JPH0375239B2 - - Google Patents
Info
- Publication number
- JPH0375239B2 JPH0375239B2 JP59018570A JP1857084A JPH0375239B2 JP H0375239 B2 JPH0375239 B2 JP H0375239B2 JP 59018570 A JP59018570 A JP 59018570A JP 1857084 A JP1857084 A JP 1857084A JP H0375239 B2 JPH0375239 B2 JP H0375239B2
- Authority
- JP
- Japan
- Prior art keywords
- contact
- tank
- treatment
- wastewater
- anaerobic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000011282 treatment Methods 0.000 claims description 34
- 230000003647 oxidation Effects 0.000 claims description 23
- 238000007254 oxidation reaction Methods 0.000 claims description 23
- 239000002351 wastewater Substances 0.000 claims description 23
- 230000029087 digestion Effects 0.000 claims description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 19
- 239000007788 liquid Substances 0.000 claims description 6
- 238000005192 partition Methods 0.000 claims description 5
- 238000000926 separation method Methods 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 4
- 230000003197 catalytic effect Effects 0.000 claims description 3
- 230000008859 change Effects 0.000 claims description 3
- 239000000463 material Substances 0.000 description 14
- 239000010802 sludge Substances 0.000 description 13
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- 244000005700 microbiome Species 0.000 description 6
- 238000000746 purification Methods 0.000 description 6
- 239000008213 purified water Substances 0.000 description 6
- 238000000354 decomposition reaction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- -1 nitrate ions Chemical class 0.000 description 4
- 239000010865 sewage Substances 0.000 description 4
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 229910002651 NO3 Inorganic materials 0.000 description 2
- IOVCWXUNBOPUCH-UHFFFAOYSA-N Nitrous acid Chemical compound ON=O IOVCWXUNBOPUCH-UHFFFAOYSA-N 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000004065 wastewater treatment Methods 0.000 description 2
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- 241001330002 Bambuseae Species 0.000 description 1
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000008394 flocculating agent Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012958 reprocessing Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000009279 wet oxidation reaction Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Biological Treatment Of Waste Water (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Description
【発明の詳細な説明】
本発明は廃水の処理方法に関し、更に詳しく
は、沈砂池等で固液分離した後の低濃度廃水を嫌
気性生物処理と好気性生物処理を組合せた生物化
学的処理によつて浄化する方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating wastewater, and more specifically, a biochemical treatment method that combines anaerobic biological treatment and aerobic biological treatment for low-concentration wastewater after solid-liquid separation in a settling basin or the like. Relating to a method of purification by.
廃水の生物化学的処理は、例えば凝集剤添加に
よる固液分離、廃液の湿式酸化、汚泥の脱水、乾
燥及び焼却といつた物理化学的処理と異なり、エ
ネルギー消費量が少ないという大きな利点があ
る。そこで、都市部における台所廃水、水洗便所
廃水等の生活雑廃水を主とする下水の浄化処理
は、現在、好気性微生物を用いた生物化学的処理
が主流をなしている。 Biochemical treatment of wastewater has the great advantage of low energy consumption, unlike physicochemical treatments such as solid-liquid separation by adding flocculants, wet oxidation of waste liquid, dewatering, drying and incineration of sludge. Therefore, biochemical treatment using aerobic microorganisms is currently the mainstream method of purifying sewage, which is mainly miscellaneous wastewater such as kitchen wastewater and flush toilet wastewater, in urban areas.
