JPH0375136A - Laminate with deoxidation function - Google Patents

Laminate with deoxidation function

Info

Publication number
JPH0375136A
JPH0375136A JP21193589A JP21193589A JPH0375136A JP H0375136 A JPH0375136 A JP H0375136A JP 21193589 A JP21193589 A JP 21193589A JP 21193589 A JP21193589 A JP 21193589A JP H0375136 A JPH0375136 A JP H0375136A
Authority
JP
Japan
Prior art keywords
oxygen
metal
adhesive
water
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21193589A
Other languages
Japanese (ja)
Other versions
JP2740013B2 (en
Inventor
Keisuke Nosaka
野坂 恵介
Tsunetoshi Asai
浅井 恒敏
Tetsuo Tsutsumi
堤 哲雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Suntory Ltd
Original Assignee
Nippon Steel Corp
Suntory Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Suntory Ltd filed Critical Nippon Steel Corp
Priority to JP21193589A priority Critical patent/JP2740013B2/en
Publication of JPH0375136A publication Critical patent/JPH0375136A/en
Application granted granted Critical
Publication of JP2740013B2 publication Critical patent/JP2740013B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PURPOSE:To enhance deoxidation capacity by dispersing and mixing one or more kind of active metal magnesium, zinc, lead, iron, nickel, tin and manganese between a metal material and an oxygen/water permeable coating layer. CONSTITUTION:Since deoxidation reaction is performed immediately inside an oxygen/water permeable film when a metal forming reaction through the reaction with oxygen is dispersed in an adhesive layer, said metal becomes a barrier against oxygen/water permeability and the effect of an adhesive layer, said metal becomes a barrier against oxygen/water permeability and the effect of an adhesive can be suppressed to the min. and deoxidation capacity can be enhanced. As the metal mixed with this inventive adhesive, magnesium, zinc, iron, nickel, tin and manganese are pref. All of these metals are selected because they are active to oxygen but an alkali metal active to oxygen such as sodium, potassium or calcium is not pref. because said metal is two violent in reaction and generates a large quantity of heat and makes the adhesive strong alkaline after deoxidation reaction to markedly reduce bonding strength.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は瓶、飲料缶1食缶などの酸素によって、劣化、
変質しやすい内容物を収納する密封容器の材料として使
用し、とくじ内容量が大きいにもかかわらず、脱酸素機
能積層体の面積を大きくできない脱酸素機能容器などに
用いる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention prevents the deterioration and deterioration of bottles, single-serving beverage cans, etc. by oxygen.
It is used as a material for sealed containers that store contents that are susceptible to deterioration, and is used in oxygen scavenging containers where the area of the oxygen scavenging laminate cannot be increased despite the large capacity of the lottery.

〔従来の技術〕[Conventional technology]

従来から飲料や食料の長期保存のために使用される缶詰
は加熱殺菌、窒素封入などによって、酸素の混入を防ぐ
のが一般的であった。
Traditionally, canned foods used for long-term storage of beverages and food have been sterilized by heat and filled with nitrogen to prevent oxygen from entering the cans.

ところがこれらの方法は酸素を完全に除くのが難しく、
最近では還元性物質を透過性フィルムなどで包装して封
入し、酸素をこれら還元性物質の酸化に消費させること
によって、内容物を劣化させないようにしたり、さらに
は脱酸素能を有する積層金属体による缶が発明され、よ
り安価で、より有効な方法として注目されている。
However, these methods are difficult to completely remove oxygen;
Recently, reducing substances are packaged and encapsulated in a transparent film, etc., and oxygen is consumed for oxidation of these reducing substances to prevent the contents from deteriorating. Furthermore, laminated metal bodies with oxygen scavenging ability are The invention of cans has attracted attention as a cheaper and more effective method.

とくにこの脱酸素機能毎をつくるための材料としては、
特開昭63−274537号公報に見られるように、金
属材料に施した親水性被覆層の上に、酸素・水透過性の
優れたポリメチルペンテンあるいはポリブタジェン等の
ポリオレフィンフィルムを接着剤により接着したものが
使用される。
In particular, the materials for creating this oxygen scavenging function are:
As seen in JP-A No. 63-274537, a polyolefin film such as polymethylpentene or polybutadiene with excellent oxygen and water permeability is bonded with an adhesive onto a hydrophilic coating layer applied to a metal material. things are used.

