JPS60143346A - Composite type photosensitive body for electrophotography - Google Patents

Composite type photosensitive body for electrophotography

Info

Publication number
JPS60143346A
JPS60143346A JP24815783A JP24815783A JPS60143346A JP S60143346 A JPS60143346 A JP S60143346A JP 24815783 A JP24815783 A JP 24815783A JP 24815783 A JP24815783 A JP 24815783A JP S60143346 A JPS60143346 A JP S60143346A
Authority
JP
Japan
Prior art keywords
layer
charge transport
charge
transport layer
charge transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24815783A
Other languages
Japanese (ja)
Other versions
JPH0374830B2 (en
Inventor
Hiroyoshi Kokado
小角 博義
Shigeo Suzuki
重雄 鈴木
Atsushi Tsunoda
淳 角田
Yasuki Mori
森 靖樹
Toshikazu Narahara
奈良原 俊和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24815783A priority Critical patent/JPS60143346A/en
Publication of JPS60143346A publication Critical patent/JPS60143346A/en
Publication of JPH0374830B2 publication Critical patent/JPH0374830B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0696Phthalocyanines
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0622Heterocyclic compounds
    • G03G5/0624Heterocyclic compounds containing one hetero ring
    • G03G5/0627Heterocyclic compounds containing one hetero ring being five-membered
    • G03G5/0631Heterocyclic compounds containing one hetero ring being five-membered containing two hetero atoms

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To improve the resolution and durability of a composite type photosensitive body for electrophotography provided with an electric charge generating layer and an electric charge transfer layer on a conductive base by forming separately the charge transfer layer of the specific two layers having different concns. of the charge transfer material. CONSTITUTION:An electric charge generating layer 2 contg. an electric charge generating material (e.g.; non-metallic phthalocyanine) is formed on a conductive base 1 consisting of an aluminum sheet or the like. The 1st electric charge transfer layer 4 contg. an electric charge transfer material (e.g.; oxadiazole) at >=20% concn. is provided thereon and an intermediate layer 6 is formed thereon; further the 2nd charge transfer layer 5 contg. the charge transfer material at <=20% concn. is formed on the layer 6, by which the intended composite type photosensitive body for electrophotography is obtd. The resulted photosensitive body has a substantial electrophotographic characteristic and since the surface hardness of the layer 5 is improved, less external damages are generated.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は導電性支持体上に電荷発生層と電荷搬送層を形
成してなる長波長域に高感度を有する電子写真用感光体
に係わシ、特に高い解像度と優れた耐久性を有する電子
写真用感光体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an electrophotographic photoreceptor having high sensitivity in the long wavelength range and comprising a charge generation layer and a charge transport layer formed on a conductive support. In particular, the present invention relates to an electrophotographic photoreceptor having high resolution and excellent durability.

〔発明の背景〕[Background of the invention]

電子写真用感光体は導電性支持体上に無機または有機の
光導電体層を設けたものである。
An electrophotographic photoreceptor has an inorganic or organic photoconductor layer provided on a conductive support.

一般に有機光4電体は無機元導電体に比べ光感夏が低い
ため、各棟の増感方法が考案されているが最も効果的な
方法は感光体を光照射によって電荷を発生する電荷発生
層とこの電荷発生層で発生した電荷を効率よく搬送する
電荷搬送層とで構成することである。
In general, organic photoreceptors have lower photosensitivity than inorganic conductors, so various sensitization methods have been devised, but the most effective method is charge generation, which generates charges by irradiating the photoreceptor with light. The charge transport layer efficiently transports the charges generated in the charge generation layer.

従来、複合型の電子写真用感光体の電荷発生物質として
は、特開昭52−55643号公報に示される有槻第1
アミン類に可溶なモノアゾ染料、ジスアゾ染料、及びス
クアリン酸誘導体染料、特開昭53−42830号公報
及び特開昭53−41230号公報に示されるキノシア
ニン顔料、特開昭51−11763号公報に示される銅
フタロシアニン顔料などの有機物が多数提示されている
。また、特公昭50−15137号公報に示されるテル
ル〜ヒ素〜ガラス状セレン系、特公昭49−14272
号公報に示されるイミド結合を有する重合体〜無定形セ
レンなどの無機物も提示されている。
Conventionally, as a charge generating material for a composite type electrophotographic photoreceptor, Aritsuki No.
Monoazo dyes, disazo dyes, and squaric acid derivative dyes soluble in amines, quinocyanine pigments shown in JP-A-53-42830 and JP-A-53-41230, and quinocyanine pigments shown in JP-A-51-11763 A number of organic materials have been proposed, such as the copper phthalocyanine pigments shown. In addition, the tellurium-arsenic-glassy selenium series shown in Japanese Patent Publication No. 50-15137, Japanese Patent Publication No. 49-14272
Polymers having imide bonds and inorganic substances such as amorphous selenium are also proposed.

