JPH0144397B2 - - Google Patents

Info

Publication number
JPH0144397B2
JPH0144397B2 JP3650482A JP3650482A JPH0144397B2 JP H0144397 B2 JPH0144397 B2 JP H0144397B2 JP 3650482 A JP3650482 A JP 3650482A JP 3650482 A JP3650482 A JP 3650482A JP H0144397 B2 JPH0144397 B2 JP H0144397B2
Authority
JP
Japan
Prior art keywords
tank
contact
wastewater
bod
sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3650482A
Other languages
Japanese (ja)
Other versions
JPS58153595A (en
Inventor
Hiroshi Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HIDEKEN SETSUKEI JIMUSHO KK
Original Assignee
HIDEKEN SETSUKEI JIMUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HIDEKEN SETSUKEI JIMUSHO KK filed Critical HIDEKEN SETSUKEI JIMUSHO KK
Priority to JP57036504A priority Critical patent/JPS58153595A/en
Publication of JPS58153595A publication Critical patent/JPS58153595A/en
Publication of JPH0144397B2 publication Critical patent/JPH0144397B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】 本発明は、嫌気性生物処理と好気性生物処理の
組合せからなる廃水の処理方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a wastewater treatment method comprising a combination of anaerobic biological treatment and aerobic biological treatment.

廃水の生物学的処理においては、現在、好気性
生物を用いた処理方法が主流をなしている。これ
を大別すると、浮遊生物法と固定生物膜法との2
種類となる。
In the biological treatment of wastewater, treatment methods using aerobic organisms are currently the mainstream. Broadly speaking, there are two types: the floating organism method and the fixed biofilm method.
Become a type.

浮遊生物法には標準活性汚泥法と長時間曝気法
とがある。標準活性汚泥法は大規模で高級な処理
には適しているが、操作に高度な技術を要し、維
持管理に多大の経費と労力を必要とする欠点があ
る。また、長時間曝気法は中規模処理に適してお
り、発生汚泥量も少いが、滞溜時間が長く負荷変
動に弱いという欠点がある。
Planktonic methods include the standard activated sludge method and the long-time aeration method. Although the standard activated sludge method is suitable for large-scale, high-grade treatment, it has the disadvantage that it requires advanced technology to operate and requires a large amount of expense and labor for maintenance and management. Furthermore, although the long-time aeration method is suitable for medium-scale treatment and generates a small amount of sludge, it has the drawback of long residence time and being susceptible to load fluctuations.

固定生物膜法には、散水濾床法、回転円板法、
接触酸化法等があり、いずれの方法も生物膜は各
種微生物の組合せからなる食物連鎖を形成するた
め、負荷変動に強く、維持管理が容易で小規模処
理に適しているが、処理量の増大には対応できな
いという欠点がある。
Fixed biofilm methods include trickling filter method, rotating disk method,
There are contact oxidation methods, etc. In both methods, biofilms form a food chain consisting of a combination of various microorganisms, so they are resistant to load fluctuations, easy to maintain, and suitable for small-scale treatment, but they require an increase in the amount of treatment. has the disadvantage of not being compatible with

本発明者は、廃水の生物学的処理方法について
好気性生物処理と高負荷処理に適する嫌気性生物
処理とを適合する条件下で組合せることについて
種々検討を重ねた結果、次の如き知見を得るに至
つた。即ち、嫌気性生物処理においては、生物膜
の安定性を高め得る多段の嫌気性濾床を採用し、
また、好気性生物処理は負荷変動に強く維持管理
が容易な接触酸化槽を採用し、さらに、接触酸化
槽の余剰汚泥を接触消化槽に返送することによ
り、嫌気性生物処理と好気性生物処理との各利点
が十分活かされるばかりでなく、発生汚泥量が極
端に少なくなることを見出した。こののような方
法によれば、廃水が各槽を流過する間に嫌気処理
と好気処理のサイクルを受けて効率よく処理され
て、負荷変動に強く、安定した高度な処理水質を
得、維持管理費の大巾な低減、建設費の軽減を達
成できることになる。
As a result of various studies regarding the biological treatment of wastewater by combining aerobic biological treatment and anaerobic biological treatment suitable for high-load treatment under compatible conditions, the inventor has found the following knowledge. I ended up getting it. That is, in anaerobic biological treatment, a multi-stage anaerobic filter bed that can increase the stability of biofilm is used,
In addition, for aerobic biological treatment, we have adopted a contact oxidation tank that is resistant to load fluctuations and easy to maintain, and furthermore, by returning excess sludge from the contact oxidation tank to the contact digestion tank, we have developed a system that allows both anaerobic biological treatment and aerobic biological treatment. It has been found that not only can each of the advantages of this method be fully utilized, but also that the amount of sludge generated can be extremely reduced. According to this method, wastewater undergoes a cycle of anaerobic treatment and aerobic treatment while flowing through each tank, and is efficiently treated, resulting in stable and high quality treated water that is resistant to load fluctuations. This will result in significant reductions in maintenance costs and construction costs.