缶詰類の内容物の変質を防ぎ、新鮮さを保つために十分
有効である。しかしながら、加熱脱気、窒素シールなど
を補いより完全に酸素を除くには、もっと優れた脱酸素
機能が必要とされる場合があるし、とくに脱酸素積層体
の面積を大きくできない瓶の王冠などに適用する場合に
は、より大きい脱酸素能を持つ材料が必要であった。
It is effective enough to prevent the contents of canned foods from deteriorating and maintain their freshness. However, in order to completely remove oxygen by supplementing heating deaeration, nitrogen sealing, etc., a better deoxidizing function may be required, especially for bottle caps where the area of the deoxidizing layer cannot be increased. , a material with greater oxygen scavenging capacity was needed.

(課題を解決するための手段) そこで本発明者らは、これを解決するため種々検討した
結果、積層体を構成する酸素・水透過性被覆層と金属体
材料の中間にある接着剤層に、活性な金属を混入させる
ことによって、脱酸素能を向上することができることを
見いだした。
(Means for Solving the Problems) Therefore, as a result of various studies in order to solve this problem, the present inventors found that the found that the oxygen scavenging ability could be improved by incorporating active metals.

すなわち本発明は金属材料表面の上に接着層等を介して
、酸素・水透過性被覆層を積層した脱酸素機能金属−樹
脂積層体において、金属材料−酸素・水透過性被覆層間
に活性な金属マグネシウム、亜鉛、鉄、ニッケル、錫、
マンガンの1種または2種以上を分散、混入せしめたこ
とを特徴とする脱酸素機能積層体に関するものである。
That is, the present invention provides an oxygen-reducing functional metal-resin laminate in which an oxygen- and water-permeable coating layer is laminated on the surface of a metal material via an adhesive layer or the like. Metal magnesium, zinc, iron, nickel, tin,
The present invention relates to an oxygen absorbing laminate characterized in that one or more types of manganese are dispersed and mixed therein.

〔作   用〕[For production]

本発明においては、金属材料の表面に接着層を介して酸
素・水通過層を積層する。その場合、金属表面には親木
性被覆層を施してもよい。親木性被覆層は常温で水に容
易に溶解もしくは膨潤する性質を有する結合剤から形成
され、それ自体水と親和性を有するものをいい、特に限
定されるものではないが、水溶性ポリマーを結合剤とし
、これを水に溶解せしめた固形分濃度約0.1〜20重
量%の水溶液等が好ましい。水溶性ポリマーとしては例
えばでん粉。
In the present invention, an oxygen/water permeable layer is laminated on the surface of a metal material via an adhesive layer. In that case, a wood-loving coating layer may be applied to the metal surface. The wood-philic coating layer is formed from a binder that easily dissolves or swells in water at room temperature, and refers to a binder that itself has an affinity for water, including, but not limited to, a water-soluble polymer. An aqueous solution prepared by dissolving this binder in water and having a solid content concentration of about 0.1 to 20% by weight is preferable. Examples of water-soluble polymers include starch.

ゼラチン、セルロース誘導体、ポリビニールアルコール
、アクリル酸、メタクリル酸、あるいはそのエステルな
どがある。
Examples include gelatin, cellulose derivatives, polyvinyl alcohol, acrylic acid, methacrylic acid, or their esters.

この金属材料は酸素と結合しやすいよう酸洗、商品名ス
コッチブライトなどによる研磨により活性にすることも
できる。
This metal material can be made active by pickling or polishing with a product such as Scotchbrite so that it can easily combine with oxygen.

また本発明は接着層等を介して、酸素・水透過性被覆層
を積層される。酸素・水透過性被覆層としては、酸素や
水に対する透過性は大きいが、金属イオンは通さないポ
リメチルペンテンあるいはポリブタジェン等のポリオレ
フィンが用いられる。接着剤としてはポリエステル系。
Further, in the present invention, an oxygen/water permeable coating layer is laminated via an adhesive layer or the like. As the oxygen/water permeable coating layer, a polyolefin such as polymethylpentene or polybutadiene is used, which has high permeability to oxygen and water but does not allow metal ions to pass therethrough. The adhesive is polyester.

