JPH0375027B2 - - Google Patents

Info

Publication number
JPH0375027B2
JPH0375027B2 JP61206702A JP20670286A JPH0375027B2 JP H0375027 B2 JPH0375027 B2 JP H0375027B2 JP 61206702 A JP61206702 A JP 61206702A JP 20670286 A JP20670286 A JP 20670286A JP H0375027 B2 JPH0375027 B2 JP H0375027B2
Authority
JP
Japan
Prior art keywords
sheet
resin sheet
thickness
electrode
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61206702A
Other languages
Japanese (ja)
Other versions
JPS6362723A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP61206702A priority Critical patent/JPS6362723A/en
Publication of JPS6362723A publication Critical patent/JPS6362723A/en
Publication of JPH0375027B2 publication Critical patent/JPH0375027B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/915Cooling of flat articles, e.g. using specially adapted supporting means with means for improving the adhesion to the supporting means
    • B29C48/9165Electrostatic pinning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92114Dimensions
    • B29C2948/92152Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92114Dimensions
    • B29C2948/92171Distortion, shrinkage, dilatation, swell or warpage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92323Location or phase of measurement
    • B29C2948/92438Conveying, transporting or storage of articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92323Location or phase of measurement
    • B29C2948/92447Moulded article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92523Force; Tension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92571Position, e.g. linear or angular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92609Dimensions
    • B29C2948/92666Distortion, shrinkage, dilatation, swell or warpage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92923Calibration, after-treatment or cooling zone