この好気性微生物を用いた生物化学処理は、浮
遊生物法と固定生物膜法の二種に大別される。浮
遊生物法には更に標準活性汚泥法と長時間曝気法
があり、前者は大規模で高級な処理には適してい
るが、操作に高度な技術を要し、維持管理に多大
の労力と経費を必要とする欠点があり、後者は中
規模処理に適しており、発生汚泥量は少ないが、
滞留時間が長く処理性能もあまりよくないという
欠点がある。また、固定生物膜法には、散水濾床
法、回転円板法、接触酸化法等があり、何れの方
法も生物膜が各種微生物膜の組合せによる食物連
鎖を形成するため、負荷変動が強く、維持管理が
容易で小規模処理に適しているが、処理量の増大
に対応できないという欠点がある。このように、
好気性微生物を用いた生物化学的処理には種々の
長所と欠点があるが、更に好気性微生物の作用に
より生成した硝酸及び亜硝酸の処理が問題とな
る。 This biochemical treatment using aerobic microorganisms can be roughly divided into two types: the suspended organism method and the fixed biofilm method. The suspended organism method further includes the standard activated sludge method and the long-time aeration method. The former is suitable for large-scale, high-grade treatment, but requires advanced technology to operate and requires a great deal of labor and expense for maintenance. The latter is suitable for medium-scale treatment and generates a small amount of sludge, but
The disadvantages are that the residence time is long and the processing performance is not very good. In addition, fixed biofilm methods include the trickling filter method, rotating disk method, and contact oxidation method, all of which have strong load fluctuations because the biofilm forms a food chain made up of a combination of various microbial films. Although it is easy to maintain and manage and is suitable for small-scale processing, it has the disadvantage of not being able to handle increases in processing volume. in this way,
Biochemical treatment using aerobic microorganisms has various advantages and disadvantages, but a further problem is the treatment of nitric acid and nitrite produced by the action of aerobic microorganisms.
本発明者は上記問題に鑑みて、好気性生物処理
と嫌気性生物処理との組合せた廃水の処理方法つ
いて種々検討した結果、嫌気性生物処理において
多段の嫌気性濾床を採用して生物膜の安定を高
め、また、好気性生物処理は負荷変動に強く維持
管理の容易な接触酸化槽を採用すると共に、接触
酸化槽における処理生成物の一部を接触消化槽に
返送することにより、嫌気性生物処理と好気性生
物処理の利点が十分活かされるばかりでなく、汚
泥発生量が著しく少なくなることを見出し、本発
明を完成するに至つた。 In view of the above problems, the inventors of the present invention have investigated various wastewater treatment methods that combine aerobic biological treatment and anaerobic biological treatment. In addition, aerobic biological treatment uses a contact oxidation tank that is resistant to load fluctuations and is easy to maintain, and a part of the treated product in the contact oxidation tank is returned to the contact digestion tank. The present inventors have discovered that not only can the advantages of aerobic biological treatment and aerobic biological treatment be fully utilized, but also that the amount of sludge generated can be significantly reduced, leading to the completion of the present invention.
即ち、本発明による廃水の処理方法は、沈砂池
等で固液分離した後の低濃度廃水を、嫌気性濾床
を多段に設けかつ中央に隔壁を垂設して流水方向
を下向流から上向流に変えるようにした接触消化
槽に供給して浄化処理し、該処理水を更に接触酸
化槽に供給して酸化処理し、該酸化処理において
得られた処理生成物の一部を前記接触消化槽に返
送して前記低濃度廃水と共に再び浄化処理するこ
とを特徴とするものである。 That is, in the wastewater treatment method according to the present invention, low-concentration wastewater after solid-liquid separation in a settling basin or the like is treated by providing multiple stages of anaerobic filter beds and a partition wall in the center to change the flow direction from the downward flow. The water is supplied to a contact digestion tank with an upward flow for purification treatment, the treated water is further supplied to a contact oxidation tank for oxidation treatment, and a part of the treated product obtained in the oxidation treatment is It is characterized in that it is returned to the contact digestion tank and purified again together with the low concentration wastewater.
本発明方法によれば、廃水が各槽を通過する間
に嫌気性処理と好気性処理を交互にに受けて有機
高分の分解低分子化、低分子の炭酸ガス、水等へ
の分解及び硝酸イオン等の還元による脱窒等、効
率よく浄化処理され、負荷変動に強い安定した高
級処理がなされるので、維持管理費及び建設費の
大巾な軽減を図ることができる。 According to the method of the present invention, while wastewater passes through each tank, it is alternately subjected to anaerobic treatment and aerobic treatment to decompose organic polymers into low molecular weight molecules, decompose low molecular weight molecules into carbon dioxide gas, water, etc. Since denitrification through reduction of nitrate ions and other efficient purification treatments are carried out, and stable and high-grade treatment is performed that is resistant to load fluctuations, maintenance costs and construction costs can be significantly reduced.
以下、本発明の実施例について図面を参照して
説明する。 Embodiments of the present invention will be described below with reference to the drawings.