ポリウレタン系、ポリアクリレート系、変性ビニール系
、エラストマー系、オレフィン系、変性オレフィン系な
どが単独もしくは混合された形で適用できる。接着剤中
には親木性あるいは水溶性のポリマーやイオン交換樹脂
などを分散もしくは混入せしめることもできる。接着剤
を部分塗布することも可能である。
Polyurethane-based, polyacrylate-based, modified vinyl-based, elastomer-based, olefin-based, modified olefin-based, etc. can be used alone or in a mixed form. It is also possible to disperse or mix wood-philic or water-soluble polymers, ion exchange resins, etc. into the adhesive. It is also possible to apply the adhesive locally.

とくに本発明はかかる金属材料と酸素・水透過性被覆層
の間にある活性な金属を混入させた接着剤層に係わるも
のである。
In particular, the present invention relates to an active metal-loaded adhesive layer between such a metal material and an oxygen/water permeable coating layer.

もともと脱酸素機能積層体は密閉容器内の酸素、水を被
覆層を通して移行せしめ、親水性被覆層上で金属体を酸
化し、酸素を金属酸化物として酸素・水透過性被膜内に
固定することにより、缶内に含まれる微量酸素を除去す
ることを主旨としたものである。
Originally, the deoxidizing function laminate allows oxygen and water in a sealed container to migrate through the coating layer, oxidizes the metal body on the hydrophilic coating layer, and fixes oxygen as metal oxide in the oxygen/water permeable coating. The purpose is to remove trace amounts of oxygen contained within the can.

しかるに酸化反応に必要な金属体や親木性被膜が酸素や
水の透過性の比較的低い接着剤層の内側にあるため、脱
酸素能を劣化させる原因になっていた。
However, since the metal body and wood-philic film necessary for the oxidation reaction are located inside the adhesive layer, which has relatively low permeability to oxygen and water, this has been a cause of deterioration of the oxygen scavenging ability.

そのため、酸素や水の透過性のよい材料として水溶性ポ
リマー等を混入させたり、接着剤そのものを改良したり
してきて、一応の効果はえられたが、とくじ高度な脱酸
素能を要求される材料としてはこれでも十分でなく、さ
らに改良する必要があった。
For this reason, attempts have been made to incorporate water-soluble polymers into materials with good oxygen and water permeability, and to improve the adhesive itself. Although these efforts have had some effect, they are still required to have a high level of oxygen scavenging ability. However, this was still insufficient as a material for use in the manufacturing process, and further improvements were needed.

そこで各種検討を加えた結果、酸素と反応して酸化物を
つくる金属を接着剤層に分散すれば、脱酸素反応が酸素
・水′3!i通性被膜の直ぐ内側で行われるため、酸素
・水透過性のバリアーとなる接着剤の影響を最小限に抑
えることができ、脱酸素能が上がるとの考えに至り、本
発明をなすに至った。
As a result of various studies, we found that if a metal that reacts with oxygen to form an oxide is dispersed in the adhesive layer, the deoxidizing reaction can be achieved with oxygen and water! Since the process is carried out immediately inside the permeable film, the influence of the adhesive, which acts as a barrier to oxygen and water permeability, can be minimized, leading to the idea that the oxygen scavenging ability will be improved. It's arrived.

本発明の接着剤に混入させる金属の種類はマグネシウム
、亜鉛、鉄、ニッケル、錫、マンガンが好ましい。これ
らの金属はいずれも、酸素に対して活性であることから
選んだものであるが、酸素に対して活性な金属でもナト
リウム。
Preferably, the metal to be mixed into the adhesive of the present invention is magnesium, zinc, iron, nickel, tin, or manganese. All of these metals were chosen because they are active against oxygen, and among the metals that are active against oxygen is sodium.

カリウム、カルシウムなどのアルカリ金属は反応が急激
すぎ、発熱量も多く、脱酸素反応後、接着剤を強アルカ
リ性にし、接着力を著しく弱めるため好ましくない。
Alkali metals such as potassium and calcium are not preferred because they react too rapidly and generate a large amount of heat, and after the deoxidizing reaction, make the adhesive strongly alkaline, significantly weakening the adhesive force.

本発明の金属は基材である金属体とともに局部電池を形
成し、金属の酸化を促進する効果も期待できる。したが
って金属としては基材金属より卑な金属がより効果を発
揮できると考えられる。しかしこれは必ずしも必要では
ない。酸素・水透過性被膜に近いだけでも十分効果があ
るからである。
The metal of the present invention can be expected to form a local battery together with the metal body as a base material, and can also be expected to have the effect of promoting oxidation of the metal. Therefore, it is thought that a metal less noble than the base metal can exhibit a more effective effect. However, this is not necessary. This is because it is sufficiently effective even if it is close to an oxygen/water permeable film.