一方、電荷搬送物質としては、特開昭52−77730
号公報、特開昭52−753929号公報等ニ示すれる
ポリ−N−ビニルカルバゾール系、特開昭49−105
537号公報に示されるピラゾリン誘導体、特開昭46
−4484号公報に示されるトリニトロフルオレノン、
特公昭53−3011公報に示されるニトロおよびシア
ノ置換の各種化合物等が提示されている。これらを用い
た電子写真用感光体は、いずれも良好な電子写真特性を
有するが、これらの感光波長域は400〜7QQnmの
可視光に高感度を示し、近赤外光(750nm以上)に
対しては全く感度がなかったり、感度があっても低感度
であるために、近赤外光を光源(例えば、半導体レーザ
)とする電子写真用感光体としては、使用できないとい
う欠点を有していた。
On the other hand, as a charge transport material, Japanese Patent Application Laid-Open No. 52-77730
Poly-N-vinylcarbazole series disclosed in JP-A-52-753929, etc., JP-A-49-105
Pyrazoline derivatives disclosed in Publication No. 537, JP-A-1986
Trinitrofluorenone shown in Publication No.-4484,
Japanese Patent Publication No. 53-3011 discloses various nitro- and cyano-substituted compounds. Electrophotographic photoreceptors using these materials all have good electrophotographic properties, but these photoreceptors exhibit high sensitivity to visible light in the wavelength range of 400 to 7QQnm, and are sensitive to near-infrared light (750 nm or more). They have the disadvantage that they cannot be used as electrophotographic photoreceptors that use near-infrared light as a light source (e.g., semiconductor lasers) because they have no sensitivity at all, or have low sensitivity even if they have sensitivity. Ta.

ところで、このような感光体を用いた電子写真複写機に
おいては、先ず、感光体表面にコロナ照射を行って帯電
させた後画像状露光を行って静電潜像を作成し、次いで
、この静電潜像にトナーを付着させてトナー粉像を作り
、これを紙などに転写して俵写が行われる。そのため、
感光体にはプロセスに応じた帯電性や感度、M像度、光
学特性等の他、これら緒特性の安定性、トナーのクリー
ニング性、耐摩耗性が要求される。
Incidentally, in an electrophotographic copying machine using such a photoreceptor, first, the surface of the photoreceptor is charged by corona irradiation, and then imagewise exposure is performed to create an electrostatic latent image. Toner is attached to the electrostatic latent image to create a toner powder image, which is then transferred to paper or other paper for printing. Therefore,
The photoreceptor is required to have charging properties, sensitivity, M image resolution, optical properties, etc. depending on the process, as well as stability of these properties, toner cleanability, and abrasion resistance.

近年、高速プリンタの1棟として光源にレーザを用いて
、電子写真方式を採用して印字する方法が考案されてい
る。特に半導体レーザを光源として用いた場合には、光
源部を非常に小さくできる為に、プリンタが小型化され
ると共に消費電力の大巾な削減及び多機能化が可能にな
ることから、非常に注目されている。半導体レーザの場
合の発振波長は7701m以上と長波長である為、前述
の如き、従来の電荷搬送物質は電子写真用感光体に使用
することはできない。従って、特定の波長に高感度を有
する電子写真用感光体の開発が望まれている。
In recent years, a method of printing using an electrophotographic method using a laser as a light source has been devised as one of the high-speed printers. In particular, when a semiconductor laser is used as a light source, the light source section can be made very small, making it possible to miniaturize printers, significantly reduce power consumption, and increase functionality, which is attracting a lot of attention. has been done. Since the oscillation wavelength of a semiconductor laser is a long wavelength of 7701 m or more, conventional charge transport materials as described above cannot be used in electrophotographic photoreceptors. Therefore, it is desired to develop an electrophotographic photoreceptor that has high sensitivity to specific wavelengths.

一方、感度的にはまだ十分とは言えないが、一部実用化
されている。しかしながら、寿命的にはまだまだ不十分
であり、一層の長寿命化が強く望まれている。
On the other hand, some methods have been put into practical use, although the sensitivity is still not sufficient. However, the lifespan is still insufficient, and there is a strong desire for an even longer lifespan.

本発明者らは、各種電子写真特性に優れ、かつ実用化に
十分な特性を有する電子写真用感光体を提供すべく鋭意
検討した結果、樹脂単独あるいは電荷搬送物質を含有す
る中間層を介して電荷搬送層を上下に形成し、且つ、中
間層上に形成した電荷搬送層中の電荷搬送物質濃度を、
中間層の下層に形成されている電荷搬送ノーより小さく
するととによシ、解決できることを見出した。
The inventors of the present invention have made intensive studies to provide an electrophotographic photoreceptor that has excellent various electrophotographic properties and has sufficient properties for practical use. Charge transport layers are formed above and below, and the charge transport substance concentration in the charge transport layer formed on the intermediate layer is
It has been found that the problem can be solved by making the charge transport node smaller than the charge transport node formed in the lower layer of the intermediate layer.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、従来の複合型の電子写真用感光体の欠
点を克服し、特に、極めて解像度と耐久性が優れた電子
写真用感光体を提供することにある。
An object of the present invention is to overcome the drawbacks of conventional composite type electrophotographic photoreceptors and, in particular, to provide an electrophotographic photoreceptor with extremely excellent resolution and durability.

〔発明の概要〕[Summary of the invention]

一般に、複合型の電子写真用感光体の寿命を決定する因
子として、電荷搬送物質のコロナ放電及び光等による劣
化以外に、紙(転写紙)や現像剤との摩擦による外部的
な傷の発生等が挙げられる。
In general, factors that determine the lifespan of composite electrophotographic photoreceptors include the occurrence of external scratches due to friction with paper (transfer paper) and developer, in addition to deterioration due to corona discharge and light of the charge transport material. etc.

