JPH0374830B2 - - Google Patents

Info

Publication number
JPH0374830B2
JPH0374830B2 JP58248157A JP24815783A JPH0374830B2 JP H0374830 B2 JPH0374830 B2 JP H0374830B2 JP 58248157 A JP58248157 A JP 58248157A JP 24815783 A JP24815783 A JP 24815783A JP H0374830 B2 JPH0374830 B2 JP H0374830B2
Authority
JP
Japan
Prior art keywords
charge transport
layer
transport layer
charge
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58248157A
Other languages
Japanese (ja)
Other versions
JPS60143346A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP24815783A priority Critical patent/JPS60143346A/en
Publication of JPS60143346A publication Critical patent/JPS60143346A/en
Publication of JPH0374830B2 publication Critical patent/JPH0374830B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0696Phthalocyanines
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0622Heterocyclic compounds
    • G03G5/0624Heterocyclic compounds containing one hetero ring
    • G03G5/0627Heterocyclic compounds containing one hetero ring being five-membered
    • G03G5/0631Heterocyclic compounds containing one hetero ring being five-membered containing two hetero atoms

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の利用分野〕 本発明は導電性支持体上に電荷発生層と電荷搬
送層を形成してなる長波長域に高感度を有する電
子写真用感光体に係わり、特に高い解像度と優れ
た耐久性を有する電子写真用感光体に関する。 〔発明の背景〕 電子写真用感光体は導電性支持体上に無機また
は有機の光導電体層を設けたものである。 一般に有機光導電体は無機光導電体に比べ光感
度が低いため、各種の増感方法が考案されている
が最も効果的な方法は感光体を光照射によつて電
荷を発生する電荷発生層とこの電荷発生層で発生
した電荷を効率よく搬送する電荷搬送層とで構成
することである。 従来、複合型の電子写真用感光体の電荷発生物
質としては、特開昭52−55643号公報に示される
有機第1アミン類に可溶なモノアゾ染料、ジスア
ゾ染料及びスクアリン酸誘導体染料、特開昭53−
42830号公報及び特開昭53−41230号公報に示され
るキノシアニン顔料、特開昭51−11763号公報に
示される銅フタロシアニン顔料などの有機物が多
数提示されている。また、特公昭50−15137号公
報に示されるテルル〜ヒ素〜ガラス状セレン系、
特公昭49−14272号公報に示されるイミド結合を
有する重合体〜無定形セレンなどの無機物も提示
されている。 一方、電荷搬送物質としては、特開昭52−
77730号公報、特開昭52−753929号公報等に示さ
れるポリ−N−ビニルカルバゾール系、特開昭49
−105537号公報に示されるピラゾリン誘導体、特
開昭46−4484号公報に示されるトリニトロフルオ
レノン、特公昭53−301号公報に示されるニトロ
およびシアノ置換の各種化合物等が提示されてい
る。これらを用いた電子写真用感光体は、いずれ
も良好な電子写真特性を有するが、これらの感光
波長域は400〜700nmの可視光に高感度を示し、
近赤外光(750nm以上)に対しては全く感度がな
かつたり、感度があつても低感度であるために、
近赤外光を光源(例えば、半導体レーザ)とする
電子写真用感光体としては、使用できないという
欠点を有していた。 ところで、このような感光体を用いた電子写真
複写機においては、先ず、感光体表面にコロナ照
射を行つて帯電させた後画像状露光を行つて静電
潜像を作成し、次いで、この静電潜像にトナーを
付着させてトナー粉像を作り、これを紙などに転
写して複写が行われる。そのため、感光体にはプ
ロセスに応じた帯電性や感度、解像度、光学特性
等の他、これら諸特性の安定性、トナーのクリー
ニング性、耐摩耗性が要求される。 近年、高速プリンタの1種として光源にレーザ
を用いて、電子写真方式を採用して印字する方法
が考案されている。特に半導体レーザを光源とし
て用いた場合には、光源部を非常に小さくできる
為に、プリンタが小型化されると共に消費電力の
大巾な削減及び多機能化が可能になることから、
非常に注目されている。半導体レーザの場合の発
振波長は770nm以上と長波長である為、前述の如
き、従来の電荷搬送物質は電子写真用感光体に使
用することはできない。従つて、特定の波長に高
感度を有する電子写真用感光体の開発が望まれて
いる。 一方、感度的にはまだ十分とは言えないが、一
部実用化されている。しかしながら、寿命的には
まだまだ不十分であり、一層の長寿命化が強く望
まれている。 本発明者らは、各種電子写真特性に優れ、かつ
実用化に十分な特性を有する電子写真用感光体を
提供すべく鋭意検討した結果、熱硬化性樹脂単独
あるいは熱硬化性樹脂中に電荷搬送物質を含む中
間層を介して電荷層物搬送と熱可塑性樹脂とを含
む電荷搬送層を上下に形成し、且つ、中間層上に
形成した電荷搬送層中の電荷搬送物質濃度を、中
間層の下層に形成されている電荷搬送層より小さ
くすることにより、解決できることを見出した。 〔発明の目的〕 本発明の目的は、従来の複合型の電子写真用感
光体の欠点を克服し、特に、極めて解像度と耐久
性が優れた電子写真用感光体を提供することにあ
る。 〔発明の概要〕 一般に、複合型の電子写真用感光体の寿命を決
定する因子として、電荷搬送物質のコロナ放電及
び光等による劣化以外に、紙(転写紙)や現像剤
との摩擦による外部的な傷の発生等が挙げられ
る。特に、複合型の電子写真用感光体の場合、表
面となる電荷搬送物質の層の構成が、主として電
荷搬送物質/結着剤樹脂=1/4以上(重量比)
にする場合が多く、無機のセレン感光体と比較
し、著しく軟く、しかも電荷搬送物質が耐コロナ
性に弱いという問題がある。表面硬度を向上させ
るには従来から知られている表面保護層を設ける
方法、あるいは電荷搬送物質の含有量を減らす等
がある。しかしながら、それらの方法はいずれも
電子写真特性の低下、特に残留電位の増大及び感
度低下が起り、電子写真特性と耐久性を両立させ
ることは難かしい。本発明者等は、この事実を基
に種々検討した結果、電荷発生物質を含む層と電
荷搬送物質を含む層とから構成される複合型の電
子写真用感光体において、前記電荷搬送層は電荷
搬送物質と熱可塑性樹脂を含み、該電荷搬送層は
熱硬化性樹脂を含む中間層を介して2層に分離形
成されており、該電荷搬送層中の電荷搬送物質濃
度は、電荷発生層に近い層の電荷搬送層()が
20〜83%表面に近い層の電荷搬送層()が10〜
20%未満とすることにより、前記の問題点を克服
できることを見い出し、本発明に至つた。 通常、感光体としての感光波長域は使用する電
荷搬送層は電荷発生物質の吸収する光を妨げない
限り、電荷発生物質の吸収波長域に依存する。長
波長吸収性電荷発生物質について、これまで数多
くの検討がなされ、例えばSe,cds等については
増感剤の添加により長波長域での感度を上げる方
法が見出されているが、上記した各種有機光導電
材料のうちでは各種のフタロシアニン化合物が比
較的長波長域での感度が良好である。一般に、電
荷発生物質は電荷搬送層を通過した光により電荷
を発生し、発生した電荷は電場により効率よく電
荷搬送層中に移行されなければならない。そのた
め、導電性支持体上に電荷発生物質は発生した電
荷を電荷搬送層により効率よく移行されるような
形態で分散せしめる必要がある。この分散形態が
電子写真用感光体の各種電子写真特性の大きな支
配因子となり、特に感度、鮮明性及び階調性に大
きな影響を与える。従つて、電子写真用感光体と
しては導電性支持体上における電荷発生物質の分
散形態をより好適に制御する事が大切なことであ
る。 本発明の複合型の電子写真用感光体における電
荷搬送層は、次のような構成で成立つている。す
なわち、導電性支持体上に担持されている電荷発
生層上に形成される電荷搬送層は電荷を移動し得
る中間層を介して上下に形成されており、中間層
の下層に形成されている電荷搬送層()中の電
荷搬送物質濃度は20%以上であり、望ましくは、
40〜75%である。中間層上に形成されている電荷
搬送層()中の電荷搬送物質濃度は20%以下で
ある。中間層は熱硬化性樹脂単独あるいは熱硬化
性樹脂中の電荷搬送物質濃度は30%以下であり、
望ましくは20%以下である。さらには、中間層の
膜厚は5μm以下がよく、望ましくは2μm以下であ
る。電荷搬送層()及電荷搬送層()の膜厚
は所望によつて変えることができ、特に限定され
るものではない。また、電荷発生層形成時の成膜
性改善に成膜助剤。あるいは電荷発生物質と導電
性支持体あるいは電荷搬送層との接着力改善に接
着力向上作業剤の添加あるいは増感助剤等、電子
写真用感光体の諸特性向上に効果を付与する各種
助剤の添加については、何ら制約されるものでは
ない。更には、電荷搬送層()上に形成させる
保護膜等の形成に関しては、従来からの公知技術
を利用する事も可能である。 本発明において、熱硬化性樹脂と電荷搬送物質
とを含む中間層を介して電荷搬送物質と熱可塑性
樹脂を含む電荷搬送層を()と()に分割
し、且つ、それぞれの層中の電荷搬送物質濃度に
制限を設けたのは、次の理由に基づくものであ
る。まず、中間層は、膜厚を5μm以下とするのが
好適で、膜厚がそれ以上になると残留電位が大き
くなり、所望の電子写真特性が得られない。ま
た、中間層の電荷搬送層物質濃度は20%以下が好
適であるが30%以上になると、中間層上に形成さ