同じような作用を期待すると、金属としては1種類だけ
でなく、2f!類以上の金属を混入させることもできる
。また上記金属の合金を使うこともできる。
Expecting a similar effect, there is not only one type of metal, but 2F! It is also possible to mix metals of the same type or higher. It is also possible to use alloys of the above metals.

これら金属の形状は塊状でも薄片状でもよく、また針状
あるいは繊維状でもよい。いずれにせよ、凝集しないよ
うできるだけ均一に分散させる必要がある。
The shape of these metals may be lumpy or flaky, or needle-like or fibrous. In any case, it is necessary to disperse them as uniformly as possible to avoid agglomeration.

塊状あるいは薄片状の場合、大きすぎても、単位重量当
りの脱酸素能は増加しないので意味がなく、 100μ
m以下が適正である。同じ意味から針状あるいは繊維状
の場合の直径は100μm以下にすべきである。とくに
金属が大きすぎると、酸素・水透過性被膜表面に凹凸を
生じることもあるが、極端でなければ支障はない。
If it is in the form of lumps or flakes, even if it is too large, the oxygen scavenging capacity per unit weight will not increase, so it is meaningless;
m or less is appropriate. For the same reason, the diameter of needle-like or fibrous materials should be 100 μm or less. In particular, if the metal is too large, unevenness may occur on the surface of the oxygen/water permeable coating, but this is not a problem unless it is extreme.

長い針状あるいは繊維状の金属を用いる場合は網状にす
ることも考えられる。
When using long needle-like or fibrous metal, it is also possible to use a net-like shape.

また添加量に関しては少なすぎると脱酸素能が一向上せ
ず、多すぎると接着力を劣下させることから塊状あるい
は薄片状の場合は0.05から5.0g/rn”、針状
あるいは繊維状の場合もだいたいこれを目安に添加すれ
ばよい。
Regarding the amount added, if it is too small, the oxygen scavenging ability will not improve at all, and if it is too large, the adhesive force will deteriorate. In the case of a similar condition, it is sufficient to add approximately this amount as a guide.

通常は、これらの金属は接着剤に混入して塗布するが、
接着剤を塗布後、あるいは接着剤を塗布し、不十分に硬
化させ、その上に吹き付けるとか、水溶性ポリマーある
いは適当な溶剤に分散させ、塗布してもよい。親水性被
覆層を施し、その中に混入させるか、あるいはその上に
塗布しても、はぼ同じ効果が期待できる。
Usually, these metals are mixed into adhesives and applied.
The adhesive may be applied after the adhesive has been applied, or after the adhesive has been applied and insufficiently cured, it may be sprayed on or dispersed in a water-soluble polymer or a suitable solvent and applied. Approximately the same effect can be expected by applying a hydrophilic coating layer and mixing it therein or coating it thereon.

接着剤に対する分散は塊状、薄片状、針状あるいは繊維
状の金属を入れて激しく撹拌し、接着剤塗布のときにも
撹拌しながら行うことにより、充分均一な塗布が可能で
ある。シラン系などの分散剤の併用も有効である。
To disperse the adhesive into the adhesive, a lump, flake, needle, or fibrous metal is added and vigorously stirred, and the adhesive can be applied evenly by stirring while applying the adhesive. It is also effective to use a dispersant such as a silane type.

また酸素・水透過性被膜に内側に混入させれば、接着性
その他の課題を防ぐことができ、金属の混入量を増やす
ことができるので、より有効である。たとえば、酸素・
水透過性フィルムを二層構造とし、上層を通常の酸素・
水透過性フィルム、下層を接着性を向上させた変性フィ
ルムとし、この変性フィルムに金属を混入させれること
もできる。さらに酸素・水透過性フィルムと変性フィル
ムの間に分散することもできる。
Further, if it is mixed inside the oxygen/water permeable film, problems such as adhesion can be prevented and the amount of metal mixed can be increased, which is more effective. For example, oxygen
The water-permeable film has a two-layer structure, and the upper layer is
It is also possible to use a water-permeable film or a modified film with improved adhesiveness as the lower layer, and to mix a metal into this modified film. Furthermore, it can also be dispersed between an oxygen/water permeable film and a modified film.

〔実 施 例〕〔Example〕

以下、本発明を実施例に基づいて具体的に説明する。 Hereinafter, the present invention will be specifically explained based on Examples.