特に、複合型の電子写真用感光体の場合、表面となる電
荷搬送物質の層の構成が、主として電荷搬送物質/結着
剤樹脂=1/4以上(重量比)にする場合が多く、無機
のセレン感光体と比較し、著しく軟<、シかも電荷搬送
物質が耐コロナ性に弱いという問題がある。表面硬度を
向上させるには従来から知られている表面保護層を設け
る方法、あるいは電荷搬送物質の含有量を減らす等があ
る。
In particular, in the case of composite type electrophotographic photoreceptors, the structure of the charge transport material layer on the surface is often mainly charge transport material/binder resin = 1/4 or more (weight ratio), and inorganic Compared to the selenium photoreceptor, there is a problem that the charge transport material is extremely soft and has poor corona resistance. In order to improve the surface hardness, there are conventionally known methods of providing a surface protective layer, or reducing the content of a charge transporting substance.

しかしながら、それらの方法はいずれも電子写真特性の
低下、特に残留電位の増大及び感度低下が起り、電子写
真特性と耐久性を両立させることは難かしい。本発明者
等は、この事実を基に種々検討した結果、電荷発生物質
を含む層と電荷搬送物質を含む層とから構成される複合
型の電子写真用感光体において、電荷搬送層は電荷を搬
送し得る中間層を介して上下層にそれぞれ形成されてお
り、中間層より下に形成されている電荷搬送層の電荷搬
送物質濃度に比べて、中間層上に形成されている層の電
荷搬送物質濃度を小さくすることにより、前記の問題点
を克服できることを見い出し、本発明に至った。
However, all of these methods cause a decrease in electrophotographic properties, particularly an increase in residual potential and a decrease in sensitivity, making it difficult to achieve both electrophotographic properties and durability. As a result of various studies based on this fact, the present inventors found that in a composite electrophotographic photoreceptor consisting of a layer containing a charge generating substance and a layer containing a charge transporting substance, the charge transporting layer does not carry charges. The charge transport substance concentration in the charge transport layer formed below the intermediate layer is lower than the charge transport substance concentration in the charge transport layer formed below the intermediate layer. It has been discovered that the above problems can be overcome by reducing the concentration of the substance, leading to the present invention.

通常、感光体としての感光波長域は使用する電荷搬送層
が電荷発生物質の蚊収する光を妨げない限り、電荷発生
物質の吸収波長域に依存する。長波長吸収性電荷発生物
質について、これまで数多くの検討がなされ、例えばS
e、Cds等については増感剤の添加により長波長域で
の感度を上げる方法が見出されているが、上記した各棟
有機光導電材料のうちでは各種の7タロシアニン化合物
が比較的長波長域での感度が良好である。一般に、電荷
発生物質は電荷搬送層を通過した光により電荷を発生し
、発生した電荷は電場により効率よく電荷搬送層中に移
行されなければならない。そのため、導電性支持体上に
電荷発生物質は発生した電荷を電荷搬送層により効率よ
く移行されるような形態で分散せしめる必要がある。こ
の分散形態が電子写真用感光体の各種電子写真特性の大
きな支配因子となシ、特に感度、鮮明性及び階調性に大
きな影響を与える。従って、電子写真用感光体としては
導電性支持体上における電荷発生物質の分散形態をより
好適に制御する事が大切なことである。
Generally, the wavelength range to which a photoreceptor is sensitive depends on the absorption wavelength range of the charge-generating material, as long as the charge-transporting layer used does not interfere with the light absorbed by the charge-generating material. Many studies have been conducted on long-wavelength absorbing charge-generating materials, such as S
For e, Cds, etc., a method has been found to increase the sensitivity in the long wavelength range by adding a sensitizer, but among the above-mentioned organic photoconductive materials, various 7-talocyanine compounds have relatively long wavelengths. Sensitivity is good in the range. Generally, a charge generating material generates charges due to light passing through a charge transport layer, and the generated charges must be efficiently transferred into the charge transport layer by an electric field. Therefore, it is necessary to disperse the charge generating substance on the conductive support in such a form that the generated charges are efficiently transferred to the charge transport layer. This dispersion form is a major controlling factor for various electrophotographic properties of an electrophotographic photoreceptor, and particularly has a great influence on sensitivity, sharpness, and gradation. Therefore, it is important for electrophotographic photoreceptors to more appropriately control the dispersion form of the charge generating substance on the conductive support.

本発明の複合型の電子写真用感光体における電荷搬送層
は、次のような構成で成立っている。すなわち、導電性
支持体上に担持されている電荷発生層上に形成される電
荷搬送層は電荷を移動し得る中間層を介して上下に形成
されておシ、中間層の下層に形成されている電荷搬送層
(1)中の電荷搬送物質濃度は20%以上であシ、望ま
しくは、40〜75チである。中間層上に形成されてい
る電荷搬送層(旧中の電荷搬送物質濃度は30%以下で
ろシ、゛望ましくは20チ以下で必る。中間層は樹脂単
独あるいは電荷搬送物質濃度は30チ以下であシ、望ま
しくは20チ以下である。さらには、中間層の膜厚は5
μm以下がよく、望ましくは2μm以下である。電荷搬
送層(1)及電荷搬送層(旧の膜厚は所望によって変え
ることができ、特に限定されるものではない。また、電
荷発生層形成時の成膜性改善に成膜助剤、あるいは電荷
発生物質と導電性支持体あるいは電荷搬送層との接着力
改善に接着方向上作業剤の添加あるいは増感助剤等、電
子写真用感光体の緒特性向上に効果を付与する各種助剤
の添加については、何ら制約されるものではない。更に
は、電荷搬送層(計上に形成させる保穫膜等の形成に関
しては、従来からの公知技前を利用する事も可能である
The charge transport layer in the composite electrophotographic photoreceptor of the present invention has the following structure. That is, the charge transport layer formed on the charge generation layer supported on the conductive support is formed above and below the intermediate layer that can transfer charges, and is formed below the intermediate layer. The concentration of the charge transport substance in the charge transport layer (1) is 20% or more, preferably 40 to 75%. The charge transporting layer formed on the intermediate layer (the concentration of the charge transporting substance in the former layer must be 30% or less, preferably 20% or less. The intermediate layer is made of resin alone or the concentration of the charge transporting substance is 30% or less. The thickness of the intermediate layer is preferably 20 inches or less.
The thickness is preferably 2 μm or less, preferably 2 μm or less. The thickness of the charge transport layer (1) and the charge transport layer (former layer) can be changed as desired and is not particularly limited.Furthermore, film formation aids or In order to improve the adhesion between the charge generating substance and the conductive support or charge transport layer, various auxiliary agents such as sensitizers and sensitizing agents can be added to improve the adhesion force between the charge generating substance and the conductive support or the charge transport layer. There are no restrictions on the addition.Furthermore, with regard to the formation of a charge transport layer (a protection film formed on top of the charge transport layer, etc.), it is also possible to use conventionally known techniques.