れる電荷搬送層()を塗工する際に、その塗液
用溶剤により中間層中の電荷搬送物質の溶出量が
大きくなるため、塗液の粘度の制御ができなくな
ると共に、中間層及び電荷搬送層()中の電荷
搬送物質の濃度、及び膜厚の制御ができなくな
り、安定した特性の感光体が得られず、しかも量
産性が劣るようになる。一方、電荷搬送層()
中の電荷搬送物質濃度は20%以上が好適である
が、それ以下では電荷発生層で発生した電荷を効
率よく搬送することができず、残留電位の増大及
び感度の低下等を生じ、所望の電子写真特性が得
られない。また、電荷搬送物質濃度が83%を越え
ると、電荷搬送層()の膜強度が著しく低下
し、実用に適さない。他方、電荷搬送層()中
の電荷搬送物質濃度は10〜20%未満である。20%
以上の濃度ではコロナ劣化も著しく、且つ、解像
度変化が大きくなり、解像度の耐久性がなくな
る。従つて、電荷発生層、電荷搬送層(),
()及び中間層を上記したように作れば、電荷
搬送層()の表面硬度が向上して外部的な傷の
発生が少なくなる。一方、電荷発生物質の種類あ
るいは電荷搬送物質の種類あるいは中間層の材質
の種類さらにはそれら層の形成法等に何ら制約さ
れる事なく、電子写真用感光体として十分な電子
写真特性及び長期の繰り返し使用に十分耐える特
性を有している。 次に、導電性支持体上に上記電荷発生層並びに
電荷搬送層を形成する方法について述べる。先
ず、電荷発生層は電荷発生物質をよく分散し、或
いは必要に応じて用いる樹脂及び添加剤をよく溶
解する有機溶剤、例えばテトラヒドロフラン、酢
酸エチル、アセトン、メチルエチルケトン、ハロ
ゲン化炭化水素等と良く混合攪拌して電荷発生材
料の塗液を調整する。この液中に導電性支持体を
浸漬するか、この液を導電性支持体上に滴下して
バーコータ、ロールコータ、アプリケータ或いは
流延法等により塗工し、加熱により溶剤を除去し
て硬化、あるいは三次元硬化して成膜する。樹脂
としては公知の三次元硬化型樹脂あるいは熱可塑
性樹脂を使用できる。電荷搬送層、中間層は電荷
搬送物質及び樹脂あるいは樹脂単独をテロラヒド
ロフラン、ハロゲン化炭化水素、ベンゼン、ジオ
キサン、ジメチルフオルムアミド、アルコール等
の溶剤に混合攪拌し溶解させて、電荷搬送材料の
塗液を調整する。この溶液を用いて、上記電荷発
生層形成と同法により、電荷発生層上に電荷搬送
層()、中間層、電荷搬送層()を順次形成
させる。 本発明に用いられる電荷発生物質とは、例え
ば、金属フタロシアニン、無金属フタロシアニン
等のフタロシアニン顔料、アントラキノン顔料、
インジゴイド顔料、キナクリバン顔料、ベリレン
顔料、多環キノン顔料、スクアリツク酸メチン顔
料等の公知の顔料を挙げることができ、これら顔
料は単独あるいは2種以上を併用することができ
る。 本発明に用いられる電荷搬送物質とは、例え
ば、オキサジアゾール、トリアゾール、イミダゾ
ロン、オキサゾール、ピラゾリン、イミダゾー
ル、イミダゾリジン、ベンゾチアゾール、ベンゾ
オキサゾール、トリフエニルアミン及びそれら物
質の誘導体等を挙げることができ、これら電荷搬
送物質は単独あるいは2種以上を併用することが
できる。 本発明に用いられる決着剤樹脂及び中間層用樹
脂としては、例えば、シリコーン樹脂、フエノー
ル樹脂、ユリア樹脂、メラミン樹脂、フラン樹
脂、エポキシ樹脂、ケイ素樹脂、塩化ビニル−酢
酸ビニル共重合体、キシレン樹脂、トルエン樹
脂、ウレタン樹脂、酢酸ビニル−メタクリル共重
合体、アクリル樹脂、フエノキシ樹脂、ポリカー
ボネート樹脂、ポリエステル樹脂、ポリアリレー
ト樹脂等を挙げることができ、これらの中から電
荷搬送層用の決着剤樹脂として熱可塑性樹脂を、
また中間層用樹脂として熱硬化性樹脂を選択すれ
ばよい。また、それらの樹脂は単独あるいは2種
以上の併用ができる。 また、本発明の複合型電子写真用感光体の導電
性支持体としては、例えばアルミニウム、アルミ
ニウム〜他金属合金、鋼、鉄、銅等の金属の他
に、導電性プラスチツクおよびプラスチツク、
紙、ガラス等に導電性を付与したものを用いるこ
とができ、これらの支持体は円筒状、シート等で
よく、何ら形状に制約されることはない。 〔発明の実施例〕 次に、本発明を実施例により更に詳細に説明す
るが、本発明はこれらにより何ら限定されるもの
ではない。 実施例 1〜6 第1表に示す物質を秤量してガラス製容器に入
れて、超音波振動器で15時間攪拌を行い、電荷発
生層用塗液を調整した。第2表には電荷搬送層
()の組成及び第3表には電荷搬送層()の
組成を示す。
[Field of Application of the Invention] The present invention relates to an electrophotographic photoreceptor having high sensitivity in the long wavelength range, which is formed by forming a charge generation layer and a charge transport layer on a conductive support, and particularly relates to an electrophotographic photoreceptor having high sensitivity in the long wavelength range. The present invention relates to an electrophotographic photoreceptor having properties. [Background of the Invention] An electrophotographic photoreceptor has an inorganic or organic photoconductor layer provided on a conductive support. Organic photoconductors generally have lower photosensitivity than inorganic photoconductors, so various sensitization methods have been devised, but the most effective method is to create a charge-generating layer that generates charges when the photoreceptor is irradiated with light. and a charge transport layer that efficiently transports the charges generated in the charge generation layer. Conventionally, charge-generating substances for composite electrophotographic photoreceptors include monoazo dyes, disazo dyes, and squaric acid derivative dyes soluble in organic primary amines as disclosed in JP-A No. 52-55643, and squaric acid derivative dyes. Showa 53-
A large number of organic substances have been proposed, such as quinocyanine pigments shown in JP-A No. 42830 and JP-A-53-41230, and copper phthalocyanine pigments shown in JP-A-51-11763. In addition, tellurium-arsenic-glassy selenium series shown in Japanese Patent Publication No. 50-15137,
Japanese Patent Publication No. 49-14272 discloses polymers having imide bonds and inorganic substances such as amorphous selenium. On the other hand, as a charge transport material, JP-A-52-
Poly-N-vinylcarbazole series disclosed in JP-A No. 77730, JP-A-52-753929, etc.;
Pyrazoline derivatives shown in JP-A-105537, trinitrofluorenone shown in JP-A-46-4484, various nitro- and cyano-substituted compounds shown in JP-B-53-301, and the like. Electrophotographic photoreceptors using these materials all have good electrophotographic properties, but they exhibit high sensitivity to visible light in the wavelength range of 400 to 700 nm.
There is no sensitivity at all to near-infrared light (750 nm or more), or even if there is sensitivity, the sensitivity is low.
