JPH0374536B2 - - Google Patents

Info

Publication number
JPH0374536B2
JPH0374536B2 JP16687683A JP16687683A JPH0374536B2 JP H0374536 B2 JPH0374536 B2 JP H0374536B2 JP 16687683 A JP16687683 A JP 16687683A JP 16687683 A JP16687683 A JP 16687683A JP H0374536 B2 JPH0374536 B2 JP H0374536B2
Authority
JP
Japan
Prior art keywords
value
decoder
circuit
quantizer
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16687683A
Other languages
Japanese (ja)
Other versions
JPS6058722A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP16687683A priority Critical patent/JPS6058722A/en
Publication of JPS6058722A publication Critical patent/JPS6058722A/en
Publication of JPH0374536B2 publication Critical patent/JPH0374536B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B14/00Transmission systems not characterised by the medium used for transmission
    • H04B14/02Transmission systems not characterised by the medium used for transmission characterised by the use of pulse modulation
    • H04B14/06Transmission systems not characterised by the medium used for transmission characterised by the use of pulse modulation using differential modulation, e.g. delta modulation
    • H04B14/066Transmission systems not characterised by the medium used for transmission characterised by the use of pulse modulation using differential modulation, e.g. delta modulation using differential modulation with several bits [NDPCM]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Transmission Systems Not Characterized By The Medium Used For Transmission (AREA)

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は入力信号の標本値とその予測値との差
分を量子化・符号化して伝送する差分PCM伝送
方式(DPCM)に係り、特に音声信号のごとく
レベルの変化範囲が広く、非定常部分を有するア
ナログ入力信号に対し符号化ビツト数が少なくて
予測効果の大きい適応量子化と適応予測を行う差
分PCM符号復号器に関する。
[Detailed Description of the Invention] (a) Technical Field of the Invention The present invention relates to a differential PCM transmission method (DPCM) in which the difference between a sample value of an input signal and its predicted value is quantized and encoded and transmitted. The present invention relates to a differential PCM code decoder that performs adaptive quantization and adaptive prediction with a small number of encoded bits and a large prediction effect on an analog input signal that has a wide range of level changes and non-stationary parts like a signal.

(b) 従来技術と問題点 PCM方式ではアナログ信号を標本化し、その
標本値を量子化、符号化して伝送するが、
DPCM方式では過去の標本値から、次の信号の
標本値を予測しその予測値と実際の標本値との差
(予測誤差)のみを量子化、符号化して伝送する。
(b) Conventional technology and problems In the PCM method, analog signals are sampled, and the sample values are quantized and encoded before being transmitted.
In the DPCM method, the sample value of the next signal is predicted from the past sample value, and only the difference (prediction error) between the predicted value and the actual sample value is quantized, encoded, and transmitted.

従来のDPCM方式の回路構成について、符号
器側を第1図aに、復号器側を第1図bに示す。
Regarding the circuit configuration of the conventional DPCM system, the encoder side is shown in FIG. 1a, and the decoder side is shown in FIG. 1b.

図において、Qは量子化器、Q-1,Q-1′は逆量
子化器、SA,SA′は量子化ステツプ適応回路、
P,P′は予測器、SPLは標本化回路、A1,A
2,A5は加算器、CはPCM変調器、DはPCM
復調器、LPFは低域フイルタを示す。
In the figure, Q is a quantizer, Q -1 and Q -1 ' are inverse quantizers, SA and SA' are quantization step adaptation circuits,
P, P' are predictors, SPL is sampling circuit, A1, A
2. A5 is adder, C is PCM modulator, D is PCM
Demodulator, LPF indicates low pass filter.

