砕機と篩設備からなる。粒度調整手段4a、4bで所定粒度に調整された被粗砕性評価及び被微粉砕性評価クリンカは、秤量手段5a、5bで一定量が秤量され、粉砕手段6a、6bに供給される。粉砕手段6a、6bは、好ましくは回分式ボールミルが用いられ、それぞれ粗粉砕域及び微粉砕域で、前記秤量されたクリンカを所定時間又は所定回数粉砕して、測定手段7a、7bで所定の篩目通過分やブレーン比表面積等の粒度特性を測定する。評価部8では、この粒度特性とあらかじめ測定した基準試料の粒度特性を比較することにより、クリンカの被粗砕性と被微粉砕性をそれぞれ個別評価する。尚、試験設備は被粗砕性試験2及び被微粉砕性試験3で共用、例えば、粉砕手段6a、6bは、同一の回分式ボールミルで共用しても良い。
【0013】
前述したクリンカの粉砕開始時粒度や粉砕条件は、実際の現場粉砕機の入口粒度や出口粒度等の実績を考慮して定める。例えば、クリンカ粉砕で汎用されている2室式ボールミルと分級機による閉回路粉砕において、分級機出口の製品粒度をブレーン比表面積3000〜3300cm/g程度、ボールミル第1室の粉砕を被粗砕性、第2室の粉砕を被微粉砕性と想定し、所定の試験条件を定める。すなわち、被粗砕性評価クリンカはボールミル第1室と同程度の粉砕を想定し、粒度調整手段4aで粉砕開始時粒度を20mm以下、好ましくは10mm以下に調整すると共に、粉砕終了時粒度をブレーン比表面積1500cm/g程度以下、好ましくは500〜1000cm/g程度になるように、粉砕時間又は粉砕回数を定める。
【0014】
被微粉砕性評価クリンカは、粉砕開始時粒度を2mm以下、好ましくは1.5mm以下に調整すると共に、粉砕終了時粒度をブレーン比表面積1500cm/g程度以上、好ましくは1600〜2200cm/g程度になるように、粉砕手段6aでの粉砕時間又は粉砕回数を定める。又、粉砕開始時粒度を2mm以下、好ましくは1.5mm以下に調整したクリンカと前記被粗砕性試験2で粉砕したブレーン比表面積500〜1000cm/g程度のクリンカを混合調整して被微粉砕性評価クリンカとすると、被粗砕性の影響を極力排除する事ができる。尚、当然のことながら、粉砕終了時粒度は、被粉砕性に応じて大幅に変動するものであり、一応の目安として定めればよく、更に、現場分級機出口の所望製品粒度と対応して種々設定することも可能である。
【0015】
次に、回分式テストボールミル(径400mm×長さ450mm、回転数57rpm、ボール充填率32.6%、ボール径50〜17mm)を用いて、表1に示す条件によりセメントクリンカの被粉砕性試験を行った。セメントクリンカは、異なる粉砕方式(A;予備粉砕機付ボールミル、B;ボールミル、C;予備粉砕機付ボールミル)を有するセメント3工場の現場粉砕機入口で採取して被粉砕性試験に供する一方、セメントクリンカ採取時における実操業データとして現場粉砕機の電力原単位を測定した。電力原単位とブレーン比表面積若しくは0.6mm篩目通過分の関係を図3〜図5に示す。尚、被粗砕性試験及び被微粉砕性試験は、2室式現場ボールミルと分級機からなる閉回路粉砕における第1室(被粗砕性)及び第2室(被微粉砕)でのクリンカ粉砕を想定して条件を定めた。
【0016】
【表1】