It has the disadvantage that it cannot be used as an electrophotographic photoreceptor that uses near-infrared light as a light source (for example, a semiconductor laser). Incidentally, in an electrophotographic copying machine using such a photoreceptor, first, the surface of the photoreceptor is charged by corona irradiation, and then imagewise exposure is performed to create an electrostatic latent image. Copying is performed by attaching toner to the electrostatic latent image to create a toner powder image, which is then transferred to paper or the like. Therefore, photoreceptors are required to have charging properties, sensitivity, resolution, optical properties, etc. depending on the process, as well as stability of these properties, toner cleanability, and abrasion resistance. In recent years, as a type of high-speed printer, a method of printing using an electrophotographic method using a laser as a light source has been devised. In particular, when a semiconductor laser is used as a light source, the light source section can be made very small, making it possible to miniaturize the printer, significantly reduce power consumption, and increase functionality.
It is attracting a lot of attention. Since the oscillation wavelength of a semiconductor laser is a long wavelength of 770 nm or more, conventional charge transport materials as described above cannot be used in electrophotographic photoreceptors. Therefore, it is desired to develop an electrophotographic photoreceptor that has high sensitivity to specific wavelengths. On the other hand, some methods have been put into practical use, although the sensitivity is still not sufficient. However, the lifespan is still insufficient, and there is a strong desire for an even longer lifespan. As a result of intensive studies aimed at providing an electrophotographic photoreceptor with excellent various electrophotographic properties and characteristics sufficient for practical use, the inventors of the present invention discovered that charge transport is possible either alone or in a thermosetting resin. Charge transport layers containing a charge transport layer and a thermoplastic resin are formed above and below through an intermediate layer containing a substance, and the concentration of the charge transport substance in the charge transport layer formed on the intermediate layer is determined by controlling the concentration of the charge transport substance in the charge transport layer formed on the intermediate layer. It has been found that this problem can be solved by making the charge transport layer smaller than the underlying charge transport layer. [Object of the Invention] An object of the present invention is to overcome the drawbacks of conventional composite type electrophotographic photoreceptors and, in particular, to provide an electrophotographic photoreceptor having extremely excellent resolution and durability. [Summary of the Invention] In general, factors that determine the life of a composite electrophotographic photoreceptor include deterioration due to corona discharge of the charge transport material and light, as well as external damage due to friction with paper (transfer paper) and developer. Examples include the occurrence of physical scratches. In particular, in the case of a composite type electrophotographic photoreceptor, the structure of the charge transport material layer on the surface is mainly charge transport material/binder resin = 1/4 or more (weight ratio).
Compared to inorganic selenium photoreceptors, these photoreceptors are significantly softer, and the charge transport material has poor corona resistance. In order to improve the surface hardness, there are conventional methods such as providing a surface protective layer or reducing the content of a charge transporting substance. However, all of these methods cause a decrease in electrophotographic properties, particularly an increase in residual potential and a decrease in sensitivity, making it difficult to achieve both electrophotographic properties and durability. As a result of various studies based on this fact, the present inventors found that in a composite electrophotographic photoreceptor comprising a layer containing a charge generating substance and a layer containing a charge transporting substance, the charge transporting layer is The charge transport layer contains a transport substance and a thermoplastic resin, and the charge transport layer is separated into two layers with an intermediate layer containing a thermosetting resin, and the charge transport substance concentration in the charge transport layer is equal to that of the charge generation layer. The nearby charge transport layer () is
20~83% layer near the surface charge transport layer () 10~