かくして、本発明は、前記知見に基いて完成さ
れたものであり、嫌気性濾床を多段に設けた接触
消化槽に廃水を流入させて微生物処理し、該処理
水をさらに接触酸化槽に流入させて酸化処理し、
該接触酸化槽において生成された余剰汚泥は前記
接触消化槽へ返送させることを特徴とする、新規
な廃水処理方法を提供するものである。
Thus, the present invention has been completed based on the above findings, and consists of treating wastewater with microorganisms by flowing it into a contact digestion tank equipped with multiple stages of anaerobic filter beds, and then flowing the treated water into a contact oxidation tank. and oxidized,
The present invention provides a novel wastewater treatment method characterized in that surplus sludge produced in the contact oxidation tank is returned to the contact digestion tank.

以下、本発明の実施例について図面を参照して
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

図中Aは接触消化槽、Bは接触酸化槽である。
接触消化槽Aは筒部1にホツパー部2が形成され
た構成のもので、その上端中央部には沈砂池(図
示を略す)に連通した流入部3が天板4を経て開
口され、これに接続して槽中心部に流入管5が垂
設され、その下端にはホツパー部2の下部に開口
されている。接触消化槽A内には複数段の嫌気性
濾床6,6……が上下方向に互に所要の間隙7を
存して配設されている。そして、槽Aの下端には
汚泥引抜管8が接続されていると共に、槽Aの上
部には処理水の排出管9が接続されている。
In the figure, A is a contact digestion tank, and B is a contact oxidation tank.
The contact digestion tank A has a structure in which a hopper part 2 is formed in a cylindrical part 1, and an inflow part 3 that communicates with a settling basin (not shown) is opened at the center of the upper end through a top plate 4. An inflow pipe 5 is vertically connected to the center of the tank, and its lower end is opened to the lower part of the hopper part 2. In the contact digestion tank A, a plurality of stages of anaerobic filter beds 6, 6, . . . are arranged vertically with a required gap 7 between them. A sludge drawing pipe 8 is connected to the lower end of the tank A, and a treated water discharge pipe 9 is connected to the upper part of the tank A.

接触酸化槽Bは、筒状に形成した槽の中心部に
上下方向の流通管10が垂設され、その周囲に好
気性濾床11が設けられ、流通管10の下端部内
には給気管12の端部が開口されている。また、
槽Bには前記排出管9が接続され、流通管10の
直上位置に開口されている。そして、さらに槽B
の上部には浄水流出管13が接続されていると共
に、槽Bの下端には汚泥返送管14が接続され、
その端部は槽Aの流入部3に連通されている。
In the contact oxidation tank B, a vertical flow pipe 10 is installed vertically in the center of the tank formed in a cylindrical shape, an aerobic filter bed 11 is provided around the flow pipe 10, and an air supply pipe 12 is installed in the lower end of the flow pipe 10. The end is open. Also,
The discharge pipe 9 is connected to the tank B, and is opened directly above the flow pipe 10. And further tank B
A purified water outflow pipe 13 is connected to the upper part of the tank B, and a sludge return pipe 14 is connected to the lower end of the tank B.
Its end is connected to the inflow section 3 of tank A.