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は熱可塑性樹脂よりシート又はフイルム
(フイルムよりも厚いシートを含めてフイルムと
称することがある)を製造する際に使用される静
電ピンニング技術の改良に係わり、厚さの均一性
が高水準に保たれたフイルムを得ることが可能
な、安定な静電ピンニング状態を維持し得る製膜
技術に関する。 [従来技術] 熱可塑性樹脂を熱溶融し、スリツトダイから帯
(シート)状に押出して回転している冷却ロール
表面において冷却固化せしめる方法によりシート
を製膜することはよく知られている。スリツトダ
イのリツプ間隔を調整してシート厚さを均一化す
ること、軟化点以上の未固化シートを1対のロー
ル間で挾持圧延してシートの厚さを均一化するこ
と等は、公知のシート厚さの調整手段である。 高度の品質とその均一性を要求される用途分野
ではシートの厚さを均一性を保証すべく種々の手
段が単独に又は併用して使用されている。熱可塑
性樹脂は均一の加熱温度でかつ均一の溶融粘度と
なるように溶融状態において混練され、またシー
ト状に押出す際の時間当りの流出量を一定に維持
するために計量ポンプが使用されることがある。
更にダイ部分においても溶融樹脂の局部的な流出
量の変動を回避するために、既述したダイリツプ
の間隔を拡張及至狭小にする1組の調整ボルトを
ダイのスリツトに沿つて多数設けること、又はダ
イのスリツトに沿つて多数の微細な加熱冷却手段
を配設して局部的な溶融体の流出量を調整するこ
と等の均一厚さ制御手段が公知である。これらの
溶融体の局部的な流量調整は、シートの厚さの測
定値と基準値との差を矯正するような自動制御装
置と連動することも公知である。シートの厚さは
光学的手段、例えば赤外線量(透過光量)の変
化、β線厚み計等を利用して計測でき、シートの
幅方向の所定位置に固定するシートの長手方向
(流れ方向ともいう)の厚さを測定することがで
きる。また厚み計測手段をシート幅方向に走査さ
せることによつてシート幅方向の厚みの状態を検
知することができる。従来技術では、シートの製
造工程においてシート幅方向の厚さを検知し、こ
の厚さ検知結果をフイードバツクすることによつ
て、シート幅方向の厚さが一定となるようにダイ
の局部的な溶融体の流量調整をする厚さ制御技術
が実用化されている。 ところで、ダイ幅方向に沿つて均一厚さとなる
ように溶融樹脂が押出され、かつその押出量が完
全に一定であつたとしても、シート状の溶融樹脂
が冷却ロール表面に均一厚さに堆積され固化され
なければ、均一厚さのシートを得ることができな
い。この溶融樹脂シートの冷却固化の技術は、冷
却ロールが瞬間的にも変動の殆どない条件で均一
速度で回転すること、溶融状態の樹脂シートが冷
却ロールの所定の位置に変動すことなく接するこ
と(タツチダウン状態が安定していること)が不
可欠である。そして、後者の技術である溶融状態
の樹脂シートを冷却ロールに静電気に密着せしめ
る静電ピンニングによる製膜技術効果的である
(特公昭37−6142号公報)。この静電ピンニングは
樹脂シートと冷却ロールとが完全に密着しないと
空気が巻込まれてシート表面に密着斑をもたら
す。樹脂シートの走行に際して随伴する空気が冷
却ロールに接する位置で排除される状態が安定的
に接続されることが良好な静電ピンニングの条件
となる。別な観点からは、樹脂シートの冷却ロー
ルに接する状態が一定であり、冷却ロール表面に
接する位置も空間的に一定していることがシート
としての均一厚さを形成するうえに必要である。 [技術上の解決課題] 静電ピンニング法において、良好なかつ安定し
た製膜キヤステイング状態と厚さの均一な樹脂シ
ートを得るためには、充電部露出電極、例えば針
状電極又はワイヤー状電極、を適正な空間上の位
置に配する必要がある。例えば電極と溶融状樹脂
シートの冷却ロール表面へのタツチダウンライン
(着地線ということもある)との相対位置におい
て、電極と樹脂シートとの間隔が適切でなければ
ならない。電極と樹脂シートとが近接し過ぎると
溶融状態のシートが過剰の静電気を受けて振動
し、タツチダウンラインが変化して樹脂シートが
流れ方向に厚み斑をもたらしてしまう。これは振
動が経時的な堆積量の斑となつて、樹脂シートの
長手方向に脈動的な厚み斑となつて観察されるこ
ととなる。また電極をタツチダウンラインよりも
ダイ側に移動させると、電極の遠ざかる効果とし
て電位勾配が小さくなり、溶融状態の樹脂シート
に印加される静電荷が減少し、樹脂シートの冷却
ロールへの密着力が弱くなる。樹脂シートが冷却
ロールへの密着する際に完全に随伴空気を排除で
きないと、シートに空気が巻込まれたり排除され
たりしてシート表面に随伴空気が微細な気泡とし
て散在し、冷却ロールに密着できなかつた樹脂シ
ートの部分はこの気泡の痕跡がその表面に残るこ
ととなる。このような気泡の散在する樹脂シート
は「うねり」状の厚さ斑を伴つている。 このように電極の位置はシート形成における熱
可塑性樹脂に応じた適切な位置決めが必要であ
る。従来技術では電極の位置の調整には、製造途
におけるシートの厚さの測定値をもとに、熟練し
た作業者の操作に頼つていて、更に実際には最終
製品の状態から、厚さ斑、微小気泡の痕跡の有無
等の検査査結果をもとに電極の位置の微調整を行
うものであつた。 しかし、この方法には、作業者の高度な熟練度
が要求されること、成形速度の高速化に伴い電極
の最適位置の範囲が狭くなるため調整に時間がか
かるとロスが多くなること、また不透明なシート
等の名柄では作業者の判断が困難となり自動的な
調整技術が要請されること等の従来課題が指摘さ
れる。 [発明の目的] 本発明は上記問題を解消するため、電極の位置
を短時間に、かつ定量的に、良好なシート成形状
態を呈する最適位置に調整し得る方法を提供する
ことを目的とする。 [発明の構成] この目的を達成するため本発明の熱可塑性樹脂
シートの製造法は次の様な構成から成つている。 本発明は、溶融した熱可塑性樹脂を電気的に接
地した冷却ロール表面上にシート状に押出すに際
し、樹脂シートの上方に設置した充電部露出電極
に直流高電圧を印加して該樹脂シートを該冷却ロ
ールに静電的に密着させ冷却せしめる熱可塑性樹
脂シートを製造する方法において、樹脂シートの
幅方向の所定位置における該樹脂シートの流れ方
向(長手方向)の厚み変化を検知手段により検知
し、検知された厚み変化を解析手段により複数の
周波数領域における厚み変化成分に分離し、それ
ぞれの周波数領域における厚み変化成分に応じて
シート幅方向前記所定位置に対し対応位置にある
該電極と該樹脂シートとの距離を変えてそれぞれ
の厚み変化成分を最小となるように調整し、更に
樹脂シートの幅方向の別な所定位置における厚み
変化を最初の位置の例と同様に検知し、複数の周
波数領域における厚み変化成分に分離し、該厚み
変化成分に応じて該別な所定位置に対応した位置
の電極と樹脂シートとの距離を調整することを繰
返すことによつて、樹脂シート全幅における厚み
変化を少くせしめることを特徴とする熱可塑性樹
脂シートの製造法である。 本発明を説明する。 本発明は一般の熱可塑性樹脂からシート,フイ
ルム,ウエブを形成する場合に適用できる。静電
ピンニングは生産速度を高めることができ、均一
な冷却固化によるシートの製造ができることか
ら、品質や生産性を要件とする成形(製膜)に適
している。例示できる熱可塑性樹脂としては、ポ
リエチレンテレフタレート,ポリエチレンナフタ
レンジカルボキシレート,ポリヘキサメチレンナ
フタレンジカルボキシレート等の線状飽和芳香族
ポリエステルが代表的なものであるが、他にポリ
エーテル,ポリアミド,ポリオレフイン等の熱可
塑性樹脂も当然応用できる。 樹脂を溶融してダイより押出し、冷却ロール表
面上にキヤステイングする技術として、本発明で
は公知の手段が適用できる。即ち樹脂はその融点
以上の温度で溶融押出され、室温程度にその表面
が冷却されている冷却ロールにキヤステイングさ
れる。冷却ロールは通常金属又はセラミツク等の
材質からなる表面と、冷媒を貯める(循環させ
る)空洞部から構成され、電気的に接地されるか
又は電源に接続されて対向電極を形成している。 これを図面第1図を参照して説明すると、溶融
状態の樹脂はダイ1よりシート2に押出され、冷
却ロール3に到達するまでの空間において、樹脂
シートに近接していてしかも接触しない位置に置
かれた電球4によつてシートに静電荷が印加され
る。この電球は、樹脂シートの巾方向にほぼ等間
隔に密に多数の針を配設した針状電極か又は1本
のピアノ線のような針金をシートの巾方向に沿つ
て張つた状態のワイヤー電極が適切である。いず
れのものも、シートの近傍に置かれた電極は、そ
の表面が露出されていて、絶縁物で被われていな
い。この電球は電源と接続していて、稼働中には
シートの表面に電極から静電荷が析出されるもの
である。 本発明では後述するように電極4が水平方向5
及び鉛直方向6に調整できる手段を備えていて、
電極と樹脂シートとの距離を適切な範囲に維持す
るものである。なお電極は高電圧の静電気発生源
7に接続されている。 本発明では冷却ロールを離れた位置、通常延伸
工程の前後のシート8の厚さを検知する検知手段
9を設けてあり、後述するようにシートの厚さを
検知して、その厚さの変動を解析手段10によつ
て解析するものである。 なおシートは延伸機11及びステンタ12等を
経て二軸延伸及び熱処理を施されて、常法に従つ
て巻取手段13によつて巻取られる。 本発明は、これらの静電ピンニング手段と、シ
ートの厚さの検知手段と、検知手段によつて得ら
れたシートの厚さ変動に基いて電極位置を調整す
る手段とから主として構成されている。そして、
上述の静電ピンニング手段に加えて、シートの製
造途中の工程において、稼働中のシートの厚み変
化を検知することによつて電極の自動位置制御を
施すものである。 本発明で、製造工程中に組込まれるシートの厚
さの検知手段9は、例えば特開昭59−70904号公
報に開示されている厚み測定装置が適用できる。
この装置は熱可塑性樹脂の赤外線吸収特性を利用
した赤外線厚み測定装置であつて、樹脂がポリエ
チレンテレフタレートの場合5.8μmの波長の赤外
線を使用し、ダブルビーム法により標準厚さ(対
照)と比較しながら所定位置のシート厚さを高精
度に測定できるものであり、センサとしてインジ
ウムアンチモンからなる高感度素子を使用してい
る。このような厚さ測定装置を、シートが冷却ロ
ールを離れる位置よりシートが捲取られる位置ま
での任意の空間に設置し、シートの走行中におけ
る厚さ変化を測定することができる。 シートの厚さは、幅方向の任意の位置において
測定することができる。しかしながら、本発明に
あつては、シートの厚さを均一化するように電極
位置を手段5及び6によつて調節するものである
から、電極位置の調整に際し効果的な位置におい
て、そのシート厚さはパターンを測定することが
望ましい。従つて、シートの幅方向では両側端に
近い位置、シートの中央部のような電極線と溶融
樹脂シートとの距離を調節できる手段を伴つた位
置において、シートの経時的な厚さの変動を測定
することが好ましい。 シートの厚さは、経時的に、云い換えると長手
方向に、第2図の曲線Pのように変動している。
厚さの変化は、変化的長い周期の「うねり」と、
短い周期の小さな変化との合成されたものとして
観察される。即ち、第2図において、周波数0.5
〜2Hz程度のうねり(変動成分;R1,曲線Q)
と10へ30Hz程度の周波数の縞状の変化(変動成
分:R2,曲線S)との合成された変動(成分;
R0,曲線P)として認められる。 本発明では、厚さの検知手段9によつて検知し
たシート厚さの変動を上記の周波数領域0.5〜2
Hzを10〜30Hzとに分離して、それぞれの変動成分
に解析手段10によつて演算して、電極と樹脂シ
ートとの最適距離を設定するものである。 第3図はシートとワイヤー電極との位置と変動
成分との関係を模式的に示したものである。 うねり成分の厚み変動を少くするように、その
所定位置に対応する位置(厚みを観察しているシ
ートの部分に最も変化を与える電極の位置)の電
極と樹脂シートとの距離を移動させると、第3図
のQ曲線の如きうねりの大きさ(極大値と極小値
との差)が変化する。そして位置調整に最適値が
存在していることが判明する。 この調整は試行錯誤的に実施できるが、同一の
製造条件であれば、実積に基づく最適値を初期値
として生産を開始し、徐々に最適化を図ることが
可能である。また何回か試行錯誤を繰返すと、次
のことを知ることとなろう。即ち、電極と溶融シ
ートとの距離が近過ぎると溶融シートに電荷が強
く印加されるが、このときシートが揺動する結
果、シート厚さ斑が大となる傾向がある(第3図
のA領域)。また電極が溶融シートから離れ過ぎ
ると静電ピンニング作用が弱まり、キヤステイン
グ状態が不安定となりシート厚さ斑が増大してし
まう傾向がある(第3図のC領域)。これらの条
件は、第3図の0.5〜2Hz周波数領域の変動成分
と電極・シート間の距離としてQ曲線で示されて
いる。 次に10〜30Hz程度の周波数領域の変動成分につ
いても、最適なワヤー電極位置を決めることが必
要となる。この場合も、電極と溶融樹脂シートと
の距離には厚さ斑を最小とする適正位置が存す
る。そして、この縞状成分は極めて狭い範囲にし
か最適距離がないことに注意しなければならな
い。(第3図S曲線参照)。 本発明ではシート幅方向において所定の位置に
対応する電極線の位置を「うねり成分」の厚さ斑
の変化に基いて調整し、更に縞状成分の厚さ斑の
変化をも最小とするように制御するものである。
しかも、うねり成分の変化を最適化するための電
極線の位置の決定条件と、縞状厚さ変化の調整と
を完全に独立して実施するものである。 従来技術ではシート厚さの調整を電極線の位置
制御として実施することはほとんど知られていな
い。勿論、経験的に位置決めをして、高品質のシ
ートを得ようとしていたと推測されるが、本発明
のように厚さ斑を特定の周波数領域に分割して、
それぞれの成分において最適化することによつ
て、短時間で電極線の最適位置(第3図のB領
域)を決定することができる。しかも、実際の厚
さ変動のデータに基いて処理する場合よりも精度
が高くなるものである。 本発明はシート厚さを計測し、その厚さ変動を
長周期領域の変動とに分離する解析(演算)結果
に基いて、独立して電極位置を調整手段5及び6
によつて最適位置を決定するが、この調整手段と
解析手段とを連結させて自動調整を行うことがで
きる。 [実施例] 第1図の装置を用いて厚さ(未延伸状態)
200μmのポリエチレンテレフタレート(固有粘度
0.60)のシートを製膜した。キヤステイングは冷
却ロールの周速度を37.5m/分として設定し、厚