It has been found that the above-mentioned problems can be overcome by setting the amount to less than 20%, leading to the present invention. Generally, the wavelength range to which a photoreceptor is sensitive depends on the absorption wavelength range of the charge-generating material, as long as the charge transport layer used does not interfere with the light absorbed by the charge-generating material. Many studies have been carried out on long-wavelength absorbing charge-generating substances, and for example, for Se, CDS, etc., a method has been found to increase the sensitivity in the long wavelength range by adding a sensitizer. Among organic photoconductive materials, various phthalocyanine compounds have relatively good sensitivity in a long wavelength range. Generally, a charge generating substance generates charges by light passing through a charge transport layer, and the generated charges must be efficiently transferred into the charge transport layer by an electric field. Therefore, it is necessary to disperse the charge generating substance on the conductive support in such a form that the generated charges are efficiently transferred to the charge transport layer. This dispersion form is a major controlling factor for various electrophotographic properties of an electrophotographic photoreceptor, and particularly has a great influence on sensitivity, sharpness, and gradation. Therefore, it is important for electrophotographic photoreceptors to more appropriately control the dispersion form of the charge generating substance on the conductive support. The charge transport layer in the composite electrophotographic photoreceptor of the present invention has the following structure. That is, the charge transport layer formed on the charge generation layer supported on the conductive support is formed above and below the intermediate layer that can transfer charges, and is formed below the intermediate layer. The charge transport material concentration in the charge transport layer () is 20% or more, preferably
It is 40-75%. The charge transporting material concentration in the charge transporting layer ( ) formed on the intermediate layer is 20% or less. The intermediate layer consists of a thermosetting resin alone or a charge transport substance concentration in the thermosetting resin of 30% or less,
It is preferably 20% or less. Furthermore, the thickness of the intermediate layer is preferably 5 μm or less, preferably 2 μm or less. The thickness of the charge transport layer () and the charge transport layer () can be changed as desired, and are not particularly limited. Also, a film-forming aid to improve film-forming properties when forming a charge generation layer. Alternatively, various auxiliary agents can be used to improve the properties of electrophotographic photoreceptors, such as the addition of adhesion-enhancing agents or sensitizing agents to improve the adhesion between the charge-generating substance and the conductive support or charge-transporting layer. There are no restrictions on the addition of. Furthermore, conventionally known techniques can be used to form a protective film or the like on the charge transport layer. In the present invention, the charge transport layer containing a charge transport material and a thermoplastic resin is divided into () and () through an intermediate layer containing a thermosetting resin and a charge transport material, and the charge transport layer in each layer is divided into () and (). The limitation on the concentration of transported substances is based on the following reasons. First, it is preferable that the intermediate layer has a thickness of 5 μm or less; if the thickness exceeds 5 μm, the residual potential becomes large and desired electrophotographic characteristics cannot be obtained. In addition, it is preferable that the concentration of the charge transport layer substance in the intermediate layer is 20% or less, but if it exceeds 30%, the concentration of the charge transport layer () formed on the intermediate layer may be affected by the coating solvent. As the elution amount of the charge transporting substance in the intermediate layer increases, it becomes impossible to control the viscosity of the coating liquid, and it also becomes impossible to control the concentration of the charge transporting substance in the intermediate layer and the charge transporting layer (2), as well as the film thickness. , a photoreceptor with stable characteristics cannot be obtained, and mass productivity becomes poor. On the other hand, the charge transport layer ()
It is preferable that the concentration of the charge transport substance in the charge generation layer is 20% or more, but if it is less than that, the charges generated in the charge generation layer cannot be efficiently transported, resulting in an increase in residual potential and a decrease in sensitivity. Electrophotographic properties cannot be obtained. Furthermore, if the concentration of the charge transporting substance exceeds 83%, the film strength of the charge transporting layer () will be significantly reduced, making it unsuitable for practical use. On the other hand, the charge transport material concentration in the charge transport layer () is less than 10-20%. 20%