実施例1 0.24mm厚の冷延鋼板上に、まずヒドロキシエチル
セルローズ3%水溶液からなる親木性被覆組成物を、そ
の乾燥板厚が0.2μmになるようにリバースコーター
にて塗装した後、200℃の雰囲気中で30秒間焼き付
けて親水性被覆層を有する鋼板をえた。ついで平均粒径
5μm(10μm以下80%)の金属Zn粉20容量%
を分散させたポリウレタン系接着剤をその上に乾燥塗膜
して2μmとなるように、同じくリバースローラーコー
ターにて塗装した。そしてガスオーブンにより乾燥なら
びに加熱を30秒間で鋼板温度が200℃になるように
行ったのち、そのままの温度を保持させたまま、直ちに
ロールラくネーターを用いて厚み50μmのポリメチル
ペンテンフィルムを張り合わせ、直ちに冷却して脱酸素
機能を有する樹脂被覆鋼板をえた。えられたものをサン
プルとして、下記の脱酸素能試験および加工接着性試験
を行った。
Example 1 A wood-loving coating composition consisting of a 3% aqueous solution of hydroxyethyl cellulose was first coated on a 0.24 mm thick cold-rolled steel plate using a reverse coater so that the dry plate thickness was 0.2 μm. A steel plate having a hydrophilic coating layer was obtained by baking in an atmosphere at 200° C. for 30 seconds. Next, 20% by volume of metal Zn powder with an average particle size of 5 μm (80% of 10 μm or less)
A polyurethane adhesive in which was dispersed was dried and coated to a thickness of 2 μm using the same reverse roller coater. Then, the steel plate was dried and heated in a gas oven for 30 seconds to reach a temperature of 200°C, and while the temperature was maintained, a 50 μm thick polymethylpentene film was immediately laminated using a rollator. It was immediately cooled to obtain a resin-coated steel sheet with oxygen scavenging function. Using the obtained sample as a sample, the following oxygen scavenging ability test and processing adhesion test were conducted.

■ 脱酸素能試験 樹脂被覆鋼板を直径65mm、内容積350mj2の円
筒系ガラス容器の蓋とし、 0.6H2を含むC02雰
囲気中で、約24mMのヘッドスペースを有するようビ
ールを入れて密封した。(試験体Aと称する。)比較材
として同じガラス容器に市販の缶用エポキシフェノール
樹脂塗料を膜厚60  B/dm2になるように、塗布
し焼付は乾燥した50番ぶりきを蓋として、試験体Aと
同じ条件でビールを入れ密封した。
(2) Oxygen scavenging ability test A resin-coated steel plate was used as the lid of a cylindrical glass container with a diameter of 65 mm and an internal volume of 350 mj2, and beer was poured into the container in a CO2 atmosphere containing 0.6 H2 so as to have a head space of approximately 24 mm and the container was sealed. (Referred to as test specimen A.) As a comparison material, a commercially available epoxy phenol resin paint for cans was applied to the same glass container to a film thickness of 60 B/dm2, and a dry No. 50 tin plate was used as the lid for baking. Beer was added and sealed under the same conditions as Body A.

(試験体Bと称する。)これらを20℃で24時間保っ
たのち、よく振蕩し、酸素分析計にて酸素濃度を測定し
、次式により脱酸素能を評価した。
(Referred to as test specimen B.) After keeping these at 20° C. for 24 hours, they were shaken well, the oxygen concentration was measured with an oxygen analyzer, and the oxygen scavenging ability was evaluated using the following formula.

■ 加工接着性試験 JIS K−6744にて示されている5mm幅#型の
クロスカットをフィルムに入れ、7mmのエリクセン試
験を行い、加工後のフィルムの剥離の有無を観察した。
(2) Processing adhesion test A 5 mm width #-shaped cross cut as shown in JIS K-6744 was placed in the film, and a 7 mm Erichsen test was conducted to observe whether or not the film peeled off after processing.

実施例2 厚さ0.24mmの冷延鋼板上に粒度4μm(10μm
以下75%)の金属Fe粒30容量%を分散させたポリ
ウレタン系接着剤を乾燥膜厚2μmになるように塗布し
、ローラーラミネーターにて50μmのポリメチルペン
テンを積層し、サンプルとした。この板で上記の脱酸素
能試験および加工接着性試験を行った。
Example 2 A grain size of 4 μm (10 μm
A polyurethane adhesive in which 30% by volume of metallic Fe particles (hereinafter referred to as 75%) were dispersed was applied to a dry film thickness of 2 μm, and a 50 μm thick polymethylpentene was laminated using a roller laminator to prepare a sample. The above-mentioned oxygen scavenging ability test and processing adhesion test were conducted on this board.