第1図において、Aは接触消化槽、Bは接触酸
化槽を示す。接触消化槽Aは、筒状本体1の下方
をホツパー状部2としたもので、本体1の上端部
には図示しない沈砂池等を連通する流入部3が天
板4の一側に開口している。この天板4には左右
を区画する隔壁5が垂設され、その下端は本体1
の下部に達し、左右が連通するようになつてい
る。接触消化槽A内において、隔壁5の両側には
複数段の嫌気性濾床6,6…が上下方向に所要の
間隔7を存して配設されている。また、槽Aの下
端には汚泥引抜管8が設けられると共に、上部に
は接触酸化槽Bと連通する処理水の抜出管9が設
けられている。 In FIG. 1, A shows a contact digestion tank and B shows a contact oxidation tank. The contact digestion tank A has a hopper-shaped part 2 at the bottom of a cylindrical body 1, and an inflow part 3 that communicates with a sand settling pond (not shown) is opened on one side of the top plate 4 at the upper end of the body 1. ing. A partition wall 5 is vertically installed on this top plate 4 to partition the left and right sides, and its lower end is connected to the main body 1.
It reaches the bottom of the wall, and the left and right sides are connected. In the contact digestion tank A, a plurality of anaerobic filter beds 6, 6, . Further, a sludge withdrawal pipe 8 is provided at the lower end of the tank A, and a treated water withdrawal pipe 9 communicating with the contact oxidation tank B is provided at the upper end.
接触消化槽Aにおいては、生物膜の付性がよい
嫌気性慮床6を上下多段に設けることが重要であ
る。即ち、嫌気性濾床においては一般に生物膜の
付着性が弱く、通過流速が早すぎたり、流動に乱
れが生じると生物膜の剥離が起きて処理効果が著
しく低下する。そのため、濾床6を構成する濾材
は、竹篠や砕石などの他プラスチツクを素材とし
た粒状体や、板状体、筒状体、網状体等生物膜の
付着性のよいものを用いる。そして濾材を所要の
厚さに積層して数段の濾床6を形成し、各濾床6
間には所要高さの間隙7を設けておく。このよう
に濾床6を多段に設けかつ濾床間に適宜間隔を設
けることにより、廃水が均一に濾材へ接触し、乱
れた流動状態が整流され、処理効果が著しく助長
される。 In the contact digestion tank A, it is important to provide multiple upper and lower anaerobic beds 6 with good biofilm adhesion. That is, in anaerobic filter beds, biofilms generally have weak adhesion, and if the flow rate is too high or the flow is disturbed, the biofilms will peel off and the treatment effect will be significantly reduced. Therefore, the filter media constituting the filter bed 6 are granular materials made of other plastic materials such as bamboo shinobu or crushed stone, or materials with good biofilm adhesion properties such as plate-like materials, cylindrical materials, and net-like materials. Then, the filter media are stacked to a required thickness to form several stages of filter beds 6, and each filter bed 6 is
A gap 7 of a required height is provided between them. By arranging the filter beds 6 in multiple stages and providing appropriate intervals between the filter beds in this manner, the wastewater uniformly contacts the filter media, the turbulent flow state is rectified, and the treatment effect is significantly enhanced.
接触酸化槽Bにおいて、前記接触消化槽Aと同
様に下方をホツパー部とした筒状本体10の中心
部に、上下方向の流通管11が垂設され、その周
囲に好気性濾床12が設けられ、流通管11の下
端部には給気管13の端部が開口している。ま
た、槽Bの上部には浄水流出管14が設けられ、
その一部に槽Aの流入部3と連通する浄水返送管
15が分岐接続され、更に下端には汚泥引出管1
6が設けられている。 In the contact oxidation tank B, like the contact digestion tank A, a vertical flow pipe 11 is vertically installed in the center of a cylindrical body 10 with a hopper section at the bottom, and an aerobic filter bed 12 is provided around it. The end of the air supply pipe 13 is opened at the lower end of the flow pipe 11. In addition, a purified water outflow pipe 14 is provided at the top of the tank B,
A purified water return pipe 15 that communicates with the inflow part 3 of tank A is branch-connected to a part of it, and a sludge withdrawal pipe 1 is further connected to the lower end.
6 is provided.
次に、廃水の浄化作用について説明する。 Next, the purification effect of wastewater will be explained.