At higher concentrations, corona deterioration will be significant, resolution changes will be large, and resolution durability will be lost. Therefore, the charge generation layer, the charge transport layer (),
If ( ) and the intermediate layer are formed as described above, the surface hardness of the charge transport layer ( ) will be improved and the occurrence of external scratches will be reduced. On the other hand, regardless of the type of charge-generating substance, the type of charge-transporting substance, the type of intermediate layer material, or the method of forming these layers, sufficient electrophotographic properties and long-term durability can be achieved as a photoreceptor for electrophotography. It has characteristics that allow it to withstand repeated use. Next, a method for forming the charge generation layer and charge transport layer on the conductive support will be described. First, the charge generation layer is prepared by thoroughly mixing and stirring an organic solvent such as tetrahydrofuran, ethyl acetate, acetone, methyl ethyl ketone, halogenated hydrocarbon, etc. that can disperse the charge generation substance well or dissolve the resin and additives used as necessary. Adjust the coating liquid of the charge generating material. The conductive support is immersed in this liquid, or this liquid is dropped onto the conductive support and coated using a bar coater, roll coater, applicator, casting method, etc., and the solvent is removed by heating and cured. , or three-dimensionally cured to form a film. As the resin, a known three-dimensional curing resin or thermoplastic resin can be used. The charge transport layer and intermediate layer are prepared by mixing and stirring a charge transport substance and a resin or a resin alone in a solvent such as tetrahydrofuran, halogenated hydrocarbon, benzene, dioxane, dimethyl formamide, or alcohol, and then dissolving the charge transport material. Adjust the liquid. Using this solution, a charge transport layer (), an intermediate layer, and a charge transport layer () are sequentially formed on the charge generation layer by the same method as for forming the charge generation layer. The charge generating substance used in the present invention includes, for example, phthalocyanine pigments such as metal phthalocyanine and metal-free phthalocyanine, anthraquinone pigments,
Known pigments such as indigoid pigments, quinacrivan pigments, berylene pigments, polycyclic quinone pigments, and methine squaritate pigments can be used, and these pigments can be used alone or in combination of two or more. Examples of the charge transport substance used in the present invention include oxadiazole, triazole, imidazolone, oxazole, pyrazoline, imidazole, imidazolidine, benzothiazole, benzoxazole, triphenylamine, and derivatives of these substances. These charge transport substances can be used alone or in combination of two or more. Examples of the fixing agent resin and intermediate layer resin used in the present invention include silicone resin, phenolic resin, urea resin, melamine resin, furan resin, epoxy resin, silicone resin, vinyl chloride-vinyl acetate copolymer, and xylene resin. , toluene resin, urethane resin, vinyl acetate-methacrylic copolymer, acrylic resin, phenoxy resin, polycarbonate resin, polyester resin, polyarylate resin, etc. Among these, the fixing agent resin for the charge transport layer can be used. thermoplastic resin,
Further, a thermosetting resin may be selected as the resin for the intermediate layer. Further, these resins can be used alone or in combination of two or more. Further, as the conductive support for the composite electrophotographic photoreceptor of the present invention, in addition to metals such as aluminum, aluminum to other metal alloys, steel, iron, and copper, conductive plastics and plastics,
It is possible to use paper, glass, etc., which have been imparted with electrical conductivity, and these supports may be cylindrical, sheet, etc., and are not limited to any shape. [Examples of the Invention] Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these in any way. Examples 1 to 6 The substances shown in Table 1 were weighed and placed in a glass container, and stirred using an ultrasonic vibrator for 15 hours to prepare a charge generation layer coating liquid. Table 2 shows the composition of the charge transport layer (2), and Table 3 shows the composition of the charge transport layer (2).