符号器側を示す1図aにおいて、アナログ入力
信号Sin(t)は標本化回路SPLにより時刻ti(但
しi=1、2、3…)で標本化され、その標本値
をXiとする。予測器PはX1,X2,X3…Xn
−1を記憶しておき、予め定められた規則にした
がつて次の標本時刻tnにおける入力標本値Xnの
予測値X^nを予測する。加算器A1(動作は差分
回路)はXnとX^nとの差をとり予測誤差Enを発生
する。予測誤差Enは量子化器Qにおいてステツ
プ幅Δnで量子化されその出力として2進符号In
を発生する。量子化器Qの出力2進符号Inは次段
のPCM復調器Cで変調され伝送線路に出力され
るが、一方、逆量子化器Q-1でアナログ量E^nに復
号され予測器Pへフイードバツクされる。すなわ
ち、復号された誤差E^nは加算器A2において標
本値Xnの予測値X^nと相加され復号標本値X〓nと
なり次の入力標本値Xo+1を予測するため予測器
Pに記憶される。
In FIG. 1a showing the encoder side, the analog input signal Sin(t) is sampled by the sampling circuit SPL at time ti (where i=1, 2, 3, . . . ), and the sampled value is designated as Xi. Predictor P is X1, X2, X3...Xn
−1 is stored, and the predicted value X^n of the input sample value Xn at the next sample time tn is predicted according to a predetermined rule. Adder A1 (operates as a differential circuit) takes the difference between Xn and X^n and generates a prediction error En. The prediction error En is quantized by a step width Δn in a quantizer Q, and the output is a binary code In.
occurs. The output binary code In of the quantizer Q is modulated by the next-stage PCM demodulator C and output to the transmission line, but on the other hand, it is decoded into an analog quantity E^n by the inverse quantizer Q -1 and sent to the predictor P. Feedback will be sent to you. That is, the decoded error E^n is added to the predicted value X^n of the sample value Xn in the adder A2 to form the decoded sample value X〓n, which is added to the predictor P to predict the next input sample value X o+1. is memorized.

一方、復号器側では入力PinをPCM復調器Dで
復調した後、逆量子化器Q-1に入力し、その出力
En′と予測器P′の出力を加算器A5にて加算し、
X〓nとして低域フイルタLPFに入力する。逆量子
化器Q-1のステツプ幅は量子化ステツプ適応回路
SA′出力により決定される。
On the other hand, on the decoder side, input Pin is demodulated by PCM demodulator D, then input to inverse quantizer Q -1 , and its output
En' and the output of the predictor P' are added together in an adder A5,
Input to the low-pass filter LPF as X〓n. The step width of the inverse quantizer Q -1 is determined by the quantization step adaptation circuit.
Determined by SA′ output.

ここで、アナログ入力信号Sin(t)のレベル変
化の非定常性が増大し予測誤差の振幅変化が大き
くなつて量子化器Qの量子化ステツプΔnでは小
さ過ぎて傾斜過負荷の可能性が現れてきた時は、
量子化ステツプ適応回路SA,SA′により量子化
ステツプΔnを大きくして目盛りを粗にし、小さ
いところでは量子化目盛を密にする適応量子化が
行われる。然しながら、音声信号のごとくレベル
の変化範囲の大きい信号入力の場合は符号化が入
力レベル変化に追従できず大きな傾斜過負荷ひず
みが残るという問題がある。
Here, the non-stationarity of the level change of the analog input signal Sin(t) increases, the amplitude change of the prediction error increases, and the quantization step Δn of the quantizer Q is too small, resulting in the possibility of slope overload. When I came,
Adaptive quantization is performed by the quantization step adaptive circuits SA, SA', which increases the quantization step Δn to make the scale coarser, and when it is smaller, the quantization scale becomes denser. However, in the case of a signal input having a wide level change range, such as an audio signal, there is a problem in that the encoding cannot follow the input level change and large slope overload distortion remains.

PCM符号復号器の量子化雑音(符号化歪み)
には入力信号の変化に対する追従特性によつて生
ずる傾斜過負荷歪みの他に入力信号レベルの小さ
な場合の符号化によつて生ずる粒子雑音がある。
変化の大きい入力信号に対して量子化ステツプ
Δnを大きくして適応速度を増加すると粒子雑音
が増加するという問題もある。また図のような構
成の予測器Pはフイードバツク系の中にあるので
適応速度が大き過ぎると僅かの伝送ビツトエラー
で系が不安定になるという問題もある。
Quantization noise (coding distortion) of PCM code decoder
In addition to slope overload distortion caused by the tracking characteristic for changes in the input signal, there is particle noise caused by encoding when the input signal level is small.
There is also the problem that particle noise increases when the adaptation speed is increased by increasing the quantization step Δn for input signals with large changes. Furthermore, since the predictor P having the configuration shown in the figure is included in the feedback system, there is also the problem that if the adaptation speed is too high, the system will become unstable due to a slight transmission bit error.