沈砂池等で固液分離された後の低濃度廃水は、
流入部3から接触消化槽Aの上部の一方に供給さ
れ、矢印のような下向流となつて、嫌気性濾床6
の上段から下段へ順次通過して槽底に達し、次に
上向流となつて嫌気性濾床6の下段から上段へ順
次通過し、嫌気性濾床6に形成された嫌気性生物
膜に接触し、高分子有機物の分解低分子化、アン
モニウムイオン(NH4)の生成等が起り浄化さ
れる。この際、上段又は下段側の濾床6の通過に
よつて流動を乱された廃水は、次の濾床に入る前
に濾床相互間の間隙7を通ることにより整流さ
れ、次の濾床6への流入が均一化して濾材に対
し、均一な接触条件が得られることになる。 Low-concentration wastewater after solid-liquid separation in sand settling ponds, etc.
It is supplied from the inflow part 3 to one of the upper parts of the contact digestion tank A, and flows downward as shown by the arrow to the anaerobic filter bed 6.
It passes sequentially from the upper stage to the lower stage and reaches the bottom of the tank, then becomes an upward flow and passes sequentially from the lower stage to the upper stage of the anaerobic filter bed 6, forming an anaerobic biofilm formed on the anaerobic filter bed 6. Upon contact, decomposition of high-molecular organic substances into low-molecular weight substances, generation of ammonium ions (NH 4 ), etc. occur, resulting in purification. At this time, the wastewater whose flow is disturbed by passing through the upper or lower filter bed 6 is rectified by passing through the gap 7 between the filter beds before entering the next filter bed. 6 becomes uniform, and uniform contact conditions with the filter medium are obtained.
浄化された廃水は槽上部の排出管9を通つて次
に好気性の接触酸化槽Bに入り、給気管13から
の給気循環流によつて槽B内を循環し、好気性濾
床12の好気性生物膜に接触して、低分子有機物
の酸化による炭酸ガスや水への分解、アンモニウ
ムイオンの硝酸、亜硝酸への酸化等により浄化さ
れる。この浄化水は浄水流出管14により系外に
排出されると共に、その一部はポンプPを介装し
た浄水返送管15により接触消化槽Aに返送され
て新たに供給される廃水と共に嫌気性処理され、
前記高分子有機物の分解低分子化と共に接触酸化
槽Bで生じた硝酸、亜硝酸等の還元による脱窒が
起る。 The purified wastewater then enters the aerobic contact oxidation tank B through the discharge pipe 9 at the top of the tank, and is circulated in the tank B by the air supply circulation flow from the air supply pipe 13 to the aerobic filter bed 12. When it comes into contact with the aerobic biofilm of the water, it is purified by oxidizing low-molecular organic matter, decomposing it into carbon dioxide gas and water, and oxidizing ammonium ions into nitric acid and nitrous acid. This purified water is discharged out of the system through a purified water outflow pipe 14, and a part of it is returned to the contact digestion tank A through a purified water return pipe 15 equipped with a pump P, where it undergoes anaerobic treatment along with newly supplied wastewater. is,
Denitrification occurs by reduction of nitric acid, nitrous acid, etc. generated in the catalytic oxidation tank B along with the decomposition of the high-molecular organic matter into low molecular weight.
接触消化槽及び酸化槽A,Bで生成した余剰汚
泥は通常ぞれの汚泥引抜管8,16から汚泥返送
管17によつて排出され前記沈砂池等で分離され
た固形分と共に或いは単独に処理されるが、一部
は消化槽Aに戻して再処理するようにしてもよ
い。 Excess sludge generated in the contact digestion tank and oxidation tank A, B is normally discharged from each sludge withdrawal pipe 8, 16 through a sludge return pipe 17, and is treated together with the solids separated in the settling basin or the like or alone. However, a portion may be returned to the digestion tank A for reprocessing.