さ検知手段として赤外線厚さ測定器(特開昭59−
70904号公報に記載のもの)を使用した。測定は
シートの中央部,両端部の3個所とし、それぞれ
3秒間3回づつ実施し、その平均値をもつて順次
調整を繰返し、第4回目のワイヤー電極の位置調
整によつて良好なシート厚さの均一化が達せられ
た。
[Industrial Application Field] The present invention relates to the improvement of electrostatic pinning technology used in producing sheets or films (including sheets thicker than films may also be referred to as films) from thermoplastic resin. The present invention relates to a film forming technique capable of maintaining a stable electrostatic pinning state and capable of obtaining a film whose thickness is kept at a high level of uniformity. [Prior Art] It is well known to form a sheet by melting a thermoplastic resin, extruding it into a belt (sheet) from a slit die, and cooling and solidifying it on the surface of a rotating cooling roll. It is possible to make the sheet thickness uniform by adjusting the lip interval of a slit die, or to make the sheet thickness uniform by sandwiching and rolling an unsolidified sheet at a temperature higher than the softening point between a pair of rolls, etc. This is a means for adjusting the thickness. In applications requiring a high degree of quality and uniformity, various means are used, either alone or in combination, to ensure uniform sheet thickness. Thermoplastic resin is kneaded in a molten state so that it has a uniform heating temperature and a uniform melt viscosity, and a metering pump is used to maintain a constant flow rate per hour when extruding into a sheet. Sometimes.
Furthermore, in order to avoid local fluctuations in the amount of molten resin flowing out in the die portion, a set of adjustment bolts that expand or narrow the gap between the die lips as described above may be provided along the slit of the die, or Uniform thickness control means are known, such as arranging a large number of fine heating and cooling means along the slit of the die to adjust the local flow rate of the melt. It is also known that these local flow adjustments of the melt are associated with automatic control devices that correct differences between the measured sheet thickness and a reference value. The thickness of the sheet can be measured using optical means, such as changes in the amount of infrared rays (transmitted light amount), β-ray thickness meter, etc. ) thickness can be measured. Further, by scanning the thickness measuring means in the sheet width direction, the thickness state in the sheet width direction can be detected. In the conventional technology, the thickness in the sheet width direction is detected during the sheet manufacturing process, and by feeding back the thickness detection results, the die is melted locally so that the thickness in the sheet width direction is constant. Thickness control technology that adjusts body flow has been put into practical use. By the way, even if the molten resin is extruded to a uniform thickness along the width direction of the die and the extrusion amount is completely constant, a sheet of molten resin will be deposited on the surface of the cooling roll to a uniform thickness. Without solidification, a sheet of uniform thickness cannot be obtained. The technology for cooling and solidifying a molten resin sheet requires that the cooling roll rotates at a uniform speed with almost no fluctuation even momentarily, and that the molten resin sheet contacts the cooling roll at a predetermined position without fluctuation. It is essential that the touch-down condition be stable. The latter technique, a film forming technique using electrostatic pinning, in which a molten resin sheet is statically brought into close contact with a cooling roll, is effective (Japanese Patent Publication No. 37-6142). In this electrostatic pinning, if the resin sheet and the cooling roll do not come into perfect contact with each other, air will be drawn in, resulting in uneven adhesion on the sheet surface. A condition for good electrostatic pinning is a stable connection in which the air accompanying the resin sheet as it travels is removed at the position where it contacts the cooling roll. From another point of view, it is necessary for the resin sheet to have a constant state of contact with the cooling roll and a spatially constant position of contact with the cooling roll surface in order to form a sheet with a uniform thickness. [Technical Problems to be Solved] In the electrostatic pinning method, in order to obtain a good and stable film casting state and a resin sheet with a uniform thickness, it is necessary to use a live part exposed electrode, such as a needle-like electrode or a wire-like electrode, It is necessary to place it in an appropriate spatial position. For example, the distance between the electrode and the resin sheet must be appropriate in terms of the relative position of the electrode and the touch-down line (also called landing line) of the molten resin sheet to the surface of the cooling roll. If the electrode and the resin sheet are too close together, the molten sheet receives excessive static electricity and vibrates, changing the touch-down line and causing uneven thickness of the resin sheet in the flow direction. This is because the vibration causes unevenness in the amount of deposit over time, which is observed as pulsating thickness unevenness in the longitudinal direction of the resin sheet. Furthermore, when the electrode is moved closer to the die than the touch-down line, the electric potential gradient becomes smaller as the electrode moves further away, and the electrostatic charge applied to the molten resin sheet decreases, increasing the adhesion of the resin sheet to the cooling roll. becomes weaker. If the entrained air cannot be completely removed when the resin sheet is brought into close contact with the cooling roll, the air will be drawn into the sheet or removed, and the entrained air will be scattered as fine bubbles on the sheet surface, making it impossible to make it come into close contact with the cooling roll. Traces of these air bubbles remain on the surface of the broken resin sheet. A resin sheet in which such air bubbles are scattered has "undulation"-like thickness unevenness. As described above, the electrodes need to be positioned appropriately depending on the thermoplastic resin used to form the sheet. In conventional technology, adjustment of the electrode position relies on the operation of a skilled worker based on the measured value of the sheet thickness during manufacturing, and