(c) 発明の目的 本発明の目的は、非定常部分の有るアナログ信
号に対して量子化雑音の増加および系の不安定性
の増大を招くことなく特に傾斜過負荷ひずみの軽
減を計れる差分PCM符号器復号器を提供するに
ある。
(c) Object of the Invention The object of the present invention is to provide a differential PCM code that can particularly reduce slope overload distortion for analog signals with unsteady parts without increasing quantization noise or increasing system instability. The purpose is to provide a device decoder.

(d) 発明の構成 本発明では、差分PCM符号復号器の符号器側
は、入力信号と該入力信号に対する予測信号との
差分値を符号化する第1の量子化器回路と、前記
第1の量子化器回路への入力値と前記第1の量子
化器回路の出力値の逆量子化値との差分をとるこ
とで得られる量子化誤差を符号化する第2の量子
化器回路とを備え、復号器側は、前記第1、第2
の量子化器回路の符号値をそれぞれ復号する第
1、第2の復号器よりなり、前記第1、第2の量
子化器回路により得られた符号値をそれぞれ前記
復号器側に送信し、復号器側では、受信したそれ
ぞれの符号値を前記第1、第2の復号器により復
号し相加することにより入力信号を再生するよう
構成される。
(d) Configuration of the Invention In the present invention, the encoder side of the differential PCM code decoder includes a first quantizer circuit that encodes a difference value between an input signal and a prediction signal for the input signal, and the first quantizer circuit. a second quantizer circuit that encodes a quantization error obtained by taking a difference between an input value to the quantizer circuit and a dequantized value of the output value of the first quantizer circuit; The decoder side includes the first and second
comprising first and second decoders that respectively decode the code values of the quantizer circuits, and transmit the code values obtained by the first and second quantizer circuits to the decoder side, respectively; The decoder side is configured to reproduce the input signal by decoding the received code values by the first and second decoders and adding them.

(e) 発明の実施例 本発明の実施例を第2図を用いて説明する。第
2図は本発明に特に関係の深い符号器、復号器部
分のみについて示したブロツク図でaは符号器
側、bは復号器側の回路の構成を表す。第2図に
おいて第1図と同じ英文字は同じ機能の回路を示
す。第2図として新しい文字COD1,COD1は
第1、第2の差分符号器、DEC1,EC2は第1、
第2の差分復号器、L21,L22,L21′,
L22′は論理回路、S21,S22,S21′,
S22′はセレクタ回路、Z-1は遅延回路、M1〜
M5は乗算器、A3,A4,A6,A7は追加さ
れた加算器である。なお、第2図aの符号器は入
力信号の標本値1サンプル当りの符号化ビツト数
を全体で4ビツトとし、第1の差分符号器COD
1に3ビツト、第2の差分符号器COD2に1ビ
ツトを割当てた場合の回路例を示している。また
COD1は従来技術の差分PCM符号器(適応型)
で第1図に示したと同じ構成で3ビツトの量子化
を行うが、COD2は1ビツトの差分符号器なの
で所謂るデルタ変調符号器(適応型)である。
(e) Embodiments of the invention An embodiment of the invention will be described with reference to FIG. FIG. 2 is a block diagram showing only the encoder and decoder portions that are particularly relevant to the present invention, where a represents the circuit configuration on the encoder side and b represents the circuit configuration on the decoder side. In FIG. 2, the same letters as in FIG. 1 indicate circuits with the same function. As shown in Figure 2, the new characters COD1 and COD1 are the first and second differential encoders, DEC1 and EC2 are the first and second differential encoders, respectively.
second differential decoder, L21, L22, L21',
L22' is a logic circuit, S21, S22, S21',
S22' is a selector circuit, Z -1 is a delay circuit, M1~
M5 is a multiplier, and A3, A4, A6, and A7 are added adders. Note that the encoder in FIG. 2a has a total number of encoded bits per sample of the input signal of 4 bits, and the first differential encoder COD
This shows an example of a circuit in which 3 bits are allocated to code 1 and 1 bit is allocated to second differential encoder COD2. Also
COD1 is a conventional differential PCM encoder (adaptive type)
Although 3-bit quantization is performed using the same configuration as shown in FIG. 1, COD2 is a 1-bit differential encoder, so it is a so-called delta modulation encoder (adaptive type).