本発明において、中間層を介して電荷搬送層を(1)と
(II)に分割し、且つ、それぞれの層中の電荷搬送物
質濃度に制限を設けたのは、次の理由に基づくものであ
る。中間層の膜厚は10μm以下とするのが好適で、膜
厚がそれ以上になると残留電位が犬きくなシ、所望の電
子写真特性が得られない。まだ、電荷搬送物/Jl濃就
は30チ以下が好適であるが、50%以上になると、中
間層上に形成される電荷搬送層(II)を塗工する際に
、その塗液用溶剤により中間層中の電荷搬送物質の溶出
量が大きくなるため、塗液の粘度の制御ができなくなる
と共に、中間層及び電荷搬送層(旧中の電荷搬送物質の
濃度、及び膜厚の制御ができなくなり、安定した特性の
感光体が得られず、しかも量産性が劣るようになる。一
方、電荷搬送層(1)中の電荷搬送物質濃度は20チ以
上が好適であるが、それ以下では電荷発生層で発生した
゛電荷を効率よく搬送することができず、残留電位の増
大及び感度の低下等を生じ、所望の電子写真特性が得ら
れない。また、醒荷搬送物質澁度が75チを越えると、
電荷搬送層(1)の膜強度が著しく低下し、実用に供さ
ない。他方、電荷搬送層(II)中の電荷搬送物質濃度
は30チ以下が好適であるが、それ以上の濃度ではコロ
ナ劣化も著しく、且つ、解像度変化が大きくなり、解像
度の耐久性がなくなる。従って、電荷発生層、電荷搬送
層(1)、(II)及び中間層を上記したように作れば
、電荷搬送層(旧の表面硬度が向上して外部的な傷の発
生が少なくなり、一方、電荷発生物質の種類あるいは電
荷搬送物質の種類あるいは中間層の材質の種類さらには
それら層の形成法等に伺ら制約される事なく、電子写真
用感光体として十分な成子写真特性及び長期の繰り返し
使用に十分耐える特性を有している。
In the present invention, the reason why the charge transport layer is divided into (1) and (II) through an intermediate layer and the concentration of the charge transport substance in each layer is limited is based on the following reasons. be. It is preferable that the thickness of the intermediate layer is 10 μm or less; if the thickness is greater than that, the residual potential will become too large and the desired electrophotographic properties will not be obtained. It is still preferable that the charge transport material/Jl concentration is 30% or less, but if it exceeds 50%, the coating solution solvent may be used when coating the charge transport layer (II) formed on the intermediate layer. This increases the elution amount of the charge transport substance in the intermediate layer, making it impossible to control the viscosity of the coating solution, and making it impossible to control the concentration of the charge transport substance in the intermediate layer and the charge transport layer (formerly), as well as the film thickness. On the other hand, it is preferable that the concentration of the charge transport substance in the charge transport layer (1) is 20 or more, but if it is less than that, the charge The charge generated in the generation layer cannot be efficiently transported, resulting in an increase in residual potential and a decrease in sensitivity, making it impossible to obtain the desired electrophotographic properties. If you exceed
The film strength of the charge transport layer (1) is significantly reduced, making it unusable. On the other hand, the concentration of the charge transporting substance in the charge transporting layer (II) is preferably 30 or less, but if the concentration is higher than that, corona deterioration will be significant, resolution change will be large, and resolution durability will be lost. Therefore, if the charge generation layer, the charge transport layer (1), (II) and the intermediate layer are made as described above, the surface hardness of the charge transport layer (formerly) will be improved and the occurrence of external scratches will be reduced; , regardless of the type of charge-generating substance, the type of charge-transporting substance, the type of material of the intermediate layer, or the method of forming these layers, it has sufficient photographic properties and long-term durability as a photoreceptor for electrophotography. It has characteristics that allow it to withstand repeated use.