Figure 0003715995
【0017】
図3は、従来型の所望製品粒度に対応するブレーン値まで一挙にクリンカを粉砕して被粉砕性を評価する場合を示す。図3に示すように、被粉砕性指数として表したブレーン比表面積が高くなる(被粉砕性が良くなる)と、いずれの工場(A、B、C)も各現場粉砕機の電力原単位は低減しており、セメントクリンカそのものの被粉砕性は一応評価できる。
【0018】
これに対し、ボールミル第1室での粉砕を想定した被粗砕性試験では、図4に示すように、被粉砕性指数として表した0.6mm篩目通過分が高くなる(被粗砕性が良くなる)と、工場A、Bにおける現場粉砕機の電力原単位は低減するものの、工場Cでは上昇している。また、ボールミル第2室での粉砕を想定した被微粉砕性試験では、図5に示すように、被粉砕性指数として表したブレーン比表面積が高くなる(被微粉砕性が良くなる)と、被粗砕性試験結果とは逆に、工場A、Bにおける現場粉砕機の電力原単位は上昇し、工場Cでは低減している。
【0019】
図6は、被微粉砕性試験におけるブレーン比表面積と被粗砕性試験の0.6mm篩目通過分の関係を示したもので、被粗砕性試験で良く粉砕されるセメントクリンカは、被微粉砕性試験では粉砕されにくく、クリンカの被粗砕性と被微粉砕性は相反することが分かる。
【0020】
この様に、セメントクリンカの被粉砕性は、各セメント工場で異なることは無論、同一工場においても大きく変動し、しかも、被粗砕性と被微粉砕性とは相反する上、現場粉砕機の粉砕方式により、被粗砕性と被微粉砕性の対応関係も異なる。従って、前記図3に示す従来の被粉砕性評価方法では、セメントクリンカそのものの被粉砕性は一応評価できるものの、この評価に対応して、例えば、易粉砕性のクリンカを焼成するための的確な原料条件や焼成条件を定めるなどの現場アクションに結付けることができない。
【0021】
一方、この発明では、クリンカの被粗砕性と被微粉砕性を個別評価することにより、現場粉砕機の粉砕方式に応じて現場アクションに結付けることができる。例えば前記図4及び図5において、工場A、Bでは、クリンカの被粗砕性や現場粉砕機の粗砕能力の改善により、また工場Cでは、クリンカの被微粉砕性や、現場粉砕機の微粉砕能力の改善を行うこと等により、消費電力の低減に大きく貢献する現場アクションに結付けることができる。
【0022】
具体的なクリンカの被粗砕性や被微粉砕性の改善策としては、前述した原料条件(鉱物、化学成分、細かさ)、焼成条件、冷却条件等によって、生成するクリンカの性状(空隙の量と分布、ガラス相量、鉱物組成、鉱物の形態、大きさ、結晶構造等)が異なることを考慮し、これらクリンカの性状と被粗砕性及び被微粉砕性との対応関係を予め求めておくことにより、容易に現場アクションに結付けることができる。中でも種々検討した結果、クリンカのフリーライム量及び容重は、被粗砕性や被微粉砕性と良く対応し、しかもフリーライム量及び容重は、クリンカの品質分析項目として広く採用されており、そのコントロールが容易なこともあり、これを現場アクションに結付けることが好ましい。
【0023】
すなわち、被粗砕性に優れたクリンカは、比較的低容重、高フリーライムであり、被微粉砕性に優れたクリンカは、逆に、比較的高容重、低フリーライムである対応関係を示す。一方、クリンカのフリーライム量及び容重は、クリンカの焼成度と密接に関連し、焼成度が高いほど、クリンカ中の液相量が多くなり焼締まって容重は高くなるが、フリーライム量は逆にゼロに近づく。従って、クリンカのフリーライム量及び容重のコントロールは、焼成条件のコントロール、すなわち、焼成工程20におけるキルンを制御すること、例えば、キルンバーナの燃料量、空気量、キルン回転数及びキルン内通風量等を制御することにより、被粗砕性若しくは被微粉砕性に優れたクリンカとし、後段の仕上げ工程40での粉砕効率の改善を図ることができる。
【0024】
【発明の効果】
以上説明したように、この発明は、極めて簡単な方法により、セメントクリンカの被粉砕性を的確に評価し、この評価に基いて焼成工程で易粉砕性のクリンカを焼成することができ、セメント仕上工程での粉砕の原価低減を可能とする。
【図面の簡単な説明】
【図1】この発明の実施例を示す概略図である。
【図2】セメントクリンカの被粉砕性評価試験を示す概略図である。
【図3】従来の被粉砕性試験における電力原単位とブレーン比表面積の関係を示す図である。
【図4】この発明に基く被粗砕性試験における電力原単位と0.6mm篩目通過分の関係を示す図である。
【図5】この発明に基く被微粉砕性試験における電力原単位とブレーン比表面積の関係を示す図である。
【図6】この発明に基く被微粉砕性試験におけるブレーン比表面積と被粗砕性試験の0.6mm篩目通過分の関係を示す図である。
【符号の説明】
1 セメントクリンカ
2 被粗砕性試験
3 被微粉砕性試験
4a 粒度調整手段
4b 粒度調整手段
5a 秤量手段
5b 秤量手段
6a 粉砕手段
6b 粉砕手段
7a 粒度特性測定手段
7b 粒度特性測定手段
8 評価部
10 セメント原料
20 焼成工程
30 中間製品
40 仕上工程
50 最終製品
60 被粉砕性評価[0001]
[Industrial application fields]
The present invention relates to a method for producing cement.
[0002]
[Prior art]
In the production of cement, grinding plays an extremely important role. For example, the power cost required for clinker grinding in the cement finishing process accounts for a significant part of the production direct ratio, and reducing this is one of the major issues. For this reason, various improvements have been added to the pulverizers and classifiers, and considerable results have been achieved.
[0003]
On the other hand, the grindability of cement CLICA depends on the raw material conditions (minerals, chemical composition, fineness), firing conditions, cooling conditions, etc. The properties of the clinker produced (the amount and distribution of voids, the amount of glass phase, mineral composition, minerals) (Form, size, crystal structure, etc.) are not uniform and vary considerably even with the same clinker. If the pulverizability of the clinker can be accurately measured and the precise raw material conditions and firing conditions for firing the easily pulverized clinker can be determined, it can greatly contribute to the reduction of power consumption.
[0004]
Conventionally, there are two types of methods that show the pulverizability of crushed materials, one based on the ease of pulverization (grinding ability) and the other based on the difficulty of pulverization (grinding resistance). Yes. A typical example is Bond's grinding work index, and its detailed test method is defined in JIS, M4002. This pulverization work index represents the pulverization resistance of the pulverized material obtained by measuring the pulverization work required for pulverization to a predetermined fineness, and is widely used as a basis for pulverization circuit design. A grinding work index is calculated from the operational results by a calculation formula, and a difference from an actual measurement value in a test mill is used as an operation guideline of the on-site grinding machine as a difference in mechanical efficiency of the on-site grinding machine.
[0005]
[Problems to be solved by the invention]
As described above, the pulverization work index has a great practical value. However, in an actual on-site process, the pulverization property evaluated by the pulverization work index is associated with the properties of the cement clinker described above to facilitate pulverization. It was not possible to tie it to actions such as determining the exact raw material conditions and firing conditions for firing a natural clinker, and this could not be used for direct power reduction.
[0006]