このように、本発明方法によれば、廃水は各槽
を通過する間に嫌気性処理と好気性処理を交互に
受け、更に接触酸化槽Bからの処理生成物は接触
消化槽に返送され、再び嫌気性処理と好気性処理
を交互に受けることになるので、有機高分子の分
解低分子化、低分子の炭酸ガス、水等への分解及
び硝酸イオン等の還元による脱窒等が十分に進行
し、安定な高級浄化処理がなされる。 Thus, according to the method of the present invention, the wastewater is alternately subjected to anaerobic treatment and aerobic treatment while passing through each tank, and furthermore, the treated product from contact oxidation tank B is returned to the contact digestion tank, Since it is subjected to anaerobic and aerobic treatment alternately again, decomposition of organic polymers into low molecular weight molecules, decomposition of low molecular weight molecules into carbon dioxide gas, water, etc., and denitrification by reduction of nitrate ions, etc., are sufficiently carried out. The process progresses and a stable high-grade purification process is achieved.
尚、上記接触消化槽A,A′,A″及び接触酸化
槽Bを各々複数個設けて、廃水をこれらの複数の
槽に直列に流して処理することがより好ましい。 It is more preferable to provide a plurality of each of the contact digestion tanks A, A', A'' and the contact oxidation tank B, and to treat the wastewater by flowing it through these tanks in series.
第2図イ,ロは本発明の嫌気性濾床に使用する
他の接触材を示す。 Figures 2A and 2B show other contact materials used in the anaerobic filter bed of the present invention.
即ち、接触材Cは、大小径の異なる皿状体18
及び19(例えば直径5〜10cm)を連接材20に
よつて上下に適宜間隔を存して多段に設けて成
る。皿状体18,19はそれぞれ中央凹部21を
上側にして連接され、その外周縁部にはそれぞれ
複数の切欠部22が開設されている。皿状体1
8,19は耐食性の金属やプラスチツク或いは板
材により形成され、連接材20は棒状、紐状或い
は縄状等皿状体を固定できる材料であればよい。 That is, the contact material C is a dish-shaped body 18 with different large and small diameters.
and 19 (for example, 5 to 10 cm in diameter) are provided vertically in multiple stages at appropriate intervals by connecting members 20. The dish-shaped bodies 18 and 19 are connected with each other with the central recess 21 facing upward, and each has a plurality of notches 22 at its outer peripheral edge. Dish-shaped body 1
8 and 19 are made of corrosion-resistant metal, plastic, or plate material, and the connecting member 20 may be made of any material capable of fixing the dish-shaped body, such as a rod, string, or rope shape.
この接触材Cを用いて前記第1図の嫌気性濾床
6を構成した場合には、次のような効果が得られ
る。即ち、嫌気性微生物は好気性微生物に比較し
て濾床への付着力が弱く、生物膜が層をなすと、
容易に剥離して脱落する傾向があり、汚水の浄化
力が低下する。しかし、本実施例のように嫌気性
濾床に接触材Cを用いると、嫌気性生物膜は水平
な皿状体18,19の中央凹部21に付着、形成
されて剥離する虞れがなく、一層安定な嫌気性処
理が行なわれる。更に、中央凹部21において、
嫌気性生物膜が一定限度を過ぎて形成されると、
外周縁部の切欠部22によつて嫌気性生物膜層の
増大し過ぎにより発生する下層部の腐敗現象を防
止することができる。また、第1図の嫌気性濾床
6がいわゆる充填式であるのと異なり、嫌気性生
物膜による濾材の閉塞も起らず、濾床の取付け、
交換も極めて簡単に行うことができる。 When the anaerobic filter bed 6 shown in FIG. 1 is constructed using this contact material C, the following effects can be obtained. In other words, anaerobic microorganisms have weaker adhesion to the filter bed than aerobic microorganisms, and when a biofilm forms a layer,
It tends to peel off and fall off easily, reducing its ability to purify sewage. However, when the contact material C is used in the anaerobic filter bed as in this embodiment, there is no risk that the anaerobic biofilm will adhere to the central recesses 21 of the horizontal dish-shaped bodies 18 and 19 and be peeled off. More stable anaerobic treatment is performed. Furthermore, in the central recess 21,
When anaerobic biofilm forms beyond a certain limit,
The notch 22 on the outer periphery can prevent the lower layer from rotting due to excessive growth of the anaerobic biofilm layer. Moreover, unlike the so-called packed type anaerobic filter bed 6 shown in FIG.
Replacement is also extremely easy.
次に、従来方法と本発明を比較する。 Next, the conventional method and the present invention will be compared.