沈砂池からの廃水は、流入部3から流入管5を
通つて接触消化槽Aの下部に入り矢印のような上
向流となつて、嫌気性濾床6,6……の下段のも
のから順次上段のものへと通過する。その際、嫌
気性濾床6に形成される嫌気性生物膜に接触して
浄化される。そして、浄化された廃水は槽上部の
排出管9を通つて、次に好気性の接触酸化槽Bに
入り、給気管12からの給気循環流によつて槽B
内を循環し、好気性濾床11の好気性生物膜に循
環接触して浄化され、その浄化水は浄水流出管1
3より流出される。この接触酸化槽Bにおいて生
成された余剰汚泥は、槽Bの下端から汚泥返送管
14によつてその全量が接触消化槽に返送され
る。返送された汚泥は、流入廃水中の有機物質と
共に消化分解されて消化汚泥となりホツパー部2
に沈澱し、汚泥引抜管8から排出することにな
る。
The wastewater from the settling basin enters the lower part of the contact digestion tank A from the inflow section 3 through the inflow pipe 5, flows upward as shown by the arrow, and flows from the lower stage of the anaerobic filter beds 6, 6... Pass through to the upper level one by one. At that time, it comes into contact with the anaerobic biofilm formed on the anaerobic filter bed 6 and is purified. The purified wastewater passes through the discharge pipe 9 at the top of the tank, then enters the aerobic contact oxidation tank B, and is transported to the tank B by the supply air circulation flow from the air supply pipe 12.
The purified water circulates through the aerobic filter bed 11 and is purified by circulating in contact with the aerobic biofilm of the aerobic filter bed 11.
It is leaked from 3. The entire amount of excess sludge produced in the contact oxidation tank B is returned to the contact digestion tank from the lower end of the tank B via the sludge return pipe 14. The returned sludge is digested and decomposed together with the organic substances in the inflowing wastewater to become digested sludge and transferred to the hopper section 2.
The sludge will settle and be discharged from the sludge drawing pipe 8.

なお、前記図面の実施例では、接触消化槽Aへ
廃水の流入は、槽Aの上部から行うようにしてい
るが、この廃水の流入は、濾床の最下段に対して
均一的に供給できればよいから、図に鎖線で示し
たように槽Aの下部に流入させるようにしてもよ
い。ただこの場合、沈澱している消化汚泥を撹散
しないように流入させることが必要である。
In the embodiment shown in the drawings, the wastewater flows into the contact digestion tank A from the upper part of the tank A, but if the wastewater can be uniformly supplied to the bottom stage of the filter bed, Alternatively, the water may be allowed to flow into the lower part of tank A as shown by the chain line in the figure. However, in this case, it is necessary to flow the settled digested sludge without stirring it up.

本発明においては、接触消化槽A内に嫌気性濾
床6が上下に多段に設けられていることが特に重
要である。濾床6を構成する濾材は竹篠や砕石な
どのほかのプラスチツクを素材とした粒状体や、
板状体、筒状体、網状体等生物膜の付着性のよい
ものを用いることができる。そして濾材を所要の
厚さに積層して数段の濾床6を形成し、各濾床6
間には所要高さの間隙7を形成させる。嫌気性濾
床においては一般に生物膜の付着性が弱く、通過
流速が早すぎたり、流動に乱れが生じると生物膜
の剥離がおきて処理効果が著しく低下することに
なる。そのため、濾材に極力付着性のよいものを
使用することが必要となるほか、濾材に対して廃
水を極力均一に接触させること、及び乱れた流れ
を補正してやることが必要となる。濾床6を互に
間隔をおいて多段に設けることにより、廃水の均
一的な濾材への接触と整流が維持され、処理効果
が著しく助長される。即ち、濾床6の通過によつ
て流動を乱された廃水は、次の濾水6に入る前に
濾床相互間の間隙7を通ることにより整流化さ
れ、次の濾床6への流入が均一化して濾材に対し
均一的な接触条件が得られることになる。
In the present invention, it is particularly important that the anaerobic filter beds 6 are provided in multiple stages vertically within the contact digestion tank A. The filter media constituting the filter bed 6 may be granular materials made of other plastics such as bamboo shinobu or crushed stone, or
A plate-like body, a cylindrical body, a net-like body, etc. to which biofilms can easily adhere can be used. Then, the filter media are stacked to a required thickness to form several stages of filter beds 6, and each filter bed 6 is
A gap 7 of a required height is formed between them. In anaerobic filter beds, biofilms generally have weak adhesion, and if the flow rate through the bed is too fast or turbulence occurs, the biofilms will peel off and the treatment effect will be significantly reduced. Therefore, it is necessary to use a filter medium with as good adhesion as possible, and it is also necessary to bring wastewater into contact with the filter medium as uniformly as possible, and to correct turbulent flow. By providing the filter beds 6 in multiple stages at intervals, uniform contact and rectification of the wastewater with the filter medium is maintained, and the treatment effect is significantly enhanced. That is, the wastewater whose flow has been disturbed by passing through the filter bed 6 is rectified by passing through the gap 7 between the filter beds before entering the next filter bed 6, and then flows into the next filter bed 6. This results in uniform contact conditions with the filter medium.