入力信号の標本値Xnは先づ第1の差分符号器
COD1において従来型の差分量子化を受け其の
量子化誤差を3ビツトの2進符号I1(n)を出力
する。このとき、COD1の量子化器Qの入力に
発生した予測誤差信号Enと逆量子化器Q-1の復号
値E^nとの差信号Q^nが第2の差分符号器COD2に
入力されたデルタ変調され1ビツトの符号I2(n)
として別に出力される。
The sample value Xn of the input signal is first input to the first differential encoder
COD1 undergoes conventional differential quantization and outputs the quantization error as a 3-bit binary code I 1 (n). At this time, the difference signal Q^n between the prediction error signal En generated at the input of the quantizer Q of COD1 and the decoded value E^n of the inverse quantizer Q -1 is input to the second differential encoder COD2. 1 bit delta modulated code I 2 (n)
It is output separately as .

COD2においては、セレクタS21,S22
は論理回路L21によつて制御され、論理回路L
21はCOD1の出力I1(n)が最大振幅を示す場
合に“1”となり、その他の時は“0”となる信
号eを発生する。セレクタS21は信号eが
“1”のとき信号S1を選択し、信号eが“0”
のとき値0を選択する。セレクタS22は信号e
が“1”のとき信号S2を選択しeが“0”のと
き信号S3を選択する。信号S3は第1の符号器
COD1における量子化ステツプ値Δnに等しい。
量子化器Q2はCOD1の量子化誤差成分Q^Enと
セレクタS21の出力値との差(加算器A4にお
ける差値)の極性の正か負かを符号化し1ビツト
符号I2(n)を出力する。論理回路L22は適応
デルタ変調符号器におけるステツプサイズの圧伸
制御回路と同様に出力I2(n)と1つ前の標本値
Xn-1対する出力I2(n−1)が同じ符号語の場合
には1以上、違う場合には1以下の値となる係数
S4を発生する。従つて信号S2はセレクタS2
2の出力に係数S4を乗じたものとなる。以上が
COD2の構成と動作である。
In COD2, selectors S21 and S22
is controlled by the logic circuit L21, and the logic circuit L
21 generates a signal e which becomes "1" when the output I 1 (n) of COD 1 exhibits the maximum amplitude, and which becomes "0" at other times. The selector S21 selects the signal S1 when the signal e is "1", and selects the signal S1 when the signal e is "0".
Select the value 0 when . Selector S22 receives signal e
When e is "1", signal S2 is selected, and when e is "0", signal S3 is selected. Signal S3 is the first encoder
Equal to the quantization step value Δn in COD1.
The quantizer Q2 encodes whether the polarity of the difference between the quantization error component Q^En of COD1 and the output value of the selector S21 (the difference value in the adder A4) is positive or negative, and generates a 1-bit code I 2 (n). Output. Similar to the step size companding control circuit in the adaptive delta modulation encoder, the logic circuit L22 outputs the output I 2 (n) and the previous sample value.
If the output I 2 (n-1) for Xn -1 is the same code word, a coefficient S4 is generated which has a value of 1 or more, and if they are different, a value of 1 or less. Therefore, the signal S2 is the selector S2
2 multiplied by the coefficient S4. More than
This is the configuration and operation of COD2.

入力信号Xnが定常的であつてCOD1がXnに追
従できている場合は出力I1((n)は中間的符号語
となるのでCOD2における論理回路L21の出
力eは“0”となりQ2は単純にQ^Enの値が正か
負のみを符号化し等価的に4ビツトの量子化が行
われることになる。入力信号Xnが非定常になつ
てCOD1が追従できなくなると出力I1(n)は最
大符号語を送出し続ける。この場合、論理回路L
21の出力eは1となる。即ち、信号S2は信号
eが1となる直前の値を初期値とし係数S4を乗
算器M1で掛け合わせた値となり第2の符号器
COD2は第1の符号器の量子化誤差Q^Enの値に
追従するような適応デルタ変調回路となる。
COD1が入力信号に追従できて出力I1(n)が最
大符号語以外の値をとるまではCOD1で発生し
た傾斜ひずみをCOD2において補正する働きを
する。
When the input signal Xn is stationary and COD1 can follow Xn, the output I 1 ((n) becomes an intermediate code word, so the output e of the logic circuit L21 in COD2 becomes "0" and Q2 is simple. In this case, only positive or negative values of Q^En are encoded, and equivalently 4-bit quantization is performed.When the input signal Xn becomes non-stationary and COD1 cannot follow it, the output I 1 (n) continues to send out the maximum codeword. In this case, the logic circuit L
The output e of 21 becomes 1. That is, the signal S2 is a value obtained by multiplying the initial value by the coefficient S4 by the multiplier M1, with the initial value immediately before the signal e becomes 1, and the signal S2 is the value obtained by multiplying the coefficient S4 by the multiplier M1.
COD2 becomes an adaptive delta modulation circuit that follows the value of the quantization error Q^En of the first encoder.
Until COD1 can follow the input signal and the output I 1 (n) takes a value other than the maximum code word, COD2 functions to correct the slope distortion generated in COD1.