in fact, the thickness is determined based on the state of the final product. Fine adjustments were made to the position of the electrodes based on inspection results such as the presence or absence of spots and traces of microbubbles. However, this method requires a high degree of skill on the part of the operator, and as the molding speed increases, the range of optimal positions for the electrode narrows, so if adjustment takes time, there will be a lot of loss. Conventional problems have been pointed out, such as the use of opaque sheets and other materials that make it difficult for workers to make judgments and require automatic adjustment technology. [Object of the Invention] In order to solve the above-mentioned problems, the present invention aims to provide a method that can quickly and quantitatively adjust the position of an electrode to an optimal position that provides a good sheet forming condition. . [Configuration of the Invention] In order to achieve this object, the method for manufacturing a thermoplastic resin sheet of the present invention has the following configuration. In the present invention, when extruding a molten thermoplastic resin in the form of a sheet onto the surface of an electrically grounded cooling roll, the resin sheet is extruded by applying a DC high voltage to an exposed live electrode placed above the resin sheet. In the method of manufacturing a thermoplastic resin sheet that is electrostatically brought into close contact with the cooling roll and cooled, a change in the thickness of the resin sheet in the machine direction (longitudinal direction) at a predetermined position in the width direction of the resin sheet is detected by a detection means. The detected thickness change is separated into thickness change components in a plurality of frequency ranges by an analysis means, and the electrode and the resin are separated at positions corresponding to the predetermined position in the sheet width direction according to the thickness change components in each frequency range. Adjust each thickness change component to the minimum by changing the distance to the sheet, and then detect the thickness change at another predetermined position in the width direction of the resin sheet in the same way as the first position example, and use multiple frequencies. By repeating the process of separating the thickness change component in the region and adjusting the distance between the electrode and the resin sheet at the position corresponding to the different predetermined position according to the thickness change component, the thickness change in the entire width of the resin sheet is calculated. This is a method for producing a thermoplastic resin sheet characterized by reducing the amount of . The present invention will be explained. The present invention can be applied to forming sheets, films, and webs from general thermoplastic resins. Electrostatic pinning can increase production speed and produce sheets through uniform cooling and solidification, making it suitable for molding (film forming) where quality and productivity are requirements. Typical examples of thermoplastic resins include linear saturated aromatic polyesters such as polyethylene terephthalate, polyethylene naphthalene dicarboxylate, and polyhexamethylene naphthalene dicarboxylate; other examples include polyether, polyamide, polyolefin, etc. Naturally, thermoplastic resins can also be used. In the present invention, known means can be applied as a technique for melting the resin, extruding it through a die, and casting it on the surface of the cooling roll. That is, the resin is melt-extruded at a temperature above its melting point and cast onto a cooling roll whose surface is cooled to about room temperature. The cooling roll usually consists of a surface made of a material such as metal or ceramic, and a cavity for storing (circulating) a coolant, and is electrically grounded or connected to a power source to form a counter electrode. To explain this with reference to Figure 1 of the drawings, the molten resin is extruded from the die 1 onto the sheet 2, and in the space until it reaches the cooling roll 3, it is placed in a position close to the resin sheet but not in contact with it. An electrostatic charge is applied to the sheet by the placed light bulb 4. This light bulb uses a needle-like electrode that has a large number of needles densely arranged at approximately equal intervals across the width of a resin sheet, or a wire such as a piece of piano wire that is stretched along the width of the sheet. Electrodes are appropriate. In either case, the surface of the electrode placed near the sheet is exposed and is not covered with an insulator. This light bulb is connected to a power source, and during operation, an electrostatic charge is deposited on the surface of the sheet from the electrodes. In the present invention, as described later, the electrode 4 is arranged in the horizontal direction 5.
and a means for adjusting in the vertical direction 6,
The distance between the electrode and the resin sheet is maintained within an appropriate range. Note that the electrodes are connected to a high voltage static electricity generation source 7. In the present invention, a detection means 9 is provided for detecting the thickness of the sheet 8 at a position away from the cooling roll, usually before and after the stretching process, and as described later, detects the thickness of the sheet and changes in the thickness. is analyzed by the analysis means 10. The sheet is subjected to biaxial stretching and heat treatment via a stretching machine 11, a stenter 12, etc., and then wound up by a winding means 13 according to a conventional method. The present invention mainly consists of these electrostatic pinning means, a sheet thickness detection means, and a means for adjusting the electrode position based on the sheet thickness variation obtained by the detection means. . and,
In addition to the above-mentioned electrostatic pinning means, automatic position control of the electrodes is performed by detecting changes in the thickness of the sheet during operation during the sheet manufacturing process. In the present invention, the thickness measuring device 9 disclosed in Japanese Unexamined Patent Application Publication No. 70904/1984 can be used as the sheet thickness detection means 9 incorporated during the manufacturing process.