次に、導電性支持体上に上記電荷発生層並びに電荷搬送
層を形成する方法について述べる。先ず、電荷発生層は
電荷発生物質をよく分散し、或いは必要に応じて用いる
樹脂及び添加剤をよく溶解する有機溶剤、例えばテトラ
ヒドロフラン、酢酸エチル、アセトン、メチルエチルケ
トン、ハロゲン化炭化水素等と良く混合攪拌して電荷発
生材料の塗液を調整する。この液中に導電性支持体を浸
漬するか、この液を導電性支持体上に滴下してバーコー
タ、ロールコータ、アプリケータ或いは流延法等により
塗工し、加熱により浴剤を除去して硬化、あるいは三次
元硬化して成膜する。樹脂としては公知の三次元硬化型
樹脂あるいは熱可塑性樹脂を使用できる。電荷搬送層、
中間層は電荷搬送物質及び樹脂あるいは樹脂単独をテト
ラヒドロフ5 :/、ハC1、)7ン化炭化水素、ベン
ゼン、ジオキサン、ジメチルフォルムアミド、アルコー
ル等の溶剤に混合攪拌し溶解させて、電荷搬送材料の塗
液を調整する。この溶液を用いて、上記電荷発生層形成
と同法により、電荷発生層上に電荷搬送層(I)、中間
層、電荷搬送層(It)を順次形成させる。
Next, a method for forming the charge generation layer and charge transport layer on the conductive support will be described. First, the charge generation layer is prepared by thoroughly mixing and stirring an organic solvent such as tetrahydrofuran, ethyl acetate, acetone, methyl ethyl ketone, halogenated hydrocarbon, etc. that can disperse the charge generation substance well or dissolve the resin and additives used as necessary. Adjust the coating liquid of the charge generating material. The conductive support is immersed in this liquid, or this liquid is dropped onto the conductive support and coated using a bar coater, roll coater, applicator, casting method, etc., and the bath agent is removed by heating. A film is formed by curing or three-dimensional curing. As the resin, a known three-dimensional curing resin or thermoplastic resin can be used. charge transport layer,
The intermediate layer is made by mixing and stirring and dissolving a charge transport substance and a resin or a resin alone in a solvent such as tetrahydrof5:/, haC1,) 7-carbon hydrocarbon, benzene, dioxane, dimethylformamide, alcohol, etc. to transport charges. Adjust the coating liquid for the material. Using this solution, a charge transport layer (I), an intermediate layer, and a charge transport layer (It) are sequentially formed on the charge generation layer by the same method as for forming the charge generation layer.

本発明に用いられる電荷発生物質とは、例えば、金属フ
タロシアニン、無金属フタロシアニン等の7タロシアニ
ン顔料、アントラキノン顔料、インジゴイド顔料、キナ
クリパン顔料、ペリレン顔料、多環キノン顔料、スクア
リック酸メチン顔料等の公知の顔料を挙げることができ
、これら顔料は単独あるいは2種以上を併用することが
できる。
The charge-generating substance used in the present invention is, for example, a known pigment such as a 7-thalocyanine pigment such as a metal phthalocyanine or a metal-free phthalocyanine, an anthraquinone pigment, an indigoid pigment, a quinacrypan pigment, a perylene pigment, a polycyclic quinone pigment, or a methine squaric acid pigment. Examples include pigments, and these pigments can be used alone or in combination of two or more.

本発明に用いられる電荷搬送物質とは、例えば、オキサ
ジアゾール、トリアゾール、イミダシロン、覧 オキサゾール、ピラゾリン、イミダゾール、イミダゾリ
ジン、ベンゾチアゾール、ベンゾオキサゾール、トリフ
ェニルアミン及びそれら物質の誘導体等を挙げることが
でき、これら電荷搬送物質は単独あるいは2種以上を併
用することができる。
Examples of the charge transport substance used in the present invention include oxadiazole, triazole, imidasilone, trioxazole, pyrazoline, imidazole, imidazolidine, benzothiazole, benzoxazole, triphenylamine, and derivatives of these substances. These charge transport substances can be used alone or in combination of two or more.

本発明に用いられる結着剤樹脂及び中間層用樹脂として
は、例えば、シリコーン樹脂、フェノール樹脂、ユリア
樹脂、メラミン樹脂、フラン樹脂、エポキシ樹脂、ケイ
素樹脂、塩化ビニル−酢酸ビニル共重合体、キシレン樹
脂、トルエン樹脂、ウレタン樹脂、酢酸ビニル−メタク
リル共重合体、アクリル樹脂、フェノキシ樹脂、ポリカ
ーボネート樹脂、ポリエステル樹脂、ボリアリレート樹
脂等を挙げることができ、それら樹脂は単独あるいは2
種以上の併用ができる。
Examples of the binder resin and intermediate layer resin used in the present invention include silicone resin, phenol resin, urea resin, melamine resin, furan resin, epoxy resin, silicone resin, vinyl chloride-vinyl acetate copolymer, and xylene resin. resins, toluene resins, urethane resins, vinyl acetate-methacrylic copolymers, acrylic resins, phenoxy resins, polycarbonate resins, polyester resins, polyarylate resins, etc., and these resins may be used alone or in combination of two
Can be used in combination with more than one species.

また、本発明の複合型電子写真用感光体の導電性支持体
としては、例えばアルミニウム、アルミニウムー他金属
合金、鋼、鉄、銅等の金属の他に、導電性プラスチック
およびプラスチック、紙、ガラス等に導電性を付与した
ものを用いることができ、これらの支持体は円筒状、シ
ート等でよく、何ら形状に制約されることはない。
Examples of the conductive support for the composite electrophotographic photoreceptor of the present invention include metals such as aluminum, aluminum-other metal alloys, steel, iron, and copper, as well as conductive plastics, paper, and glass. These supports may have a cylindrical shape, a sheet, etc., and are not limited to any shape.

〔発明の実施例〕[Embodiments of the invention]

次に、本発明を実施例により更に詳細に説明するが、本
発明はこれらにより何ら限定されるものではない。
Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto in any way.