次に復号器側においては、差分符号器回路
COD1,COD2に対応して差分復号器回路DEC
1,DEC2が構成されるがDEC1は従来の適応
差分復号器と同じである。DEC2の逆量子化器
Q2 -1は復号器入力I2′(n)の正負に応じて+0.5と
−0.5の値を発生する。論理回路L′21はセレク
タS′21とS′22を制御し入力I′1(n)が最大値
以下の場合にはDEC1におけるステツプサイズ
Δnに乗算器M2により0.5を乗じたのち乗算器M
3によりQ2 -1の出力に乗じたものがQ^En′として
DEC1の出力X^′nに加算器A6において追加され
最終の復号値X〓nを得る。復号器入力I1′(n)が最
大値になつた場合には符号器側と同様に最大値を
とる直前のDEC1のステツプサイズΔnを初期値
として論理回路L′22の出力を乗算器M5で掛け
合わせた値S5に乗算器M4の出力を加算器A7
で加えて値Q^En′とし、DEC1の出力X^′nに加算
器A6において相加される。このとき実際には入
力I2′(n)に応じてS5に1.5の値を乗じた値また
は0.5を乗じた値が加算器A6において相加され
る。
Next, on the decoder side, the differential encoder circuit
Differential decoder circuit DEC corresponding to COD1 and COD2
1 and DEC2 are configured, but DEC1 is the same as a conventional adaptive differential decoder. DEC2 inverse quantizer
Q 2 -1 generates values of +0.5 and -0.5 depending on the sign of the decoder input I 2 '(n). Logic circuit L'21 controls selectors S'21 and S'22, and when input I'1 (n) is less than the maximum value, multiplier M2 multiplies the step size Δn in DEC1 by 0.5.
The output of Q 2 -1 multiplied by 3 is Q^En′
The adder A6 adds the output X^'n of the DEC1 to obtain the final decoded value X〓n. When the decoder input I1 '(n) reaches the maximum value, the step size Δn of DEC1 immediately before the maximum value is taken as the initial value, and the output of the logic circuit L'22 is used as the multiplier M5, similar to the encoder side. Adder A7 adds the output of multiplier M4 to the value S5 multiplied by
is added to the value Q^En', and added to the output X^'n of the DEC1 in the adder A6. At this time, actually, a value obtained by multiplying S5 by a value of 1.5 or a value obtained by multiplying by 0.5 is added in adder A6 depending on the input I 2 '(n).

(f) 発明の効果 本発明で詳述したごとく、入力信号の非定常な
部分での量子化誤差の軽減が計られ、さらに本発
明の回路構成すなわち後段の量子化符号器の予測
回路がフイードバツク系でないので伝送ビツトエ
ラーがあつても不安定にならない効果がある。
(f) Effects of the Invention As detailed in the present invention, the quantization error in the non-stationary portion of the input signal is reduced, and the circuit configuration of the present invention, that is, the prediction circuit of the subsequent quantization encoder, has a feedback Since it is not a system, it has the effect of not becoming unstable even if there is a transmission bit error.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の差分PCM符号復号器全体、第
2図は本発明に関係する符号器復号器のブロツク
図である。 図において、COD1,COD2は差分符号器、
DEC1,DEC2は差分復号器、Qは量子化器、
Q-1は逆量子化器、SAは量子化ステツプ適応回
路、Pは予測器、L21,L22は論理回路、S
21,S22はセレクタ、SPLは標本化回路、C
はPCM変調器、DはPCM復調器、LPFは低域フ
イルタ、A1〜A7は加算器、M1〜M5は乗算
器、ZQ-1は遅延回路である。
FIG. 1 is an overall block diagram of a conventional differential PCM code decoder, and FIG. 2 is a block diagram of an encoder/decoder related to the present invention. In the figure, COD1 and COD2 are differential encoders,
DEC1 and DEC2 are differential decoders, Q is a quantizer,
Q -1 is an inverse quantizer, SA is a quantization step adaptation circuit, P is a predictor, L21 and L22 are logic circuits, and S
21, S22 is a selector, SPL is a sampling circuit, C
is a PCM modulator, D is a PCM demodulator, LPF is a low-pass filter, A1 to A7 are adders, M1 to M5 are multipliers, and ZQ -1 is a delay circuit.