This device is an infrared thickness measuring device that utilizes the infrared absorption characteristics of thermoplastic resin. When the resin is polyethylene terephthalate, it uses infrared rays with a wavelength of 5.8 μm, and compares the thickness with a standard thickness (control) using the double beam method. However, the sheet thickness at a predetermined position can be measured with high precision, and a highly sensitive element made of indium antimony is used as the sensor. Such a thickness measuring device can be installed in any space from the position where the sheet leaves the cooling roll to the position where the sheet is rolled up, and it is possible to measure the change in thickness of the sheet while it is running. The thickness of the sheet can be measured at any position in the width direction. However, in the present invention, since the electrode positions are adjusted by means 5 and 6 so as to make the sheet thickness uniform, the sheet thickness can be adjusted at effective positions when adjusting the electrode positions. It is desirable to measure the pattern. Therefore, in the width direction of the sheet, changes in the thickness of the sheet over time can be controlled at positions near both ends of the sheet and at positions where there is a means for adjusting the distance between the electrode wire and the molten resin sheet, such as at the center of the sheet. Preferably, it is measured. The thickness of the sheet changes over time, in other words in the longitudinal direction, as shown by curve P in FIG.
The change in thickness is caused by a variable long period "undulation",
It is observed as a composite of small changes with short periods. That is, in Fig. 2, the frequency is 0.5
~2Hz waviness (fluctuation component; R 1 , curve Q)
The combined fluctuation ( component;
R 0 , curve P). In the present invention, the variation in sheet thickness detected by the thickness detection means 9 is detected in the above frequency range 0.5 to 2.
Hz is separated into 10 to 30 Hz, each variation component is calculated by the analysis means 10, and the optimum distance between the electrode and the resin sheet is set. FIG. 3 schematically shows the relationship between the position of the sheet and the wire electrode and the fluctuation component. If the distance between the electrode at the position corresponding to the predetermined position (the position of the electrode that causes the most change in the thickness of the part of the sheet whose thickness is being observed) and the resin sheet is moved so as to reduce the thickness variation of the waviness component, The magnitude of the waviness (the difference between the maximum value and the minimum value) as shown in the Q curve in FIG. 3 changes. It turns out that there is an optimal value for position adjustment. This adjustment can be carried out by trial and error, but if the manufacturing conditions are the same, it is possible to start production with the optimum value based on the actual product as the initial value and gradually optimize it. After repeating trial and error several times, you will come to know the following. That is, if the distance between the electrode and the molten sheet is too short, a strong charge will be applied to the molten sheet, but as a result of the sheet oscillating at this time, the sheet thickness tends to become uneven (see A in Fig. 3). region). Furthermore, if the electrode is too far away from the molten sheet, the electrostatic pinning effect will be weakened, the casting state will become unstable, and the sheet thickness will tend to become uneven (region C in FIG. 3). These conditions are shown in the Q curve as the fluctuation component in the 0.5-2 Hz frequency range and the distance between the electrode and the sheet in FIG. Next, it is necessary to determine the optimal wire electrode position for the fluctuation component in the frequency range of about 10 to 30 Hz. In this case as well, there is an appropriate distance between the electrode and the molten resin sheet that minimizes thickness unevenness. It must be noted that this striped component has an optimal distance only within a very narrow range. (See S curve in Figure 3). In the present invention, the position of the electrode wire corresponding to a predetermined position in the sheet width direction is adjusted based on the change in the thickness unevenness of the "wavy component", and furthermore, the change in the thickness unevenness of the striped component is also minimized. It is controlled by
Moreover, the conditions for determining the position of the electrode wire for optimizing the change in the waviness component and the adjustment of the change in striped thickness are performed completely independently. In the prior art, it is hardly known that adjustment of sheet thickness is performed as position control of electrode wires. Of course, it is presumed that they tried to obtain a high-quality sheet by determining the position empirically, but as in the present invention, by dividing the thickness unevenness into specific frequency regions,
By optimizing each component, the optimal position of the electrode wire (region B in FIG. 3) can be determined in a short time. Furthermore, the accuracy is higher than when processing is performed based on actual thickness variation data. The present invention measures the sheet thickness and independently adjusts the electrode position based on the analysis (calculation) result of separating the thickness fluctuation into long-period region fluctuation.
The optimum position is determined by this method, and this adjustment means and analysis means can be connected to perform automatic adjustment. [Example] Thickness (unstretched state) using the apparatus shown in Fig. 1
200 μm polyethylene terephthalate (intrinsic viscosity
A sheet of 0.60) was formed. For casting, the circumferential speed of the cooling roll was set at 37.5 m/min, and an infrared thickness measuring device (Japanese Patent Application Laid-Open No. 1983-1998) was used as a thickness detection means.
70904) was used. Measurements were taken at three locations, one at the center and at both ends of the sheet, three times for 3 seconds each, and the average value was used to repeat the adjustment in order. By adjusting the position of the wire electrode for the fourth time, a good sheet thickness was obtained. Achieved uniformity of quality.