従来下水処理に用いられている処理方式では、
最も高級とされる標準活性汚泥法でも、BOD除
去率は90%限度である。例えば標準活性汚泥法で
流入廃水のBODが200mg/の場合、処理水の
BODは20mg/となる。
In the treatment methods conventionally used for sewage treatment,
Even with the most advanced standard activated sludge method, the BOD removal rate is limited to 90%. For example, if the BOD of influent wastewater is 200mg/by standard activated sludge method, the treated water
BOD will be 20mg/.

しかし流入廃水のBOD200mg/以上の高濃度
な場合、また水温が10℃以下になつた場合、ある
いは、滞溜時間が長すぎる場合は、活性汚泥の管
理に困難を応じBODの除去率が著しく低下する。
However, if the inflow wastewater has a high BOD concentration of 200mg/or more, if the water temperature drops below 10℃, or if the retention time is too long, it will be difficult to manage the activated sludge and the BOD removal rate will drop significantly. do.

これに対し本発明では、BODの除去率は常に
95%以上が維持でき、例えば流下水のBODが200
mg/の場合処理水のBODは10mg/以下とな
る。また、流入廃水のBODが200mg/以上の高
濃度でも、接触消化槽Aにおける滞溜時間と、接
触酸化槽Bにおける滞溜時間の設計数値の組み合
わせの操作ににより、あるいは接触消化槽A及び
接触酸化槽Bを多段に設置することにより、
BOD除去率は97%以上が可能となる。
In contrast, with the present invention, the BOD removal rate is always
95% or more can be maintained, for example, BOD of flowing sewage is 200
mg/, the BOD of the treated water will be 10 mg/or less. In addition, even if the BOD of inflow wastewater is high concentration of 200 mg/or more, it is possible to increase the By installing oxidation tank B in multiple stages,
BOD removal rate of 97% or more is possible.

滞溜時間の設計数値の組み合わせの操作の一例
をあげると、流入廃水のBODが300mg/の場
合、接触消化槽Aの滞溜時間を30時間とし、接触
酸化槽Bの滞溜時間を10時間と設定すれば、接触
消化槽Aにおいて浄化された水は、BOD90mg/
となり、さらに接触酸化層Bにおいて浄化され
た最終的な処理用水はBOD9mg/で、BOD除
去率は、97%となる。又、接触消化槽Aの滞溜時
間を48時間とし、接触酸化槽Bの滞溜時間を15時
間と設定すれば、接触消化槽Aにおいて浄化され
た水はBOD75mg/となり、さらに接触酸化槽
Bにおいて浄化された最終的な処理水はBOD7.5
mg/でBOD除去率は97.5%となる。従来法で
BOD除去率を95%以上にするには、通常の処理
を行つた後に、いわゆる3次処理が必要で、建設
費が割高になる上、維持管理にも手間がかかり、
維持管理費も高くなる。ところが本発明方法では
従来法と同程度あるいはそれ以下の施設規模で、
BODの除去率95%が得られ、3次処理の必要が
ない。
To give an example of how to combine design values for retention time, if the BOD of influent wastewater is 300mg/, the retention time in contact digestion tank A is 30 hours, and the retention time in contact oxidation tank B is 10 hours. If this is set, the water purified in contact digestion tank A will have a BOD of 90mg/
The final treated water further purified in the catalytic oxidation layer B has a BOD of 9 mg/BOD, and the BOD removal rate is 97%. Furthermore, if the retention time in contact digestion tank A is set to 48 hours and the retention time in contact oxidation tank B is set to 15 hours, the water purified in contact digestion tank A will have a BOD of 75 mg/, and the water purified in contact digestion tank A will have a BOD of 75 mg/. The final treated water purified at BOD7.5
mg/, the BOD removal rate is 97.5%. by conventional method
In order to achieve a BOD removal rate of 95% or more, so-called tertiary treatment is required after the normal treatment, which not only increases construction costs but also requires time and effort to maintain.
Maintenance costs will also increase. However, with the method of the present invention, the scale of the facility is comparable to or smaller than that of the conventional method.
A BOD removal rate of 95% is achieved, and there is no need for tertiary treatment.