In addition to complicated experimental conditions, the milling work index may have to be measured using considerable effort and time, and a large amount of milling material. Some indexes indicating grindability corresponding to the above have been proposed. For example, the grindability of cement clinker represents the brane value (specific surface area) after pulverizing the clinker for a certain time under the same conditions and the energy consumed to obtain a predetermined brane value as the grindability index. However, in all cases, the clinker is pulverized all at once to the brane value corresponding to the desired product particle size, and the pulverization property is evaluated, which is basically the same as the pulverization work index of the bond, and this reduces power consumption. It cannot be used for.
[0007]
In view of the above circumstances, an object of the present invention is to accurately evaluate the pulverizer grindability, and based on this evaluation, improve the clinker grindability and enable the cost reduction of pulverization in the cement finishing process. The object is to provide a method for producing cement.
[0008]
In order to solve the above problems, according to the cement manufacturing method of the present invention, clinker is collected from the downstream side of the kiln, and the pulverization property of the clinker is divided into a crushed property and a finely pulverized property, and is individually evaluated. By adjusting the raw material conditions or firing conditions for firing the clinker, the free lime amount and / or weight of the clinker is controlled by improving the crushed property or the finely pulverized property. (Claim 1), clinker is collected from the downstream side of the kiln, and the clinker is used as a clinker for evaluating the crushed property and a clinker for evaluating the pulverized property finer than the clinker for evaluating crushed property. and particle size control, respectively to measure the particle size characteristics of the clinker was ground with implementing the crushing test under predetermined conditions, the crude砕性and the milling of the object to be crushed of the clinker based on the particle size characteristics Divided respectively by individual evaluation, to improve the rather poor either of the crude砕性or the milling property, free lime content of the clinker by adjusting the raw material conditions or baking conditions for baking the clinker and / Alternatively, the weight is controlled (claim 2).
[0009]
[Action]
In evaluating the clinker pulverizability, the clinker is subjected to a pulverization test under predetermined conditions in the coarse pulverization region and the fine pulverization region, and the clinker pulverization property in each region, that is, the pulverization property and the fine pulverization property. Find grindability. The clinker grindability shows a contradictory phenomenon in the coarse pulverization area and the fine pulverization area, and the operating conditions of the cement kiln are appropriately controlled by individually evaluating the obtained friability and fine pulverization characteristics. It can be linked to the improvement of the clinker grindability.
[0010]
【Example】
Examples of the present invention will be described below. In FIG. 1, a cement raw material 10 prepared by mixing limestone, clay, silica, iron raw materials, etc. produces a cement clinker as an intermediate product 30 in a firing process 20 equipped with a kiln with a suspension preheater (SP, NSP), a cooler, and the like. Then, in a cement finishing process 40 equipped with a pulverizer, a classifier, etc., gypsum is added and pulverized and adjusted, and shipped as a final product 50. In such a general cement manufacturing facility, the cement clinker 1 is collected as a pulverizer on the downstream side of the kiln in the firing step 20, that is, on the upstream side of the finishing step 40, and the clinker 1 is pulverized as described later. Individual evaluation 60 is made for each of crushed and finely pulverized products. As shown by the arrow A based on the pulverizability evaluation 60 of the clinker 1, the kiln in the firing step 20 is controlled, for example, the fuel amount of the kiln burner, the air amount, the kiln rotational speed, the air flow rate in the kiln and the like. In this way, the clinker 1 having excellent crushability or fine crushability is generated in the firing step 20, and the cost of crushing in the subsequent finishing step 40 can be reduced.
[0011]
Next, details of the pulverizability evaluation 60 of the clinker 1 will be described with reference to FIG. The cement clinker 1 collected from an on-site pulverizer entrance or the like is subjected to a crushability test 2 and a fine crushability test 3. In the crushability test 2 and the fine crushability test 3, test equipment comprising particle size adjusting means 4a and 4b, weighing means 5a and 5b, crushing means 6a and 6b, and pulverized clinker particle size characteristic measuring means 7a and 7b, respectively. The evaluation unit 8 individually evaluates the crushability and the fine crushability from the particle size characteristics of the clinker.
[0012]