実施例3 厚さ0.24aunの冷延鋼板上にヒドロキシエチルセ
ルローズ3%水溶液を乾燥膜厚0.3μmになるよう塗
布し、その上にポリウレタン系接着剤を乾燥膜厚2μm
になるように塗布し、すぐローラーラミネーターにて、
平均粒径5μm(10μm以下80%)の金属Zn粉を
20容量%分散サセた10μm厚の変性ポリメチルペン
テンフィルムと50μmのポリメチルペンテンの積層体
をラミネートした。このサンプルの脱酸素能試験および
加工接着性試験を行った。
Example 3 A 3% aqueous solution of hydroxyethyl cellulose was applied to a cold-rolled steel plate with a thickness of 0.24 au to a dry film thickness of 0.3 μm, and a polyurethane adhesive was applied on top of it to a dry film thickness of 2 μm.
Apply it so that it looks like this, and then use a roller laminator immediately.
A laminate of a 10 μm thick modified polymethylpentene film in which 20% by volume of metallic Zn powder with an average particle diameter of 5 μm (80% of 10 μm or less) was dispersed and a 50 μm polymethyl pentene was laminated. This sample was subjected to an oxygen scavenging ability test and a processing adhesion test.

比較例1 厚さ0.24mmの冷延鋼板上にヒドロキシエチルセル
ローズ3%水溶液を乾燥膜厚0.3μmになるよう塗布
し、その上にポリウレタン系接着剤を乾燥膜厚2μmに
なるよう塗布し、すぐローラーラミネーターにて50A
t11のポリメチルペンテンを積層した。このサンプル
の脱酸素能試験および加工接着性試験を行った。
Comparative Example 1 A 3% aqueous solution of hydroxyethyl cellulose was applied to a cold-rolled steel plate with a thickness of 0.24 mm to a dry film thickness of 0.3 μm, and a polyurethane adhesive was applied thereon to a dry film thickness of 2 μm. , 50A immediately with a roller laminator
t11 polymethylpentene was laminated. This sample was subjected to an oxygen scavenging ability test and a processing adhesion test.

第1表に各実施例および比較例の評価結果を示す。実施
例1は親木性被覆層を施し、その上の接着剤中に金属亜
鉛粉を添加して製造した脱酸素機能鋼板であり、実施例
2は金属Fe粉を添加した接着剤を冷延鋼板に施して製
造したものである。また実施例3はポリメチルペンテン
の下層部に金属Zn粉を含む変性ポリメチルペンテンを
積層したものを冷延鋼板にラミネートして製造したもの
である。比較例の金属を添加しない場合に比べ、脱酸素
能が70%以上と著しく向上している。
Table 1 shows the evaluation results of each example and comparative example. Example 1 is a deoxidizing functional steel sheet produced by applying a wood-loving coating layer and adding metal zinc powder to the adhesive on top of the coating layer, and Example 2 is a steel plate with a deoxidizing function produced by applying a wood-loving coating layer and adding metal zinc powder to the adhesive. It is manufactured by applying it to a steel plate. Further, Example 3 was produced by laminating a layer of modified polymethylpentene containing metal Zn powder on a lower layer of polymethylpentene on a cold-rolled steel plate. Compared to the comparative example in which no metal is added, the deoxidizing ability is significantly improved to 70% or more.

同時に行った加工接着性も実施例1〜3は比較例とほと
んど変わらなかった。
At the same time, the processing adhesion properties of Examples 1 to 3 were almost the same as those of the comparative example.

(発明の効果〕 本発明の積層体は断面からみて酸素・水透過性被膜にで
きるだけ近い位置に脱酸素機能を持つ金属を配置し、脱
酸素能を効果的に発揮せしめたもので、実施例に示すご
とく優れた脱酸素能を示す、したがってこの積層体を用
いてつくった脱酸素機能容器も従来以上の効果をもつ。
(Effects of the Invention) The laminate of the present invention has a metal with an oxygen scavenging function placed as close as possible to the oxygen/water permeable film when viewed from the cross section, and effectively exhibits the oxygen scavenging ability. As shown in Figure 2, it exhibits excellent oxygen scavenging ability, and therefore, an oxygen scavenging functional container made using this laminate also has better effects than conventional ones.