【表】 調整はシートの端部,中央部,他の端部のよう
に順次厚さ変動を測定し、次にうねり成分に応じ
てワイヤー電極を調整し、更に縞状成分の変動を
調整し、その位置における第1回目の粗調整を終
了する。別な位置において、この調整を繰返し、
3ケ所において第1回目の粗調整が済む。これを
3回繰返して全個所で3順したところで200μmの
シートの厚さ斑平均値は1.5μm以内に制御できた
ものである。ワイヤー電極の位置はワイヤーの支
持体とステツプモータとを連結しておき、解析結
果に基いてワイヤー電極の位置を変え得るように
処理したので、自動的にかつ短時間の調整が可能
となつた。解析結果とモータの駆動量とは、生産
条件毎に換算表(演算表)を準備しておけば、再
現性のよいデータが得られるものである。 以上説明した通り、本発明はシート厚さ斑を静
電ピンニングにおける電極位置の調整によつて少
すくするものである。シート厚さは、未延伸シー
ト以外にも一段延伸後、二軸延伸完了後等の位置
で検知して、その厚さ変動の解析結果に基いて電
極距離を最適化することができる。従つて、厚さ
検知手段の設置場所は任意に選択できる。更に、
電極位置を調整する解析手段として、本実施例で
は約1Hz(0.5〜2Hz)及び約20Hz(10〜30Hz)
としているが、周波数領域は厚さ変動の周期性を
解析して、それに基き適宜選択してよい。また本
実施例では2分割して変動成分それぞれについて
電極位置調整をしているが、3分割以上に厚さ変
動成分を分離し、各々の変動成分に基いて電極位
置調整をすることも可能である。 本実施例はワイヤー電極を例示したためシート
の厚さを3点(中央部及び両側端部)で測定し、
ワイヤーの位置調整も3ケ所で実施したに過ぎな
いが、多数の針電極について個々の針電極の位置
調整を施す方法も本発明の技術思想の範囲であ
る。 [発明の効果] 本発明は、樹脂シートとして極めて厚みの均一
なものが得られる。そしてこの厚さの均一化は、
静電ピンニングにおける電極と溶融シートとの距
離を調整する結果達成できるものであつて、電極
位置の調整は自動的にかつ短時間に最適化できる
点で生産効率の極めて高いものである。
[Table] Adjustments are made by sequentially measuring the thickness variation at the edge, center, and other edges of the sheet, then adjusting the wire electrode according to the waviness component, and then adjusting the variation in the striped component. , the first coarse adjustment at that position is completed. Repeat this adjustment at another position,
The first rough adjustment has been completed at three locations. When this process was repeated three times and the thickness unevenness average value of the 200 μm sheet was controlled to within 1.5 μm, the thickness unevenness of the 200 μm sheet was controlled to within 1.5 μm. The position of the wire electrode was connected to the wire support and the step motor, and the position of the wire electrode could be changed based on the analysis results, making it possible to adjust the position automatically and in a short time. . If a conversion table (calculation table) is prepared for each production condition, data with good reproducibility can be obtained between the analysis results and the motor drive amount. As explained above, the present invention aims to reduce sheet thickness unevenness by adjusting the electrode position in electrostatic pinning. The sheet thickness can be detected at positions other than the unstretched sheet, such as after one-stage stretching or after completion of biaxial stretching, and the electrode distance can be optimized based on the analysis result of the thickness variation. Therefore, the installation location of the thickness detection means can be arbitrarily selected. Furthermore,
In this example, approximately 1 Hz (0.5 to 2 Hz) and approximately 20 Hz (10 to 30 Hz) are used as analysis means to adjust the electrode position.
However, the frequency domain may be selected as appropriate based on the analysis of the periodicity of the thickness variation. Furthermore, in this embodiment, the electrode position is adjusted for each variation component by dividing into two parts, but it is also possible to separate the thickness variation component into three or more parts and adjust the electrode position based on each variation component. be. Since this example illustrates a wire electrode, the thickness of the sheet was measured at three points (the center and both ends).
Although the position of the wire was only adjusted at three locations, a method of adjusting the position of each individual needle electrode for a large number of needle electrodes is also within the scope of the technical idea of the present invention. [Effects of the Invention] According to the present invention, a resin sheet having an extremely uniform thickness can be obtained. And this uniformity of thickness is
This can be achieved by adjusting the distance between the electrode and the melted sheet in electrostatic pinning, and the production efficiency is extremely high in that the adjustment of the electrode position can be optimized automatically and in a short time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施する装置の概略図であ
る。第2図は熱可塑性樹脂シートの厚さの変化を
示す曲線である。また第3図はシートと電極との
位置を変えたときの厚さの変動の状態を模式的に
示した曲線である。図面において1はダイ、2は
樹脂シート、3は冷却ロール、4は電極、5及び
6は電極位置調整手段、9はシート厚さの検知手
段、10は厚さ変動の解析手段、11は第一次延
伸機、12は第二次延伸機、13は巻取手段であ
る。
FIG. 1 is a schematic diagram of an apparatus implementing the invention. FIG. 2 is a curve showing the change in thickness of the thermoplastic resin sheet. Further, FIG. 3 is a curve schematically showing the state of change in thickness when the positions of the sheet and the electrode are changed. In the drawings, 1 is a die, 2 is a resin sheet, 3 is a cooling roll, 4 is an electrode, 5 and 6 are electrode position adjustment means, 9 is a sheet thickness detection means, 10 is a thickness variation analysis means, and 11 is a A primary stretching machine, 12 a secondary stretching machine, and 13 a winding means.