実施例1〜6 第1表に示す物質を秤量してガラス製容器に入れて、超
音波振動器で15時間借押金行ない、電荷発生層用塗液
を調整した。第2表には電荷搬送層(I)の組成及び第
3表には電荷搬送層(旧の組成を示す。
Examples 1 to 6 The substances shown in Table 1 were weighed and placed in a glass container, and the mixture was stirred using an ultrasonic vibrator for 15 hours to prepare a coating liquid for a charge generation layer. Table 2 shows the composition of the charge transport layer (I), and Table 3 shows the composition of the charge transport layer (old).

第2表 第3表 いずれも成分物質を秤量してガラス製容器に入れ、内容
物が完全に溶解する壕で攪拌を行なった。
In both Tables 2 and 3, the component materials were weighed and placed in a glass container, and stirred in a trench to completely dissolve the contents.

電荷搬送物質は下記構造式で表わされるオキサゾール化
合物 を用いた。塗工はいずれの層も浸漬法で形成させた。ま
ず、厚さ100μmのアルミニウム板上に電荷発生層を
形成させた後、140tl’で2時間加熱乾燥及び硬化
させた。電荷発生層の膜厚は1μmn以下でるる。次に
、その上に電荷搬送層(1)を塗工形成させ、110C
で2時間加熱乾燥させた。
As the charge transport substance, an oxazole compound represented by the following structural formula was used. All layers were coated by dipping. First, a charge generation layer was formed on an aluminum plate having a thickness of 100 μm, and then dried and cured by heating at 140 tl' for 2 hours. The thickness of the charge generation layer is 1 μm or less. Next, a charge transport layer (1) is coated on top of the 110C
It was heated and dried for 2 hours.

さらに、その上に中間層を塗工し、150Cで30分間
加熱乾燥及び硬化させた。膜厚は1μm以下でちる。次
に、その上に電荷搬送層(II)を塗工し、110Cで
2時間乾燥させて形成させ、複合型電子写真用感光体を
得た。′電荷搬送層(1)の膜厚は3〜45μm1電荷
搬送層(n)の膜厚は3〜25μmである。電子写真特
性の測定は静電記録紙試験装置(川口電機製、5P−4
28)を用いて行った。この場合、マイナス5kVのコ
ロナ放電を10秒間行って帯電させ(10秒間イ1:・
電直俊の表面電位Vo (V)を初期電位とする)、3
0秒間暗所に放置後(この時の電位をVso(V)で表
わし、タングステンランプで表面の照度が21.になる
ように蕗光し、この時の表面電位の減衰および時間を記
録し、V3゜が1/2になるまでに必要とした時間t(
秒)と照度との積で感度(半減露光量、Eso(tx 
Hs)を表わした。また、解像度は電子写真学会テスト
チャートA I −R(1975)を用い、自家製の解
像度評価装置で評価した。これらの結果をまとめて第4
表及び第1図に示す。
Further, an intermediate layer was applied thereon and dried and cured by heating at 150C for 30 minutes. The film thickness is 1 μm or less. Next, a charge transport layer (II) was coated thereon and dried at 110C for 2 hours to form a composite electrophotographic photoreceptor. 'The thickness of the charge transport layer (1) is 3 to 45 μm. The thickness of the charge transport layer (n) is 3 to 25 μm. The electrophotographic properties were measured using an electrostatic recording paper tester (manufactured by Kawaguchi Electric, 5P-4).
28). In this case, conduct corona discharge of minus 5 kV for 10 seconds to charge (10 seconds I1:・
The surface potential Vo (V) of Toshiro Dencho is the initial potential), 3
After leaving it in the dark for 0 seconds (the potential at this time is expressed as Vso (V), illuminate it with a tungsten lamp so that the surface illuminance is 21.0 seconds, record the decay of the surface potential and the time, The time t required for V3° to become 1/2 (
Sensitivity (half-reduced exposure amount, Eso(tx
Hs). Further, the resolution was evaluated using a homemade resolution evaluation device using the Electrophotography Society Test Chart A I-R (1975). These results are summarized in the fourth
It is shown in the table and Figure 1.

岡、解像度は3時間加速させて解像度低下させた値を記
載した。
Oka, the resolution is a value obtained by accelerating for 3 hours and lowering the resolution.

比較例1〜4 実施例1〜6で使用した電荷発生層、電荷搬送層(I)
、中間層、電荷搬送層(旧と同組成のものを用い、電荷
搬送層(旧の膜厚のみを変えた複合型の電子写真用感光
体を作製した。電子写真特性及び解像度評価は実施例1
と同様に行なった。結果を第5表に示す。
Comparative Examples 1 to 4 Charge generation layer and charge transport layer (I) used in Examples 1 to 6
A composite electrophotographic photoreceptor was fabricated using the intermediate layer, charge transport layer (the same composition as the old one, and only the thickness of the charge transport layer (the old one) was changed.The electrophotographic characteristics and resolution evaluation are as shown in Example 1
I did the same thing. The results are shown in Table 5.

送層(旧を形成した。膜厚は電荷搬送層(1)が15μ
m1電荷搬送層(旧は5μmである。結果を第2図曲線
1vに示す。
The transport layer (old) was formed.The film thickness was 15μ for the charge transport layer (1).
m1 charge transport layer (old was 5 μm). The results are shown in curve 1v in Figure 2.

実施例17〜21 実施例1で用いた電荷発生層、電荷搬送層(■)。Examples 17-21 Charge generation layer and charge transport layer (■) used in Example 1.

(旧等の塗液を用いて、それぞれの層を形成した。(Each layer was formed using a coating liquid such as Old.