また、接触消化槽Aにおいて無動力でBOD除
去率70%以上が得られるので接触酸化槽Bでの
BOD除去量が軽減され、必要空気量も少なくて
すみ、したがつて水処理動力の大半を占める送風
機の電気容量が従来法に比べ約1/2となり、消費
電力が大幅に削減できる。
In addition, since contact digestion tank A can achieve a BOD removal rate of 70% or more without power, contact oxidation tank B can achieve a BOD removal rate of over 70%.
The amount of BOD removed is reduced, and the amount of air required is also small.Therefore, the electric capacity of the blower, which accounts for most of the water treatment power, is about half that of conventional methods, resulting in a significant reduction in power consumption.

発生汚泥量は従来法のうち最も発出汚泥量が少
ないとされる接触酸化法でも、除去BOD量に対
し、余剰汚泥量は20%から30%であるが、本発明
では余剰汚泥の発生は極端に少なく、除去BOD
量に対し約2%となる。
Even with the contact oxidation method, which is said to generate the least amount of sludge among conventional methods, the amount of surplus sludge is 20% to 30% of the amount of BOD removed, but with the present invention, the amount of surplus sludge is extremely low. Reduces and removes BOD
Approximately 2% of the amount.

なお、余剰汚泥は接触消化槽Aに100%返送さ
れ、嫌気性消化されるので、発生汚泥量は従来法
に比べ大幅に少なく消化されて出てくるので、乾
燥床の他、直接機械脱水も可能となる。
In addition, 100% of the excess sludge is returned to the contact digestion tank A and anaerobically digested, so the amount of sludge produced is much smaller than in the conventional method, so direct mechanical dewatering is also possible in addition to the drying bed. It becomes possible.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施態様を示した側断面図であ
る。 A……接触消化槽、B……接触酸化槽、3……
流入部、5……流入管、6……嫌気性濾床、7…
…間隙、8……汚泥引抜管、9……排出管、10
……流通管、11……好気性濾床、12……給気
管、13……浄水流出管、14……汚泥返送管。
The drawing is a side sectional view showing an embodiment of the invention. A... Contact digestion tank, B... Contact oxidation tank, 3...
Inflow section, 5... Inflow pipe, 6... Anaerobic filter bed, 7...
...Gap, 8...Sludge drawing pipe, 9...Discharge pipe, 10
... Distribution pipe, 11 ... Aerobic filter bed, 12 ... Air supply pipe, 13 ... Purified water outflow pipe, 14 ... Sludge return pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 嫌気性濾床を多段に設けた接触消化槽に廃水
を流入させて浄化処理し、該処理水をさらに接触
酸化槽に流入して酸化処理すると共に、該接触酸
化槽において生成された汚泥を前記接触消化槽へ
返送して、流入廃水中の有機物質と共に消化分解
し、その消化汚泥を槽外に排出させることを特徴
とする、廃水の処理方法。
1 Wastewater is purified by flowing into a contact digestion tank equipped with multiple stages of anaerobic filter beds, and the treated water is further flowed into a contact oxidation tank to be oxidized, and the sludge generated in the contact oxidation tank is A method for treating wastewater, which comprises returning the wastewater to the contact digestion tank, digesting and decomposing it together with organic substances in the inflowing wastewater, and discharging the digested sludge out of the tank.
JP57036504A 1982-03-10 1982-03-10 Treatment of waste water Granted JPS58153595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57036504A JPS58153595A (en) 1982-03-10 1982-03-10 Treatment of waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57036504A JPS58153595A (en) 1982-03-10 1982-03-10 Treatment of waste water