Claims (1)

【特許請求の範囲】 1 溶融した熱可塑性樹脂を電気的に接地した冷
却ロール表面上にシート状に押出すに際し、樹脂
シートの上方に設置した充電部露出電極に直流高
電圧を印加して該樹脂シートを該冷却ロールに静
電的に密着させ冷却せしめる熱可塑性樹脂シート
を製造する方法において、 樹脂シートの幅方向の所定位置における該樹脂
シートの流れ方向(長手方向)の厚み変化を検知
手段により検知し、検知された厚み変化を解析手
段により複数の周波数領域における厚み変化成分
に分離し、それぞれの周波数領域における厚み変
化成分に応じてシート幅方向の対応位置にある該
電極と該樹脂シートとの距離を変えてそれぞれの
厚み変化成分を最小となるように調整し、更に樹
脂シートの幅方向の他の所定位置における厚み変
化を同様に検知し、該厚み変化成分に応じて該他
の所定位置に対応した位置の電極と樹脂シートと
の距離を調整することを繰返すことによつて、樹
脂シート全幅における厚み変化を少くせしめるこ
とを特徴とする熱可塑性樹脂シートの製造法。 2 検知された流れ方向の厚み変化を0.5〜2Hz
の周波数領域の厚み変化成分と10〜30Hzの周波数
領域の厚み変化成分とに分離し、そのぞれの厚み
変化成分を最小とするように、独立して、樹脂シ
ートと充電部露出電極との距離を調整することか
らなる特許請求の範囲第1項記載の熱可塑性樹脂
シートの製造法。 3 熱可塑性樹脂が、ポリアルキレンテレフタレ
ートである特許請求の範囲第1項又は第2項記載
の熱可塑性樹脂シートの製造法。 4 充電部露出電極がワイヤー状である特許請求
の範囲第1項記載の熱可塑性樹脂シートの製造
法。 5 充電部露出電極が多数の針状のものからなる
特許請求の範囲第1項記載の熱可塑性シートの製
造法。
[Scope of Claims] 1. When extruding a molten thermoplastic resin in the form of a sheet onto the surface of an electrically grounded cooling roll, a high DC voltage is applied to an exposed live electrode placed above the resin sheet. In a method for manufacturing a thermoplastic resin sheet in which the resin sheet is electrostatically brought into close contact with the cooling roll and cooled, the method includes a means for detecting a thickness change in the flow direction (longitudinal direction) of the resin sheet at a predetermined position in the width direction of the resin sheet. The detected thickness change is separated into thickness change components in multiple frequency regions by an analysis means, and the electrode and the resin sheet are separated at corresponding positions in the sheet width direction according to the thickness change components in each frequency region. Adjust the thickness change component to the minimum by changing the distance from A method for manufacturing a thermoplastic resin sheet, characterized in that a change in thickness over the entire width of the resin sheet is reduced by repeatedly adjusting the distance between an electrode at a position corresponding to a predetermined position and the resin sheet. 2 Detected thickness change in flow direction at 0.5 to 2 Hz
Separate the thickness change component in the frequency range of A method for producing a thermoplastic resin sheet according to claim 1, which comprises adjusting the distance. 3. The method for producing a thermoplastic resin sheet according to claim 1 or 2, wherein the thermoplastic resin is polyalkylene terephthalate. 4. The method for producing a thermoplastic resin sheet according to claim 1, wherein the live part exposed electrode is wire-shaped. 5. The method for producing a thermoplastic sheet according to claim 1, wherein the live portion exposed electrode comprises a large number of needle-like electrodes.
JP61206702A 1986-09-04 1986-09-04 Manufacture of thermoplastic resin sheet Granted JPS6362723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61206702A JPS6362723A (en) 1986-09-04 1986-09-04 Manufacture of thermoplastic resin sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61206702A JPS6362723A (en) 1986-09-04 1986-09-04 Manufacture of thermoplastic resin sheet