Claims (1)

【特許請求の範囲】 1 入力信号の過去の標本値から次の標本値を予
測し、その予測値と実際の標本値との差分値を量
子化し符号化して伝送する差分PCM符号復号器
に於いて、 符号器側は、 入力信号と該入力信号に対する予測信号との差
分値を符号化する第1の量子化器回路と、 前記第1の量子化器回路への入力値と前記第1
の量子化器回路の出力値の逆量子化値との差分を
とることで得られる量子化誤差を符号化する第2
の量子化器回路とを備え、 復号器側は、 前記第1、第2の量子化器回路の符号値をそれ
ぞれ復号する第1、第2の復号器よりなり、 前記第1、第2の量子化器回路により得られた
符号値をそれぞれ前記復号器側に送信し、復号器
側では、受信したそれぞれの符号値を前記第1、
第2の復号器により復号し相加することにより入
力信号を再生することを特徴とした差分PCM符
号復号器。
[Claims] 1. A differential PCM code decoder that predicts the next sample value from past sample values of an input signal, quantizes and encodes the difference value between the predicted value and the actual sample value, and transmits it. and the encoder side includes: a first quantizer circuit that encodes a difference value between an input signal and a prediction signal for the input signal; and an input value to the first quantizer circuit and the first quantizer circuit.
The second code encodes the quantization error obtained by taking the difference between the output value of the quantizer circuit and the inverse quantization value.
a quantizer circuit; the decoder side includes first and second decoders that decode the code values of the first and second quantizer circuits, respectively; Each of the code values obtained by the quantizer circuit is transmitted to the decoder side, and the decoder side transmits each of the received code values to the first,
A differential PCM code decoder characterized in that an input signal is reproduced by decoding and adding with a second decoder.
JP16687683A 1983-09-10 1983-09-10 Differential pcm code decoder Granted JPS6058722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16687683A JPS6058722A (en) 1983-09-10 1983-09-10 Differential pcm code decoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16687683A JPS6058722A (en) 1983-09-10 1983-09-10 Differential pcm code decoder

Publications (2)

Publication Number Publication Date
JPS6058722A JPS6058722A (en) 1985-04-04
JPH0374536B2 true JPH0374536B2 (en) 1991-11-27

Family

ID=15839259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16687683A Granted JPS6058722A (en) 1983-09-10 1983-09-10 Differential pcm code decoder

Country Status (1)

Country Link
JP (1) JPS6058722A (en)

Also Published As

Publication number Publication date
JPS6058722A (en) 1985-04-04

Similar Documents

Publication Publication Date Title
US4093962A (en) Adaptive predictive encoder
US4751736A (en) Variable bit rate speech codec with backward-type prediction and quantization
US4685115A (en) Apparatus for transmitting digital signals
JP2754741B2 (en) Encoding device
JPH0234498B2 (en)
JPS588777B2 (en) delta modulator
US4542516A (en) ADPCM Encoder/decoder with zero code suppression
US4847866A (en) Differential pulse code modulation scheme incorporating a reconstructed value constrainer
US3550004A (en) Feedback coders using weighted code companding on strings of equal bits
JPH0374536B2 (en)
JP2809524B2 (en) Digital transmission system synchronization
US6061007A (en) 1-bit signal processing system
JPS6054581A (en) Difference encoding device
JP2797411B2 (en) Encoding device
Tombras et al. New adaptation algorithm for a two-digit adaptive delta modulation system
US7098816B2 (en) Tri-state delta codec method and system
JP2809307B2 (en) Encoding device
JPS6237850B2 (en)
JPS6028453B2 (en) Encoding method
JPH0439812B2 (en)
JP3168444B2 (en) Quantizer for predictive coding
JPH0537388A (en) Noise shaping type a/d converter and noise shaping type d/a converter
JPH05268096A (en) Coder/encoder using adaptive delta modulation system
JPH0253335A (en) Adaptive differential pcm system
JPH0426231A (en) Adpcm encoding system