【表】【table】

【表】【table】

【表】 いずれも成分物質を秤量してガラス製容器に入
れ、内容物が完全に溶解するまで攪拌を行なつ
た。電荷搬送物質は下記構造式で表わされるオキ
サゾール化合物 を用いた。塗工はいずれの層も浸漬法で形成させ
た。まず、厚さ100μmのアルミニウム板上に電荷
発生層を形成させた後、140℃で2時間加熱乾燥
及び硬化させた。電荷発生層の膜厚は1μm以下で
ある。次に、その上に電荷搬送層()を塗工形
成させ、110℃で2時間加熱乾燥させた。さらに、
その上に中間層として、5重量%のネオペンチル
グリコールジアクリレート/エタノール溶液を塗
工し、150℃で30分間加熱乾燥及び硬化させた。
膜厚は1μm以下である。次に、その上に電荷搬送
層()を塗工し、110℃で2時間乾燥させて形
成させ、複合型電子写真用感光体を得た。電荷搬
送層()の膜厚は3〜45μm、電荷搬送層()
の膜厚は3〜25μmである。電子写真特性の測定
は静電記録紙試験装置(川口電機製、SP−428)
を用いて行つた。この場合、マイナス5kVのコロ
ナ放電を10秒間行つて帯電させ(10秒間帯電直後
の表面電位V0(V)を初期電位とする)、30秒間
暗所に放置後(この時の電位をV30(V)で表わ
し、タングステンランプで表面の照度が2X
なるように露光し、この時の表面電位の減衰およ
び時間を記録し、V30が1/2になるまでに必要
とした時間t(秒)と照度との積で感度(半減露
光量、E50X,s)を表わした。また、解像度
は電子写真学会テストチヤートNo.1−R(1975)
を用い、自家製の解像度評価装置で評価した。こ
れらの結果をまとめて第4表および第1に示す。
尚、解像度は3時間加速させて解像度低下させた
値を記載した。
[Table] In each case, the component substances were weighed and placed in a glass container, and stirred until the contents were completely dissolved. The charge transport substance is an oxazole compound represented by the structural formula below. was used. All layers were coated by dipping. First, a charge generation layer was formed on an aluminum plate having a thickness of 100 μm, and then dried and cured by heating at 140° C. for 2 hours. The thickness of the charge generation layer is 1 μm or less. Next, a charge transport layer (2) was coated thereon and dried by heating at 110° C. for 2 hours. moreover,
A 5% by weight neopentyl glycol diacrylate/ethanol solution was applied thereon as an intermediate layer, and dried and cured by heating at 150° C. for 30 minutes.
The film thickness is 1 μm or less. Next, a charge transport layer () was applied thereon and dried at 110° C. for 2 hours to form a composite electrophotographic photoreceptor. The thickness of the charge transport layer () is 3 to 45 μm, the charge transport layer ()
The film thickness is 3 to 25 μm. Measurement of electrophotographic properties was carried out using an electrostatic recording paper tester (manufactured by Kawaguchi Electric, SP-428).
I did it using In this case, perform a corona discharge of -5 kV for 10 seconds to charge the surface (the initial potential is the surface potential V 0 (V) immediately after charging for 10 seconds), and leave it in a dark place for 30 seconds (the potential at this time is set to V 30 ) . (V), expose the surface with a tungsten lamp so that the illuminance becomes 2X , record the attenuation of the surface potential at this time and the time, and calculate the time t required for V 30 to decrease to 1/2. Sensitivity (half-decreased exposure, E 50 (
was evaluated using a homemade resolution evaluation device. These results are summarized in Table 4 and Section 1.
Note that the resolution is the value obtained by accelerating for 3 hours and reducing the resolution.

【表】 比較例 1〜4 実施例1〜6で使用した電荷発生層、電荷搬送
層()、中間層、電荷搬送層()と同組成の
ものを用い、電荷搬送層()の膜厚のみを変え
た複合型の電子写真用感光体を作成した。電子写
真特性及び解像度評価は実施例1と同様に行なつ
た。結果を第5表に示す。
[Table] Comparative Examples 1 to 4 The same compositions as the charge generation layer, charge transport layer (2), intermediate layer, and charge transport layer (2) used in Examples 1 to 6 were used, and the film thickness of the charge transport layer (2) was A composite type electrophotographic photoreceptor was created with only the following changes. Electrophotographic characteristics and resolution evaluation were performed in the same manner as in Example 1. The results are shown in Table 5.

【表】 実施例 7〜11 第6表に示す組成の電荷搬送層()と第3表
に示す組成の電荷搬送層()を、実施例1と同
様の方法で塗工を行ない、複合型電子写真用感光
体を作製した。膜厚は電荷搬送層()が15μm、
電荷搬送層()は5μmである。結果を第1図曲
線(−○−)に示す。
[Table] Examples 7 to 11 A charge transport layer () having the composition shown in Table 6 and a charge transport layer () having the composition shown in Table 3 were coated in the same manner as in Example 1 to form a composite type. A photoreceptor for electrophotography was produced. The film thickness is 15 μm for the charge transport layer ().
The charge transport layer () is 5 μm. The results are shown in the curve (-○-) in Figure 1.