従来の下水処理で最も高級とされる標準活性汚
泥法でも、BOD除去率は90%が限度であり、流
入廃水のBOD濃度が200mg/の場合、処理水は
20mg/となる。また、BOD濃度が200mg/の
以上或いは水温が10℃以下になつた場合、滞留時
間が長すぎる場合には、活性汚泥の管理に困難を
生じ、BOD除去率が著しく低下する。 Even with the standard activated sludge method, which is considered the highest grade of conventional sewage treatment, the BOD removal rate is limited to 90%, and if the BOD concentration of inflow wastewater is 200mg/, the treated water will
20mg/. Furthermore, if the BOD concentration is 200 mg/ or more or the water temperature is 10°C or less, or if the residence time is too long, it will be difficult to manage the activated sludge, and the BOD removal rate will drop significantly.
これに対して本発明では、BODの除去率は常
に95%以上を維持でき、例えば流入下水のBOD
が200mg/の場合、処理水のBODは10mg/以
下となる。また、流入廃水のBODが200mg/以
上の濃度に達しても、接触消化槽A及び接触酸化
槽Bでのそれぞれの滞留時間を適宜変更して組合
せることにより、或いは接触消化槽Aと接触酸化
槽Bを多段設置することにより、BOD除去率を
97%以上とすることも可能である。 On the other hand, with the present invention, the BOD removal rate can always be maintained at 95% or higher, for example, BOD removal rate of inflow sewage.
is 200mg/, the BOD of treated water is 10mg/or less. In addition, even if the BOD of inflow wastewater reaches a concentration of 200 mg/or more, it is possible to change the residence time of contact digestion tank A and contact oxidation tank B by appropriately changing and combining them, or by changing the residence time of contact digestion tank A and contact oxidation tank B. By installing tank B in multiple stages, the BOD removal rate can be increased.
It is also possible to set it to 97% or more.
この滞留時間の変更組合せの一例をあげると、
流入廃水のBODが200mg/の場合、接触消化槽
A及び接触酸化槽Bでの滞留時間をそれぞれ12.5
時間と設定すれば、各槽A,Bで浄化された処理
水のBODは、それぞれ60mg/,6mg/とな
り、BOD除去率は97%となる。 An example of this combination of residence time changes is:
When the BOD of inflow wastewater is 200mg/, the residence time in contact digestion tank A and contact oxidation tank B is 12.5% each.
If set as time, the BOD of treated water purified in tanks A and B will be 60 mg/, 6 mg/, respectively, and the BOD removal rate will be 97%.
また、本発明によれば接触消化槽Aにおける
BOD除去率が70%以上となるので、接触酸化槽
BでのBOD除去量が軽減され、必要空気量が少
なくてすみ、水処理動力の大半を占める送風機の
電力が従来の約1/2となり、消費電力が大幅に
軽減できる。 Further, according to the present invention, in the contact digestion tank A,
Since the BOD removal rate is 70% or more, the amount of BOD removed in contact oxidation tank B is reduced, the amount of air required is small, and the power of the blower, which accounts for the majority of water treatment power, is reduced to about half of that of conventional methods. , power consumption can be significantly reduced.
更に、発生汚泥量は従来最も少ないとされる接
触酸化法でも、除去BOD量に対し余剰汚泥は量
は20〜30%であるが、本発明では極端に少なく、
除去BODに対し約5〜15%にすぎない。 Furthermore, even in the catalytic oxidation method, which is said to generate the least amount of sludge, the amount of excess sludge is 20 to 30% of the amount of BOD removed, but in the present invention, it is extremely small.
It accounts for only about 5-15% of the removed BOD.
第1図は本発明を実施するための浄化装置の一
例を示す説明図、第2図イ,ロは本発明を実施す
るための他の接触材を示し、イはその平面図、ロ
はそのa−a線に沿う断面図である。
A…接触消化槽、B…接触酸化槽、C…接触
材、1…筒状本体、2…隔壁、6…嫌気性濾床、
7…間隔、12…好気性濾床、15…浄水返送
管、18,19…皿状体、20…連接材。
Fig. 1 is an explanatory diagram showing an example of a purifying device for carrying out the present invention, Fig. 2 A and B show other contact materials for carrying out the present invention, A is its plan view, and B is its It is a sectional view along the aa line. A... Contact digestion tank, B... Contact oxidation tank, C... Contact material, 1... Cylindrical body, 2... Partition wall, 6... Anaerobic filter bed,
7... Spacing, 12... Aerobic filter bed, 15... Purified water return pipe, 18, 19... Dish-shaped body, 20... Connecting material.