他4名4 others

Claims (1)

【特許請求の範囲】 1 金属材料表面に酸素・水透過性被覆層を積層した脱
酸素機能金属−樹脂積層体において、金属材料−酸素・
水透過性被覆層間に酸素に対して活性な金属を分散、混
入せしめたことを特徴とする脱酸素機能積層体。 2 酸素に対して活性な金属を接着剤に混入せしめるこ
とを特徴とする請求項1記載の脱酸素機能積層体。 3 酸素に対して活性な金属がマグネシウム。 亜鉛、鉄、ニッケル、錫、マンガンの1種または2種以
上であることを特徴とする請求 項1または2記載の脱酸素機能積層体。
[Claims] 1. In a metal-resin laminate with an oxygen-removing function in which an oxygen- and water-permeable coating layer is laminated on the surface of a metal material,
An oxygen scavenging laminate characterized by having a metal active against oxygen dispersed and mixed between the water-permeable coating layers. 2. The deoxidizing functional laminate according to claim 1, wherein a metal active against oxygen is mixed into the adhesive. 3 Magnesium is a metal that is active against oxygen. The oxygen scavenging functional laminate according to claim 1 or 2, characterized in that it contains one or more of zinc, iron, nickel, tin, and manganese.
JP21193589A 1989-08-17 1989-08-17 Deoxygenation laminate Expired - Lifetime JP2740013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21193589A JP2740013B2 (en) 1989-08-17 1989-08-17 Deoxygenation laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21193589A JP2740013B2 (en) 1989-08-17 1989-08-17 Deoxygenation laminate

Publications (2)

Publication Number Publication Date
JPH0375136A true JPH0375136A (en) 1991-03-29
JP2740013B2 JP2740013B2 (en) 1998-04-15

Family

ID=16614119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21193589A Expired - Lifetime JP2740013B2 (en) 1989-08-17 1989-08-17 Deoxygenation laminate

Country Status (1)

Country Link
JP (1) JP2740013B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017105926A (en) * 2015-12-09 2017-06-15 大日本印刷株式会社 Adhesive composition and packaging material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017105926A (en) * 2015-12-09 2017-06-15 大日本印刷株式会社 Adhesive composition and packaging material
WO2017098778A1 (en) * 2015-12-09 2017-06-15 大日本印刷株式会社 Adhesive composition and packaging material

Also Published As

Publication number Publication date
JP2740013B2 (en) 1998-04-15

Similar Documents

Publication Publication Date Title
US4877664A (en) Materials having a deoxidation function and a method of removing oxygen in sealed containers
EP0447563A1 (en) Vessel excellent in preserving stored articles and in heat sealing
JPH08502770A (en) Polymer composition containing oxygen scavenging compound
US6086786A (en) Oxygen scavenging metal-loaded ion-exchange composition
US5798055A (en) Oxygen scavenging metal-loaded ion-exchange compositions
US3888224A (en) Liquid food preservation
JPH0375136A (en) Laminate with deoxidation function
AU2018203607A1 (en) Sealing disk for a closure cap for containers, especially bottles
US8277892B2 (en) Process for creating an oxygen scavenging particle
JP3282567B2 (en) Laminate for packaging containing activated oxygen absorber
JP2667011B2 (en) Laminate having deoxidation function
EP0349662B1 (en) Material having a deoxidation function and sealed container
US3736153A (en) Processing of seafood including shell fish and crustaceans
JP2788974B2 (en) Food sealed packaging containers
JPH02269036A (en) Laminated steel plate for can excellent in deoxidizing capacity
JPS63274538A (en) Can body having deoxidizing function
JPH078552B2 (en) Laminate with deoxidizing function
TW469169B (en) Food container using titanium oxide particles and manufacturing process thereof
Mannheim Interaction between metal cans and food products
JPH09143758A (en) Resin coated metallic sheet for vessel and can body having resin coated metallic sheet
JPH02263632A (en) Laminated steel plate for can with excellent preserving property of content
JPS61295396A (en) Material for can having deoxidizing power
JPH06183465A (en) Sealed container with deoxidizing function
DE2012010C3 (en) Process for preventing darkening due to the formation of melanoidin in vegetable juices and soy sauce due to the action of metals
JPS637942B2 (en)