【表】 比較例 5,6 電荷発生層は実施例1と同じものを用い、電荷
搬送層()のオキサゾール化合物濃度は15%,
10%の塗液で、実施例1と同様に電荷搬送層
()及び中間を形成した。電荷搬送層()は
第3表に示す組成のものを使用し、実施例1と同
様にして電荷搬送層()を形成した。結果を第
1図曲線(−●−)に示す。 実施例 12〜16 第2表に示す組成で電荷搬送層()を実施例
1で用いた電荷発生層上に形成させ、また、中間
層も実施例1と同様に形成させた。第7表に示す
組成で電荷搬送層()を実施例1と同様にして
形成した。膜厚は電荷搬送層()が15μm、電
荷搬送層()が5μmである。結果を第2図曲線
に示す。
[Table] Comparative Examples 5 and 6 The same charge generation layer as in Example 1 was used, and the oxazole compound concentration in the charge transport layer () was 15%.
A charge transport layer (2) and an intermediate layer were formed in the same manner as in Example 1 using a 10% coating solution. The charge transport layer (2) was formed in the same manner as in Example 1 using a composition shown in Table 3. The results are shown in the curve (-●-) in Figure 1. Examples 12 to 16 A charge transport layer () having the composition shown in Table 2 was formed on the charge generation layer used in Example 1, and an intermediate layer was also formed in the same manner as in Example 1. A charge transport layer () was formed in the same manner as in Example 1 with the composition shown in Table 7. The film thickness is 15 μm for the charge transport layer ( ) and 5 μm for the charge transport layer ( ). The results are shown in the curve in Figure 2.

【表】 比較例 7〜9 電荷発生層、中間層は実施例1と同様に形成し
た。電荷搬送層()は第2表に示す組成のもの
で形成した。電荷搬送層()中のオキサゾール
化合物濃度を33%,35%、40%にして、電荷搬送
層()を形成した。膜厚は電荷搬送層()が
15μm、電荷搬送層()は5μmである。結果を
第2図曲線に示す。 実施例 17〜21 実施例1で用いた電荷発生層、電荷搬送層
(),()等の塗液を用いて、それぞれの層を
形成した。中間層は第8表に示す樹脂を用いて形
成させて、電荷搬送層()をその上に形成し
た。塗工はアプリケータで行なつた。溶剤はメタ
ノールとテトラヒドロフランとの混合溶剤を用い
た。結果を第3図曲線に示す。
[Table] Comparative Examples 7 to 9 The charge generation layer and intermediate layer were formed in the same manner as in Example 1. The charge transport layer () was formed with a composition shown in Table 2. The charge transport layer (2) was formed by setting the oxazole compound concentration in the charge transport layer (2) to 33%, 35%, and 40%. The film thickness is the charge transport layer ()
15 μm, and the charge transport layer () is 5 μm. The results are shown in the curve in Figure 2. Examples 17 to 21 Using the coating liquids for the charge generation layer, charge transport layer (), (), etc. used in Example 1, the respective layers were formed. The intermediate layer was formed using the resin shown in Table 8, and the charge transport layer () was formed thereon. Coating was done with an applicator. A mixed solvent of methanol and tetrahydrofuran was used as the solvent. The results are shown in the curve in Figure 3.

【表】 比較例 10 電荷発生層、電荷搬送層(),()は実施例
1と同じものを用い、同様にして形成した。中間
層にはテトラメチロールメタントリアクリレート
を用い、オキサゾール化合物を20%添加して形成
させた。溶剤はメタノールとテトラヒドロフラン
との混合物を用い、中間層膜厚を7.0μmとした。
結果を第3図曲線に示す。 実施例 22〜24 第9表に示す結着剤樹脂を用いて電荷搬送層
(),()を形成させた。結着剤樹脂/電荷搬
送物質の比は電荷搬送層()が1/1で、電荷
搬送層()は7/1である。中間層は実施例1
で用いたと同じものを用い、その膜厚は1μm以下
である。中間層のみは浸漬法で塗工し、その他は
アプリケータで塗工した。各種の乾燥及び硬化条
件及び溶剤等は実施例1と同様である。電荷搬送
物質は実施例1で用いたオキサゾール化合物を用
いた。結果を第10表に示す。
[Table] Comparative Example 10 The same charge generation layer and charge transport layer () and () as in Example 1 were used and formed in the same manner. The intermediate layer was formed by using tetramethylolmethane triacrylate and adding 20% of an oxazole compound. A mixture of methanol and tetrahydrofuran was used as the solvent, and the thickness of the intermediate layer was 7.0 μm.
The results are shown in the curve in Figure 3. Examples 22 to 24 Charge transport layers () and () were formed using the binder resins shown in Table 9. The binder resin/charge transport material ratio is 1/1 for the charge transport layer () and 7/1 for the charge transport layer (). The middle layer is Example 1
The same material used in was used, and the film thickness was 1 μm or less. Only the middle layer was applied by dipping, and the rest were applied using an applicator. Various drying and curing conditions, solvents, etc. are the same as in Example 1. The oxazole compound used in Example 1 was used as the charge transport substance. The results are shown in Table 10.

【表】【table】

【表】 実施例 25〜27 実施例1で用いた電荷発生層、電荷搬送層、中
間層を用いた。これら層は浸漬法で塗工した。電
荷搬送層()は第11表に示す組成のものを用
い、アプリケータで塗工して形成させた。電荷搬
送層()の膜厚は5,10,17μmである。電荷
搬送層()に用いた電荷搬送物質は下記構造の
ナフトチアゾール化合物である。結果を第4図に
示す。
[Table] Examples 25 to 27 The charge generation layer, charge transport layer, and intermediate layer used in Example 1 were used. These layers were applied by dipping. The charge transport layer (2) had a composition shown in Table 11 and was formed by coating with an applicator. The thickness of the charge transport layer ( ) is 5, 10, and 17 μm. The charge transport material used in the charge transport layer (2) is a naphthothiazole compound having the following structure. The results are shown in Figure 4.