中間層は第8表に示す樹脂を用いて形成させて、電荷搬
送層(n)をその上に形成した。塗工はアプリケータで
行なった。溶剤はメタノールとテトラヒドロフランとの
混合溶剤を用いた。結果を第3図曲線■に示す。
The intermediate layer was formed using the resin shown in Table 8, and the charge transport layer (n) was formed thereon. Coating was done with an applicator. A mixed solvent of methanol and tetrahydrofuran was used as the solvent. The results are shown in curve (■) in Figure 3.

第8表 比較例10 電荷発生層、電荷搬送層(1)、(II)は実施例1と
同じものを用い、同様にして形成した。中間層にはテト
ラメチロールメタントリアクリレートを用い、オキサゾ
ール化合物を20チ添加して形成させた。溶剤はメタノ
ールとテトラヒドロフランの混合物を用い、中間層膜厚
を7.0μmとした。
Table 8 Comparative Example 10 The charge generation layer and charge transport layers (1) and (II) were the same as in Example 1 and were formed in the same manner. The intermediate layer was formed by using tetramethylolmethane triacrylate and adding 20 units of an oxazole compound. A mixture of methanol and tetrahydrofuran was used as the solvent, and the thickness of the intermediate layer was 7.0 μm.

結果を第2図曲線1vに示す。The results are shown in curve 1v in Figure 2.

実施例22〜24 第9表に示す結着剤樹脂を用いて電荷搬送層(■)。Examples 22-24 Charge transport layer (■) using the binder resin shown in Table 9.

(II)を形成させた。結着剤樹脂/電荷搬送物質の比
は電荷搬送層(1)が1/1で、電荷搬送層(II)は
7/1である。中間層は実施例1で用いたと同じものを
用い、その膜厚は1μm以下である。中間層のみは浸漬
法で塗工し、その他はアプリケータで塗工した。各層の
乾燥及び硬化条件及び溶剤等は実施例1と同様である。
(II) was formed. The binder resin/charge transport substance ratio is 1/1 for charge transport layer (1) and 7/1 for charge transport layer (II). The intermediate layer is the same as that used in Example 1, and its thickness is 1 μm or less. Only the middle layer was applied by dipping, and the rest were applied using an applicator. The drying and curing conditions, solvent, etc. of each layer were the same as in Example 1.

電荷搬送物質は実施例1で用いたオキサゾール化合物を
用いた。結果を第10表に示す。
The oxazole compound used in Example 1 was used as the charge transport substance. The results are shown in Table 10.

第10表 実施例25〜27 実施例1で用いた電荷発生層、電荷搬送層、中間層を用
いた。これら層は浸漬法で塗工したU電荷搬送層(I)
は第11表に示す組成のものを用い、アプリケータで塗
工して形成させた。電荷搬送層(旧の膜厚は5,10.
17μmである。電荷搬送層(If)に用いた電荷搬送
物質は下記構造のナフトチアゾール化合物である。結果
を第4図に示す。
Table 10 Examples 25 to 27 The charge generation layer, charge transport layer, and intermediate layer used in Example 1 were used. These layers are U charge transport layer (I) coated by dipping method.
The compositions shown in Table 11 were used and formed by coating with an applicator. Charge transport layer (old film thickness was 5,10.
It is 17 μm. The charge transport material used in the charge transport layer (If) is a naphthothiazole compound having the following structure. The results are shown in Figure 4.

〔発明の効果〕 − 以上の結果、本発明の電子写真用感光体の電子写真特性
は実用上十分な特性を有した優れた電子写真用感光体で
あることがわかる。
[Effects of the Invention] - From the above results, it can be seen that the electrophotographic photoreceptor of the present invention is an excellent electrophotographic photoreceptor having practically sufficient electrophotographic properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第3図及び第4図は複合型電子写真用感光体の
電子写真感度特性図、第2図は同じくε子写真解像度特
性図、第5図は本発明の一実施例に係る複合型電子写真
用感光体の断面図、第6図は従来の複合型電子写真用感
光体の断面図である。 1・・・導電性支持体、2・・・電荷発生層、3・・・
電荷搬送層、4・・・電荷搬送層(5)、5・・・電荷
搬送層CB)、6電荷搬J(1)の万ヤ寸′たル化合物
(%)第2関 0 10 20 .30 110 ¥伺゛摺め&履’ff)のオXザゾLル化合物(誇)第
 3 図 中間層みW厚契兇す 躬q、図 電11弓’78ミ219(−月! (IL)σつ膜厚 
(μmン第 5図 第1頁の続き @発明者 奈良原 俊和 日立車輪3丁目所内
FIGS. 1, 3, and 4 are electrophotographic sensitivity characteristic diagrams of a composite electrophotographic photoreceptor, FIG. 2 is an ε-photo resolution characteristic diagram, and FIG. 5 is an example of the present invention. FIG. 6 is a sectional view of a conventional composite electrophotographic photoreceptor. DESCRIPTION OF SYMBOLS 1... Conductive support, 2... Charge generation layer, 3...
Charge transport layer, 4... Charge transport layer (5), 5... Charge transport layer CB), 6 Compound (%) of charge transport J (1) 2nd section 0 10 20. 30 110 ¥Visit ゛print &shoe'ff)'s oxazol compound (pride) Figure 3 Middle class W thick compliant 躬q, Zuden 11 bow '78mi 219 (-month! IL) σ film thickness
(Continued from μm Figure 5, Page 1 @Inventor Toshikazu Narahara Inside Hitachi Wheels 3-chome

Claims (1)