The particle size adjusting means 4a and 4b adjust the most preferable particle size at the start of pulverization of the clinker in the pulverizing means 6a and 6b to effectively perform the crushability test 2 and the fine crushability test 3 and to minimize the test error. This is for setting conditions to reduce, and consists of crusher such as jaw crusher and roll crusher and sieve equipment. The crushed evaluation and fine pulverized evaluation clinker adjusted to a predetermined particle size by the particle size adjusting means 4a, 4b are weighed by the weighing means 5a, 5b and supplied to the pulverizing means 6a, 6b. The pulverizing means 6a and 6b are preferably batch-type ball mills, and the weighed clinker is pulverized for a predetermined time or a predetermined number of times in a coarse pulverization area and a fine pulverization area, respectively, and a predetermined sieve is measured by the measurement means 7a and 7b. Measure particle size characteristics such as eye passage and brain specific surface area. The evaluation unit 8 individually evaluates the crushability and fine crushability of the clinker by comparing the particle size characteristics with the previously measured particle size characteristics of the reference sample. Note that the test equipment is shared by the coarse crushability test 2 and the fine crushability test 3, for example, the crushing means 6a and 6b may be shared by the same batch ball mill.
[0013]
The particle size and pulverization conditions at the start of pulverization of the clinker described above are determined in consideration of the actual results such as the inlet particle size and the outlet particle size of an actual on-site pulverizer. For example, in a closed circuit pulverization using a two-chamber ball mill and a classifier, which are widely used in clinker pulverization, the product particle size at the outlet of the classifier is about 3000 to 3300 cm 2 / g of Blaine specific surface area, and the pulverization in the first chamber of the ball mill is roughly crushed Predetermined test conditions are determined assuming that the second chamber is pulverized. That is, the clinker evaluation clinker is assumed to be pulverized to the same extent as the first chamber of the ball mill, and the particle size adjusting means 4a adjusts the particle size at the start of pulverization to 20 mm or less, preferably 10 mm or less, and the particle size at the end of pulverization to the brain. The pulverization time or the number of pulverizations is determined so that the specific surface area is about 1500 cm 2 / g or less, preferably about 500 to 1000 cm 2 / g.
[0014]
The clinker evaluation clinker adjusts the particle size at the start of pulverization to 2 mm or less, preferably 1.5 mm or less, and the particle size at the end of pulverization to a Blaine specific surface area of about 1500 cm 2 / g or more, preferably 1600 to 2200 cm 2 / g. The pulverization time or the number of pulverizations in the pulverizing means 6a is determined so as to be about the same. Further, the clinker having a particle size at the start of pulverization adjusted to 2 mm or less, preferably 1.5 mm or less, and the clinker having a specific surface area of 500 to 1000 cm 2 / g pulverized in the crushability test 2 were mixed and adjusted. When the clinker is used as an evaluation clinker, the influence of crushed property can be eliminated as much as possible. Of course, the particle size at the end of pulverization varies greatly depending on the pulverization property, and may be determined as a rough standard, and further corresponds to the desired product particle size at the outlet of the on-site classifier. Various settings are also possible.
[0015]
Next, using a batch test ball mill (diameter 400 mm × length 450 mm, rotation speed 57 rpm, ball filling rate 32.6%, ball diameter 50 to 17 mm), the cement clinker grindability test under the conditions shown in Table 1 Went. While the cement clinker is sampled at the on-site pulverizer entrance of three cement plants having different pulverization methods (A: ball mill with pre-pulverizer, B: ball mill, C: ball mill with pre-pulverizer), The power intensity of the on-site crusher was measured as actual operation data when collecting cement clinker. The relationship between the power unit and the specific surface area of Blaine or 0.6 mm sieve mesh is shown in FIGS. Crushability test and fine pulverization test were performed in the first chamber (crude) and the second chamber (fine pulverization) in closed circuit pulverization consisting of a two-chamber on-site ball mill and a classifier. The conditions were determined assuming crushing.
[0016]
[Table 1]
Figure 0003715995
[0017]
FIG. 3 shows a case in which the clinker is pulverized all at once to the brain value corresponding to the desired product particle size of the conventional type to evaluate the pulverizability. As shown in FIG. 3, when the Blaine specific surface area expressed as a pulverization index increases (the pulverization property improves), the power intensity of each on-site pulverizer at any factory (A, B, C) is The pulverizability of cement clinker itself can be evaluated for the time being.
[0018]
On the other hand, in the crushability test assuming pulverization in the first chamber of the ball mill, as shown in FIG. 4, the 0.6 mm sieve passage amount expressed as a crushability index is increased (crushability). However, the power intensity of the on-site crusher at factories A and B decreases, but at plant C, it increases. Further, in the fine pulverization test assuming pulverization in the second chamber of the ball mill, as shown in FIG. 5, when the Blaine specific surface area expressed as the pulverization index increases (the fine pulverization property is improved), Contrary to the results of the crushability test, the power intensity of the on-site crusher at factories A and B increases and decreases at plant C.