〔発明の効果〕〔Effect of the invention〕

以上の結果、本発明の電子写真用感光体の電子
写真特性は実用上十分な特性を有した優れた電子
写真用感光体であることがわかる。
The above results show that the electrophotographic photoreceptor of the present invention has excellent electrophotographic properties that are practically sufficient.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第3図及び第4図は複合型電子写真用
感光体の電子写真感度特性図、第2図は同じく電
子写真解像度特性図、第5図は本発明の一実施例
に係る複合型電子写真用感光体の断面図、第6図
は従来の複合型電子写真用感光体の断面図であ
る。 1……導電性支持体、2……電荷発生層、3…
…電荷搬送層、4……電荷搬送層(A)、5……電荷
搬送層(B)、6……中間層。
1, 3 and 4 are electrophotographic sensitivity characteristic diagrams of a composite type electrophotographic photoreceptor, FIG. 2 is an electrophotographic resolution characteristic diagram, and FIG. 5 is a composite type electrophotographic photoreceptor according to an embodiment of the present invention. FIG. 6 is a sectional view of a conventional composite electrophotographic photoreceptor. DESCRIPTION OF SYMBOLS 1... Conductive support, 2... Charge generation layer, 3...
...Charge transport layer, 4...Charge transport layer (A), 5...Charge transport layer (B), 6...Intermediate layer.

Claims (1)

【特許請求の範囲】 1 導電性支持体上に電荷発生層とその上に電荷
搬送層を設けた複合型電子写真用感光体におい
て、前記電荷搬送層は電荷搬送層物質と熱可塑性
樹脂を含み、該電荷搬送層は熱硬化性樹脂と電荷
搬送物質を含む中間層を介して2層に分離形成さ
れており、該電荷搬送層中の電荷搬送物質濃度
は、電荷発生層に近い層の電荷搬送層()が20
〜83%であり、表面に近い層の電荷搬送層()
が10〜20%未満であり、中間層が20%以下である
ことを特徴とする複合型電子写真用感光体。 2 前記電荷搬送層の膜厚は電荷搬送層()/
電荷搬送層()の比は1/0.05〜1/5である
ことを特徴とする特許請求の範囲第1項記載の複
合型電子写真用感光体。 3 中間層は膜厚が5μm以下であることを特徴と
する特許請求の範囲第1項記載の複合型電子写真
用感光体。
[Scope of Claims] 1. A composite electrophotographic photoreceptor in which a charge generation layer is provided on a conductive support and a charge transport layer is provided thereon, wherein the charge transport layer includes a charge transport layer material and a thermoplastic resin. , the charge transport layer is separated into two layers via an intermediate layer containing a thermosetting resin and a charge transport substance, and the concentration of the charge transport substance in the charge transport layer is equal to the charge of the layer near the charge generation layer. Transport layer () is 20
~83% and the charge transport layer in the layer near the surface ()
10 to less than 20%, and an intermediate layer is 20% or less. 2 The thickness of the charge transport layer is charge transport layer ()/
2. The composite electrophotographic photoreceptor according to claim 1, wherein the charge transport layer () has a ratio of 1/0.05 to 1/5. 3. The composite electrophotographic photoreceptor according to claim 1, wherein the intermediate layer has a thickness of 5 μm or less.
JP24815783A 1983-12-29 1983-12-29 Composite type photosensitive body for electrophotography Granted JPS60143346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24815783A JPS60143346A (en) 1983-12-29 1983-12-29 Composite type photosensitive body for electrophotography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24815783A JPS60143346A (en) 1983-12-29 1983-12-29 Composite type photosensitive body for electrophotography

Publications (2)

Publication Number Publication Date
JPS60143346A JPS60143346A (en) 1985-07-29
JPH0374830B2 true JPH0374830B2 (en) 1991-11-28

Family

ID=17174066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24815783A Granted JPS60143346A (en) 1983-12-29 1983-12-29 Composite type photosensitive body for electrophotography

Country Status (1)

Country Link
JP (1) JPS60143346A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62223758A (en) * 1986-03-26 1987-10-01 Canon Inc Electrophotographic sensitive body
JP2638183B2 (en) * 1989-02-20 1997-08-06 富士通株式会社 Image forming device
JP2638182B2 (en) * 1989-02-20 1997-08-06 富士通株式会社 Image forming device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55137532A (en) * 1979-04-16 1980-10-27 Canon Inc Electrophotographic receptor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55137532A (en) * 1979-04-16 1980-10-27 Canon Inc Electrophotographic receptor

Also Published As

Publication number Publication date
JPS60143346A (en) 1985-07-29

Similar Documents

Publication Publication Date Title
JPS6136231B2 (en)
JPS6352146A (en) Positively electrifiable electrophotographic sensitive body
JPH0524507B2 (en)
JPH0374830B2 (en)
JP3184741B2 (en) Electrophotographic photoreceptor
JP2003167364A (en) Electrophotographic photoreceptor and image forming apparatus using the same
JP2812620B2 (en) Electrophotographic photoreceptor
JP2700231B2 (en) Electrophotographic photoreceptor
JP2817824B2 (en) Electrophotographic photoreceptor
JP2990981B2 (en) Electrophotographic photoreceptor
JP2742564B2 (en) Electrophotographic photoreceptor
JP2943393B2 (en) Electrophotographic photoreceptor and method of manufacturing the same
JPS6255660B2 (en)
JPH0466350B2 (en)
JPS6255654B2 (en)
JPS60142341A (en) Composite type electrophotographic sensitive body
JPS6087331A (en) Composite type electrophotographic sensitive body
JP2005292354A (en) Electrophotographic photoreceptor
JP3281960B2 (en) Electrophotographic photoreceptor
JPS6350850A (en) Electrophotographic sensitive body for positive charging
JP2881192B2 (en) Electrophotographic photoreceptor
JPWO2005040933A1 (en) Electrophotographic device and process cartridge
JP2817823B2 (en) Electrophotographic photoreceptor
JPS6314153A (en) Electrophotographic sensitive body for positive electric charge
JPH027056B2 (en)