Publications (2)

Publication Number Publication Date
JPS58153595A JPS58153595A (en) 1983-09-12
JPH0144397B2 true JPH0144397B2 (en) 1989-09-27

Family

ID=12471648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57036504A Granted JPS58153595A (en) 1982-03-10 1982-03-10 Treatment of waste water

Country Status (1)

Country Link
JP (1) JPS58153595A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5939396A (en) * 1982-08-27 1984-03-03 Ebara Infilco Co Ltd Disposal of organic waste water
JPS60137492A (en) * 1983-12-23 1985-07-22 Meidensha Electric Mfg Co Ltd Waste water treating apparatus
JPS60166096A (en) * 1984-02-03 1985-08-29 Shoshi Hiraoka Treatment of waste water
JPS6422398A (en) * 1987-07-18 1989-01-25 Kajima Corp Multi-stage granulation type bioreactor
JPH0667510B2 (en) * 1990-06-15 1994-08-31 株式会社四電工 Flow rate control type small treatment septic tank
KR100443407B1 (en) * 2002-04-02 2004-08-11 곽종운 Water purification device using a microorganism media
KR100758508B1 (en) * 2006-04-20 2007-09-13 박주성 An apparatus for cleaning wastewater
JP2008029945A (en) * 2006-07-27 2008-02-14 Spring Field Kk Microbial carrier for waste water treatment, and waste water treatment apparatus
JP6460935B2 (en) * 2015-07-22 2019-01-30 株式会社日立製作所 Anaerobic fermentation treatment method for waste water, microbial carrier for anaerobic fermentation treatment, and anaerobic fermentation treatment apparatus
CN111732277A (en) * 2020-06-28 2020-10-02 上海中汇水生态科技有限公司 Rural domestic sewage treatment system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57162694A (en) * 1981-03-31 1982-10-06 Nippon Kankyo Seibi Kiyouiku Center Method and device for purification of waste water

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57162694A (en) * 1981-03-31 1982-10-06 Nippon Kankyo Seibi Kiyouiku Center Method and device for purification of waste water

Also Published As

Publication number Publication date
JPS58153595A (en) 1983-09-12

Similar Documents

Publication Publication Date Title
US9133044B2 (en) Method and device for the treatment of waste water
CN105174601B (en) A kind of biological treatment of cassava alcohol waste water
CN101746931B (en) Denitrification dephosphorization biological treatment and filtration integral sewage treatment system and method thereof
CN106865890A (en) A/O SBBR oxidation pond artificial wetland treatments pig farm biogas slurry system
CN201598224U (en) Biological nitrogen and phosphorus removal treatment and filter integrated sewage treatment system
JPH0144397B2 (en)
CN112010507A (en) Household domestic sewage treatment device
CN110436623A (en) Granular sludge expansion bed reactor and wastewater treatment method based on independent aeration tank
CN105668946A (en) Dairy farm wastewater treatment system and treatment method
CN106045026A (en) Anaerobic-facultative up-flow reactor based landfill leachate treatment method and equipment
CN207313242U (en) A kind of split reflux declines oxygen denitrification reactor
WO2022100180A1 (en) Aeration combination tower and method for treating organic wastewater
CN213865856U (en) Urban domestic sewage treatment system
CN205856269U (en) Biological reaction tank for treating polluted water
JPH11244891A (en) Method for denitrification treating waste water and treating system
CN213680293U (en) Integrated biological fluidized bed sewage treatment device
JPH0232953B2 (en)
CN108394996B (en) Activated sludge integrated sewage treatment device
CN207313374U (en) A kind of micro- oxygen denitrification reactor of internal-circulation type
CN208414162U (en) Ozone-biofilter underload organic wastewater processing unit
KR100402304B1 (en) Biological wastewater treatment system and methods using internal recycling
JP2579122B2 (en) Wastewater treatment equipment
JP3116323B2 (en) Merged septic tank
CN201049905Y (en) Upstream biological filter
CN101279809B (en) Biological filler shimmying-bed