[0019]
Fig. 6 shows the relationship between the specific surface area of Blaine in the pulverization test and the amount of passage through the 0.6 mm sieve in the pulverization test. In the pulverization test, it is difficult to pulverize, and it can be seen that the clinker's crushed property and pulverized property are contradictory.
[0020]
In this way, the pulverizability of cement clinker is of course different in each cement factory, and also greatly varies in the same factory. Depending on the pulverization method, the correspondence relationship between the crushability and the fine crushability also differs. Therefore, in the conventional pulverization property evaluation method shown in FIG. 3, the pulverization property of the cement clinker itself can be evaluated for the time being. It cannot be linked to on-site actions such as determining raw material conditions and firing conditions.
[0021]
On the other hand, according to the present invention, by separately evaluating the crushed and finely pulverized properties of the clinker, it can be linked to the on-site action according to the pulverization method of the on-site pulverizer. For example, in FIGS. 4 and 5, in factories A and B, clinker crushability and on-site crusher crushing ability are improved, and in factory C, clinker crushability and on-site crusher By improving the pulverization capacity, etc., it can be linked to on-site actions that greatly contribute to the reduction of power consumption.
[0022]
Specific measures for improving the crushed and finely pulverized properties of the clinker include the properties of the clinker to be produced (the void size) depending on the raw material conditions (minerals, chemical composition, fineness), firing conditions, cooling conditions, etc. The relationship between the properties of these clinker and the crushed and finely pulverized properties is determined in advance, taking into account differences in the amount and distribution, glass phase amount, mineral composition, mineral morphology, size, crystal structure, etc. It can easily be tied to the field action. As a result of various studies, the amount of lime and the weight of clinker correspond well to the crushed and finely pulverized properties, and the amount and weight of free lime are widely used as quality analysis items for clinker. It may be easy to control, and it is preferable to tie this to field actions.
[0023]
That is, a clinker having excellent crushability has a relatively low capacity and high free lime, and a clinker having excellent pulverization characteristics has a relatively high capacity and low free lime. . On the other hand, the amount of lime and the weight of clinker are closely related to the degree of clinker firing, and the higher the degree of calcination, the greater the amount of liquid phase in the clinker and the higher the weight. Approaches zero. Therefore, the amount of lime and the weight of the clinker are controlled by controlling the firing conditions, that is, controlling the kiln in the firing step 20, for example, the amount of fuel in the kiln burner, the amount of air, the rotational speed of the kiln and the amount of ventilation in the kiln. By controlling, a clinker having excellent crushability or fine crushability can be obtained, and improvement of crushing efficiency in the finishing step 40 in the subsequent stage can be achieved.
[0024]
【The invention's effect】
As described above, the present invention accurately evaluates the grindability of a cement clinker by an extremely simple method, and based on this evaluation, the easily grindable clinker can be fired in the firing process. The cost of grinding in the process can be reduced.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an embodiment of the present invention.
FIG. 2 is a schematic view showing a pulverizability evaluation test of a cement clinker.
FIG. 3 is a diagram showing the relationship between the power unit and the brain specific surface area in a conventional grindability test.
FIG. 4 is a diagram showing the relationship between the power unit and the 0.6 mm sieve passage in the crushability test based on this invention.
FIG. 5 is a diagram showing the relationship between the power unit and the brain specific surface area in the pulverization test based on the present invention.
FIG. 6 is a graph showing the relationship between the Blaine specific surface area in the fine pulverization test based on the present invention and the amount of passage through a 0.6 mm sieve in the coarse pulverization test.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Cement clinker 2 Crushability test 3 Crushability test 4a Particle size adjustment means 4b Particle size adjustment means 5a Weighing means 5b Weighing means 6a Crushing means 6b Crushing means 7a Particle size characteristic measurement means 7b Particle size characteristic measurement means 8 Evaluation part 10 Cement Raw material 20 Firing step 30 Intermediate product 40 Finishing step 50 Final product 60 Grindability evaluation