【特許請求の範囲】 1、導電性支持体上に電荷発生層と電荷搬送層とを設け
た複合型電子写真用感光体において、前記電荷搬送層は
電荷の移動が可能な中間層を介して2層に分離形成さn
ており、該電荷搬送層中の電荷搬送物質濃度は、電荷発
生層に近い層の電荷搬送層中が表面に近い層の電荷搬送
層−よりも高いことを特徴とする複合型電子写真用感光
体。 2、電荷搬送物質濃度は電荷搬送層(5)が20%以上
であり、電荷搬送層(至)は20%以下であることを特
徴とする特許請求の範囲第1項記載の複合型亀子写真用
感光体。 3、 前記電荷搬送層の膜厚は電荷搬送層(A)/電荷
搬送層(ロ)の比は110.05〜115であることを
特徴とする請求 子写真用感光体。 4、 中間層用樹脂は電荷搬送層(自)及び電荷搬送層
(ロ)の結着剤樹脂とは異なることを特徴とする特許請
求の範囲第1項記載の複合型゛電子写真用感光体。 5、中間層は電荷搬送物質が20%以下含有されており
、かつ、膜厚は5μm以下であることを特徴とする%奸
請求の範囲第1項記載の複合型電子写真用感光体。
[Scope of Claims] 1. In a composite electrophotographic photoreceptor in which a charge generation layer and a charge transport layer are provided on a conductive support, the charge transport layer is formed through an intermediate layer that allows charge to move. Formed separately into two layers
A composite electrophotographic photosensitive material, wherein the concentration of the charge transport substance in the charge transport layer is higher in the charge transport layer in the layer near the charge generation layer than in the charge transport layer in the layer near the surface. body. 2. The composite Kameko photograph according to claim 1, wherein the charge transporting substance concentration is 20% or more in the charge transporting layer (5) and 20% or less in the charge transporting layer (to). Photoreceptor for use. 3. A photographic photoreceptor, characterized in that the thickness of the charge transport layer has a charge transport layer (A)/charge transport layer (B) ratio of 110.05 to 115. 4. The composite electrophotographic photoreceptor according to claim 1, wherein the resin for the intermediate layer is different from the binder resin of the charge transport layer (self) and the charge transport layer (b). . 5. The composite electrophotographic photoreceptor according to claim 1, wherein the intermediate layer contains a charge transporting substance in an amount of 20% or less and has a thickness of 5 μm or less.
JP24815783A 1983-12-29 1983-12-29 Composite type photosensitive body for electrophotography Granted JPS60143346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24815783A JPS60143346A (en) 1983-12-29 1983-12-29 Composite type photosensitive body for electrophotography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24815783A JPS60143346A (en) 1983-12-29 1983-12-29 Composite type photosensitive body for electrophotography

Publications (2)

Publication Number Publication Date
JPS60143346A true JPS60143346A (en) 1985-07-29
JPH0374830B2 JPH0374830B2 (en) 1991-11-28

Family

ID=17174066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24815783A Granted JPS60143346A (en) 1983-12-29 1983-12-29 Composite type photosensitive body for electrophotography

Country Status (1)

Country Link
JP (1) JPS60143346A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62223758A (en) * 1986-03-26 1987-10-01 Canon Inc Electrophotographic sensitive body
JPH02219069A (en) * 1989-02-20 1990-08-31 Fujitsu Ltd Image forming device
JPH02219068A (en) * 1989-02-20 1990-08-31 Fujitsu Ltd Image forming device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55137532A (en) * 1979-04-16 1980-10-27 Canon Inc Electrophotographic receptor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55137532A (en) * 1979-04-16 1980-10-27 Canon Inc Electrophotographic receptor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62223758A (en) * 1986-03-26 1987-10-01 Canon Inc Electrophotographic sensitive body
JPH0549219B2 (en) * 1986-03-26 1993-07-23 Canon Kk
JPH02219069A (en) * 1989-02-20 1990-08-31 Fujitsu Ltd Image forming device
JPH02219068A (en) * 1989-02-20 1990-08-31 Fujitsu Ltd Image forming device

Also Published As

Publication number Publication date
JPH0374830B2 (en) 1991-11-28

Similar Documents

Publication Publication Date Title
US4297426A (en) Electrophotographic element with carbazole hydrazone or anile charge transport compounds
GB2034494A (en) Electrophotographic element
JPH0727243B2 (en) Photosensitive imaging member containing chloroindium phthalocyanine
JPS6136228B2 (en)
US4481270A (en) Photoreceptor containing squaric acid methine dyes
JPS62262052A (en) Photosensitive body
JPS6352146A (en) Positively electrifiable electrophotographic sensitive body
JPS5975257A (en) Electrophotographic receptor
US4463077A (en) Electrophotographic photosensitive material comprises pyrazoline and hydrazone derivatives
JPS60143346A (en) Composite type photosensitive body for electrophotography
JP3281968B2 (en) Negatively charged single-layer type electrophotographic photoreceptor
JP2812620B2 (en) Electrophotographic photoreceptor
JP2700231B2 (en) Electrophotographic photoreceptor
JP4118225B2 (en) Electrophotographic photoreceptor and image forming apparatus
JPS59223432A (en) Electrophotographic sensitive body
JPS6087331A (en) Composite type electrophotographic sensitive body
JPH03278061A (en) Electrophotographic sensitive body
JPS62121460A (en) Electrophotographic sensitive body
JPS60142341A (en) Composite type electrophotographic sensitive body
JPS6087333A (en) Composite type electrophotographic sensitive body
JPS6255654B2 (en)
JPS6255660B2 (en)
JPH0466350B2 (en)
JPS5926738A (en) Electrophotographic receptor
JP3281960B2 (en) Electrophotographic photoreceptor