Claims (1)
嫌気性濾床を多段に設けかつ中央に隔壁を垂設し
て流水方向を下向流から上向流に変えるようにし
た接触消化槽に供給して浄化処理し、該処理水を
更に接触酸化槽に供給して酸化処理し、該酸化処
理において得られた処理生成物の一部を前記接触
消化槽に返送して前記低濃度廃水と共に再び浄化
処理することを特徴とする低濃度廃水の処理方
法。1 Low-concentration wastewater after solid-liquid separation in a settling pond, etc.
The water is purified by being supplied to a contact digestion tank with multistage anaerobic filter beds and a partition wall in the center to change the flow direction from downward flow to upward flow, and the treated water is further subjected to catalytic oxidation. Processing of low concentration wastewater characterized by supplying it to a tank for oxidation treatment, and returning a part of the treated product obtained in the oxidation treatment to the contact digestion tank and purifying it again together with the low concentration wastewater. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59018570A JPS60166095A (en) | 1984-02-03 | 1984-02-03 | Treatment of waste water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59018570A JPS60166095A (en) | 1984-02-03 | 1984-02-03 | Treatment of waste water |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60166095A JPS60166095A (en) | 1985-08-29 |
JPH0375239B2 true JPH0375239B2 (en) | 1991-11-29 |
Family
ID=11975278
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59018570A Granted JPS60166095A (en) | 1984-02-03 | 1984-02-03 | Treatment of waste water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60166095A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004160346A (en) * | 2002-11-12 | 2004-06-10 | Hideken Sekkei:Kk | Anaerobic digestion tank and anaerobic/aerobic filter bed method |
JP4769591B2 (en) * | 2006-02-07 | 2011-09-07 | 国立大学法人東京海洋大学 | Microbe-supported single body and sewage purification device for sewage purification |
KR100809360B1 (en) | 2007-03-13 | 2008-03-05 | 재단법인 한국계면공학연구소 | Up and downflow two stage filter |
-
1984
- 1984-02-03 JP JP59018570A patent/JPS60166095A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS60166095A (en) | 1985-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3183406B2 (en) | Methods and reactors for water purification | |
JP3335500B2 (en) | Wastewater treatment device and wastewater treatment method | |
JP3729332B2 (en) | Wastewater treatment apparatus including upflow anaerobic reactor and wastewater treatment method using the same | |
KR20110002832A (en) | Method and device for the treatment of waste water | |
JPS6223497A (en) | Sewage treatment apparatus by activated sludge bed | |
CN111807607A (en) | Sewage treatment device with solid-liquid separation function and separation method thereof | |
US4159945A (en) | Method for denitrification of treated sewage | |
CN111003906A (en) | Energy-saving and efficient municipal sewage treatment plant construction method | |
KR20080101035A (en) | High effective treatment apparatus and method of sewage and wastewater | |
US7820048B2 (en) | Method and system for treating organically contaminated waste water | |
CN209759222U (en) | Novel food processing waste water treatment equipment | |
CN106536426B (en) | Biological purification method of waste water | |
EP2049443B1 (en) | A method and apparatus for simultaneous clarification and endogenous post denitrification | |
JP2006289153A (en) | Method of cleaning sewage and apparatus thereof | |
JPH0144397B2 (en) | ||
US7476321B2 (en) | Method and a plant for waste water treatment | |
KR101448892B1 (en) | Process and mothod of aquaculture Nitrogen and organic loadingwastewater Removal | |
JPH0232953B2 (en) | ||
KR101147247B1 (en) | The rotary cylinder nitrification reactor and water treatment system using it | |
JPH0375239B2 (en) | ||
KR100353004B1 (en) | Biological Nutrient Removal Method using a Submerged Moving Media Intermittent Aeration Reactor and System | |
KR100477581B1 (en) | Wastewater treatment apparatus | |
KR100336263B1 (en) | Apparatus for treating waste water | |
CN108394996B (en) | Activated sludge integrated sewage treatment device | |
CN101279809B (en) | Biological filler shimmying-bed |