Claims (2)

キルン下流側からクリンカを採取し、該クリンカの被粉砕性を被粗砕性と被微粉砕性に分けてそれぞれ個別評価することにより、被粗砕性若しくは被微粉砕性のいずれか劣るほうを改善すべく、クリンカを焼成するための原料条件または焼成条件を調整してクリンカのフリーライム量および/または容重を制御することを特徴とするセメントの製造方法。The clinker is collected from the kiln downstream side, and the pulverization property of the clinker is divided into crushed property and finely pulverized property and individually evaluated. In order to improve, the manufacturing method of the cement characterized by adjusting the raw material conditions or baking conditions for baking a clinker, and controlling the amount of lime and / or the weight of a clinker . キルン下流側からクリンカを採取し、該クリンカを被粗砕性評価のためのクリンカと、該被粗砕性評価クリンカよりも細かい被微粉砕性評価のためのクリンカに粒度調整して、それぞれ所定条件で粉砕試験を実施するとともに粉砕したクリンカの粒度特性を測定し、該粒度特性に基づいて前記クリンカの被粉砕性を被粗砕性と被微粉砕性に分けてそれぞれ個別評価することにより、被粗砕性若しくは被微粉砕性のいずれか劣るほうを改善すべく、クリンカを焼成するための原料条件または焼成条件を調整してクリンカのフリーライム量および/または容重を制御することを特徴とするセメントの製造方法。Collect clinker from the downstream side of the kiln, adjust the particle size of the clinker to a clinker for evaluation of friability and a clinker for evaluation of fine pulverization finer than the clinker evaluation clinker, By carrying out a pulverization test under the conditions and measuring the particle size characteristics of the pulverized clinker, and separately evaluating the pulverization property of the clinker based on the particle size characteristics into the crushed property and the finely pulverized property, It is characterized by controlling the amount of free lime and / or the weight of the clinker by adjusting the raw material conditions or baking conditions for baking the clinker in order to improve either the inferior crushed property or finely pulverized property. A method for manufacturing cement.
JP09043594A 1994-03-24 1994-03-24 Cement manufacturing method Expired - Fee Related JP3715995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09043594A JP3715995B2 (en) 1994-03-24 1994-03-24 Cement manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09043594A JP3715995B2 (en) 1994-03-24 1994-03-24 Cement manufacturing method