Publications (2)

Publication Number Publication Date
JPS6362723A JPS6362723A (en) 1988-03-19
JPH0375027B2 true JPH0375027B2 (en) 1991-11-28

Family

ID=16527701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61206702A Granted JPS6362723A (en) 1986-09-04 1986-09-04 Manufacture of thermoplastic resin sheet

Country Status (1)

Country Link
JP (1) JPS6362723A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5654394A (en) * 1994-04-08 1997-08-05 Toray Industries, Inc. Thermoplastic resin film
KR20000029611A (en) * 1997-05-27 2000-05-25 히라이 가쯔히꼬 Method and apparatus for producing thermoplastic resin sheet
KR20080003372A (en) * 2005-04-28 2008-01-07 토요 보세키 가부시기가이샤 Process for producing polyamide-based resin film roll
JP6127011B2 (en) * 2014-03-28 2017-05-10 富士フイルム株式会社 Polyester film, method for producing polyester film, polarizing plate, image display device, hard coat film, and touch panel

Also Published As

Publication number Publication date
JPS6362723A (en) 1988-03-19

Similar Documents

Publication Publication Date Title
KR101983397B1 (en) Method for producing film roll
US3883279A (en) Apparatus for making polymeric film
ATE118187T1 (en) ROLLER KNEADING STRENGTH MONITORING METHOD AND APPARATUS, FILM PRODUCTION METHOD AND APPARATUS, AND FILM TEMPERATURE MEASUREMENT METHOD AND APPARATUS.
US6482339B1 (en) Process for stable widthwise regulation of bulb angle in extrusion of sheets of heat-sensitive plastics through a calender opening formed by intake rollers
EP0537329A1 (en) Control of web winding.
JP2013240897A5 (en)
JPH0375027B2 (en)
US3898026A (en) Apparatus for randomizing thicker and thinner areas in the production of film webs
US4038354A (en) Process for extruding and quenching a polymeric film
JPS6244610B2 (en)
JPH0592472A (en) Method and device for smoothing sheet thickness
US4463040A (en) Coating-bead stabilization apparatus
US4111625A (en) Polymeric film production
US3982863A (en) Quenching of polymeric film
JP2002087690A (en) Method of manufacturing film roll
JPH0428524A (en) Manufacture of thermoplastic polymer sheet
JP2020049738A (en) Method for producing biaxially oriented film
JP2001030339A (en) Film taking-up method
JPH09141736A (en) Biaxially stretched polyester film and production thereof
JP2924114B2 (en) Method for producing thermoplastic polymer sheet
JP2924123B2 (en) Method for producing thermoplastic polymer sheet
JPH11268101A (en) Production of thermoplastic resin film
JPH0534911Y2 (en)
JP2002219723A (en) Casting apparatus
JPS62183324A (en) Thickness correcting method for sheetlike matter in extrusion molding