Publications (2)

Publication Number Publication Date
JPH07267699A JPH07267699A (en) 1995-10-17
JP3715995B2 true JP3715995B2 (en) 2005-11-16

Family

ID=13998536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09043594A Expired - Fee Related JP3715995B2 (en) 1994-03-24 1994-03-24 Cement manufacturing method

Country Status (1)

Country Link
JP (1) JP3715995B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006219347A (en) * 2005-02-10 2006-08-24 Mitsubishi Materials Corp Hydraulic sintered material, cement composition and method of manufacturing hydraulic sintered material
JP5084695B2 (en) * 2008-10-24 2012-11-28 株式会社トクヤマ Method for measuring the firing temperature of the fired product
FR2946978B1 (en) * 2009-06-17 2011-08-05 Lafarge Sa INDUSTRIAL PROCESS FOR THE PRODUCTION OF SULFOALUMINOUS CLINKER
CN111551698A (en) * 2020-05-22 2020-08-18 绵阳钢猫科技有限公司 Cement production quality on-line detection method

Also Published As

Publication number Publication date
JPH07267699A (en) 1995-10-17

Similar Documents

Publication Publication Date Title
Hosten et al. An industrial comparative study of cement clinker grinding systems regarding the specific energy consumption and cement properties
US20100242805A1 (en) Method for the production of portland slag cement and blast furnace cement
JPH0411496B2 (en)
JP2015501720A (en) Crushing method, crushing equipment and related hydraulic binder manufacturing method
Böhm et al. An energy based comparison of vertical roller mills and tumbling mills
JP3715995B2 (en) Cement manufacturing method
CN201990603U (en) Cement close-circuit powder grinding system
CN103013444A (en) Precision-type mischmetal polishing powder and preparation method thereof
Schnatz Optimization of continuous ball mills used for finish-grinding of cement by varying the L/D ratio, ball charge filling ratio, ball size and residence time
Schaefer Loesche vertical roller mills for the comminution of ores and minerals
Sabah et al. Effect of ball mill grinding parameters of hydrated lime fine grinding on consumed energy
JP2626820B2 (en) Manufacturing method of high fine powder blast furnace cement
DE3928020A1 (en) Energy saving mfr. of fine particle cement quicklime - pre-granulation produces 20-40 per cent of final product size which is combined with recirculating stream of milled powder
CN1081628A (en) Utilize rod mill to obtain the method for uniform paste fluid product
JP6261585B2 (en) Crushing method
JPH07256139A (en) Crushing control method
EP0532771A1 (en) Multi-pass roll crusher
JPH07260657A (en) Method and apparatus for evaluating crushability
US4824031A (en) Means of pneumatic comminution
JPH0375248A (en) Grinding method for hydraulic material
Simmons et al. Operational experience from the United States' first vertical roller mill for cement grinding
ES2832352T3 (en) Installation procedure and arrangement for the preparation and activation of a raw material
JP2784603B2 (en) Method and apparatus for controlling pulverization of reduced iron powder for powder metallurgy
US205616A (en) Improvement in the manufacture of hydraulic cement
Cordonnier A new grinding process: HOROMILL®

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050829

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees