JPS6058722A - Differential pcm code decoder - Google Patents

Differential pcm code decoder

Info

Publication number
JPS6058722A
JPS6058722A JP16687683A JP16687683A JPS6058722A JP S6058722 A JPS6058722 A JP S6058722A JP 16687683 A JP16687683 A JP 16687683A JP 16687683 A JP16687683 A JP 16687683A JP S6058722 A JPS6058722 A JP S6058722A
Authority
JP
Japan
Prior art keywords
value
differential
output
signal
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16687683A
Other languages
Japanese (ja)
Other versions
JPH0374536B2 (en
Inventor
Tomoyoshi Takebayashi
知善 竹林
Yoshihiro Tomita
吉弘 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP16687683A priority Critical patent/JPS6058722A/en
Publication of JPS6058722A publication Critical patent/JPS6058722A/en
Publication of JPH0374536B2 publication Critical patent/JPH0374536B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B14/00Transmission systems not characterised by the medium used for transmission
    • H04B14/02Transmission systems not characterised by the medium used for transmission characterised by the use of pulse modulation
    • H04B14/06Transmission systems not characterised by the medium used for transmission characterised by the use of pulse modulation using differential modulation, e.g. delta modulation
    • H04B14/066Transmission systems not characterised by the medium used for transmission characterised by the use of pulse modulation using differential modulation, e.g. delta modulation using differential modulation with several bits [NDPCM]

Abstract

PURPOSE:To reduce slope overload distortion without increasing quantized noises and instability of the system by applying differential coding to a sample value at the 1st differential quantizing circuit at the coder side, applying differential coding to the error at the 2nd differential quantizing circuit and adding and decoding two codes at the decoder side. CONSTITUTION:When an input signal Xn is normal and a COD1 can follow up the Xn, since an output I1(n) becomes an intermediate code word, an output (e) of a logical circuit L21 goes to ''0'', the quantizer Q2 codes only simply whether the value of the quantized error QEn is positive or negative and the quantization of 4 bits is attained equivalently. When the signal Xn is not normal, an output 11(n) keeps the transmission of maximum code word. In this case, a signal S2 becomes a value where the value just before the signal (e) goes to 1 is taken as the initial value and the coefficient S4 is multiplied by amultiplier M1, and a COD2 becomes an adaptive delta modulation circuit following up the value of the quantized error QEn of the COD1. The slope distortion generated by the COD1 is corrected by the COD2 until the output I1(n) takes a value other than the maximum code word. Decoders DEC1, 2 are constituted in the decoder side in correspondence to the COD1, 2.

Description

【発明の詳細な説明】 (a)発明の技術分野 本発明は入力信号の標本値とその予測値との差分を量子
化・符号化して伝送する差分PCM伝送方式(DPCM
)に係り、特に音声信号のごとくレベルの変化範囲が広
く、非定常部分を有するアナログ入力信号に対し符号化
ビット数が少なくて予測効果の大きい適応量子化と適応
予測を行う差分PCM符号復号器に関する。
Detailed Description of the Invention (a) Technical Field of the Invention The present invention relates to a differential PCM transmission method (DPCM) in which the difference between a sample value of an input signal and its predicted value is quantized and encoded and transmitted.
), a differential PCM code decoder performs adaptive quantization and adaptive prediction, which have a small number of encoded bits and a large prediction effect, especially for analog input signals such as audio signals, which have a wide level change range and non-stationary parts. Regarding.

(b)従来技術と問題点 PCM方式ではアナログ信号を標本化し、その標本値を
量子化、符号化して伝送するが、DPCM方式では過去
の標本値から、次の信号の標本値を予測しその予測値と
実際の標本値との差(予測誤差)のみを量子化、符号化
して伝送する。
(b) Prior art and problems In the PCM method, an analog signal is sampled, and the sample value is quantized, encoded, and transmitted, but in the DPCM method, the sample value of the next signal is predicted from the past sample value. Only the difference (prediction error) between the predicted value and the actual sample value is quantized, encoded, and transmitted.

従来のDPCM方式の回路構成について、符号器側を第
1図ialに、復号器側を第2図山)に示す。
Regarding the circuit configuration of the conventional DPCM system, the encoder side is shown in FIG. 1, and the decoder side is shown in FIG.

図において、Qは量子化器、C/ ca7/−は逆量子
化器、SA、 SA ”は量子化ステップ適応回路、P
、 P′ は予測器、SPLは標本化回路、AI、 A
2. A5は加算回路、CはPCM変調器、DはPCM
復調器、LPFは低域フィルタを示す。
In the figure, Q is a quantizer, C/ca7/- is an inverse quantizer, SA, SA'' is a quantization step adaptation circuit, and P
, P′ is the predictor, SPL is the sampling circuit, AI, A
2. A5 is an adder circuit, C is a PCM modulator, and D is a PCM
Demodulator, LPF indicates a low pass filter.

符号器側を示す第1図(a)において、アナログ入力信
号Sin (t )は標本化回路SPLにより時刻ti
(但しi =L2,3 ・・)で標本化され、その標本
値をXi とする。予測器PはXI、 X2. X3 
・・Xn−/を記憶しておき、予め定められた規則にし
たがって次の標本時刻tnにおける入力標本値Xnの予
測値Xnを予測する。加算回路AI (動作は差分回路
)はXnとXnとの差をとり予測誤差Enを発生する。
In FIG. 1(a) showing the encoder side, the analog input signal Sin (t) is input at time ti by the sampling circuit SPL.
(where i = L2, 3 . . . ), and the sampled value is assumed to be Xi. The predictor P is XI, X2. X3
. Adder circuit AI (operates as a differential circuit) takes the difference between Xn and Xn and generates a prediction error En.

予測誤差Enは量子化器Qにおいてステップ幅Δnで量
子化されその出力として2連符号Inを発生する。量子
化器Qの出力2進符号Inは次段のPCM変調器Cで変
調され伝送線路に出力されるが、一方、逆量子化器Q 
でアナログ量Enに復号され予測器Pヘフイードバンク
される。すなわち、復号された誤差Enは加W回路A2
において標本値Xnの予測値Xnと相加され復号標本値
Xnとなり次の入力標本値Xn−ttを予測するため予
測器Pに記憶される。
The prediction error En is quantized by a step width Δn in a quantizer Q, and a double code In is generated as an output. The output binary code In of the quantizer Q is modulated by the next stage PCM modulator C and output to the transmission line.
It is decoded into an analog quantity En and fed to the predictor P. That is, the decoded error En is added to the W circuit A2.
, the sample value Xn is added to the predicted value Xn to obtain a decoded sample value Xn, which is stored in the predictor P to predict the next input sample value Xn-tt.

一方、復号器側では入力PinをPCM復調器りで復調
した後、逆量子化器Q に入力し、その出力En ’と
予測器P′小出力加算器A5にて加算し、Xnとして低
域フィルタLPFに入力する。逆量子化器Q−/のステ
ップ幅は量子化ステップ適応回路SA′出力により決定
される。
On the other hand, on the decoder side, input Pin is demodulated by a PCM demodulator, inputted to an inverse quantizer Q, and its output En' and predictor P' are added by a small output adder A5, and the low frequency Input to filter LPF. The step width of the inverse quantizer Q-/ is determined by the output of the quantization step adaptation circuit SA'.

ここで、アナログ入力信号Sin (t )のレベル変
化の非定常性が増大し予測誤差の振幅変化が大きくなっ
て量子化器Qの量子化ステップΔnでは小さ過ぎて傾斜
過負荷の可能性が現れてきた時は、量子化ステップ適応
回路5A、 S4 ’により量子化ステップΔnを大き
くして目盛りを粗にし、小さいところでは量子化目盛を
密にする適応量子化が行われる。然しながら、音声信号
のごとくレベルの変化範囲の大きい信号入力の場合は符
号化が入力レベル変化に追従できず大きな傾斜過負荷ひ
ずみが残るという問題がある。
Here, the non-stationarity of the level change of the analog input signal Sin (t) increases, the amplitude change of the prediction error becomes large, and the quantization step Δn of the quantizer Q is too small, resulting in the possibility of slope overload. When the quantization step is large, the quantization step adaptation circuits 5A and S4' perform adaptive quantization in which the quantization step Δn is increased to make the scale coarser, and when the quantization step Δn is small, the quantization scale is made denser. However, in the case of a signal input having a wide level change range, such as an audio signal, there is a problem in that the encoding cannot follow the input level change and large slope overload distortion remains.

PCM符号復号器の量子化雑音(符号化歪み)には入力
信号の変化に対する追従特性によって生ずる傾斜過負荷
歪みの他に入力信号レベルの小さな場合の符号化によっ
て生ずる粒子雑音がある。変化の大きい入力信号に対し
て量子化ステップΔnを大きくして適応速度を増加する
と粒子雑音が増加するという問題もある。また図のよう
な構成の予測器Pはフィードバック系の中にあるので適
応速度が大き過ぎると僅かの伝送ビットエラーで系が不
安定になるという問題もある。
Quantization noise (encoding distortion) of a PCM code decoder includes not only slope overload distortion caused by the tracking characteristic for changes in the input signal, but also particle noise caused by encoding when the input signal level is small. There is also the problem that particle noise increases when the adaptation speed is increased by increasing the quantization step Δn for input signals with large changes. Furthermore, since the predictor P having the configuration shown in the figure is included in the feedback system, there is a problem that if the adaptation speed is too high, the system will become unstable due to a slight transmission bit error.

(C)発明の目的 本発明の目的は、非定常部分の有るアナログ信号に対し
て量子化雑音の増加および系の不安定性の増大を招くこ
となく特に傾斜過負荷ひずみの軽減を計れる差分PCM
符号器復号器を提供するにある。
(C) Object of the Invention The object of the present invention is to provide a differential PCM that can particularly reduce slope overload distortion for analog signals with unsteady parts without increasing quantization noise or increasing system instability.
Provides an encoder-decoder.

(d)発明の構成 本発明では、差分PCM符号復号器の符号器側として2
種類の差分量子化回路を具え第1の差分量子化器回路に
よって入力信号の標本値を差分符号化し伝送すると共に
その差分量子化器回路において発生した量子化誤差値を
第2の差分量子化器回路によってまた差分符号化する。
(d) Structure of the Invention In the present invention, two
A first differential quantizer circuit differentially encodes and transmits a sample value of an input signal, and a quantization error value generated in the differential quantizer circuit is transmitted to a second differential quantizer. The circuit also differentially encodes.

復号器側では別々に伝送された2つの差分符号器の符号
値を夫々復号し相加することによって最終の復号値を得
るよう回路が構成される。
On the decoder side, a circuit is configured to obtain a final decoded value by decoding and adding the separately transmitted code values of the two differential encoders.

(e)発明の実施例 本発明の実施例を第2図を用いて説明する。第2図は本
発明に特に関係の深い差分量子化器回路部分のみについ
て示したブロック図で(alは符号器側、(blは復号
器側の回路の構成を表す。第2図において第1図と同じ
英文字は同じ機能の回路を示す。第2図として新しい文
字L2L L22. L21′。
(e) Embodiment of the Invention An embodiment of the invention will be described with reference to FIG. FIG. 2 is a block diagram showing only the differential quantizer circuit that is particularly relevant to the present invention (al represents the circuit configuration on the encoder side, (bl represents the circuit configuration on the decoder side). The same letters as in the figure indicate circuits with the same function.New letters L2L L22.L21' as in the second figure.

L22′は論理回路、321. 322. S21’、
322′はセレクタ回路、zlは遅延回路、M1〜M5
は乗算器、A3〜A7は追加された加算器である。
L22' is a logic circuit, 321. 322. S21',
322' is a selector circuit, zl is a delay circuit, M1 to M5
is a multiplier, and A3 to A7 are added adders.

なお、第2図(alの符号器は入力信号の標本値1サン
プル当りの符号化ビット数を全体で4ビツトとし、第1
の差分符号器(CODI)に3ビツト、第2の差分符号
器(COD2)に1ビツトを割当てた場合の回路例を示
している。またC0D1は従来技術の差分PCM符号器
(適応型)で第1図に示したと同じ構成で3ビツトの量
子化を行うが、C0D2は1ビツトの差分符号器なので
所謂るデルタ変調符号器(適応型)である。
Note that the encoder shown in FIG.
A circuit example is shown in which 3 bits are allocated to the second differential encoder (CODI) and 1 bit is allocated to the second differential encoder (COD2). Furthermore, C0D1 is a conventional differential PCM encoder (adaptive type) that performs 3-bit quantization with the same configuration as shown in FIG. type).

入力信号の標本値Xnは先づ第1の差分符号器C0D1
において従来型の差分量子化を受け其の量子化誤差を3
ビツトの2進行号1.(n)を出力する。このとき、C
OD 1の量子化器Qの入力に発生した予測誤差信号E
nと逆量子化器Q の復号値Enとの差信号QEnが第
2の差分符号器C0D2に入力されデルタ変調され1ビ
ツトの符号■工(n)として別に出力される。
The sample value Xn of the input signal is first input to the first differential encoder C0D1.
In the conventional differential quantization, the quantization error was reduced to 3
Bittu no 2 progression issue 1. Output (n). At this time, C
Prediction error signal E generated at the input of quantizer Q with OD 1
The difference signal QEn between n and the decoded value En of the inverse quantizer Q is input to the second differential encoder C0D2, delta modulated, and separately output as a 1-bit code (n).

C0D2においては、セレクタS21、S22は論理回
路l521によって制御され、論理回路L21はC0D
1の出力1 t (n )が最大振幅を示す場合に1″
となり、その他の時はO″となる信号eを発生する。セ
レクタ321は信号eが1″のとき信号S1を選択し、
信号eが“0″のとき値0を選択する。セレクタS22
は信号eが°゛1″のとき信号S2を選択しeが”o″
のとき信号S3を選択する。信号S3は第1の符号器C
0DIにおける量子化ステップ値へ〇に等しい。量子化
器Q2はGOD Iの量子化誤差成分QEnとセレクタ
S21の出力値との差(加算器A4における差値)の極
性の正か負かを符号化し1ビット符号12(r+)を出
力する。論理回路L22は適応デルタ変調符号器におけ
るステップサイズの圧伸制御回路と同様に出力■工(n
)と1つ前の標本値Xn−/に対する出力1.(n−1
)が同じ符号語の場合には1以上、違う場合には1以下
の値となる係数84を発生する。従って信号S2はセレ
クタ322の出力に係数84を乗じたものとなる。以上
がCOD 2の構成と動作である。
In C0D2, selectors S21 and S22 are controlled by logic circuit l521, and logic circuit L21
1'' when the output 1 t (n) of 1 exhibits the maximum amplitude
and generates a signal e which is O'' at other times. When the signal e is 1'', the selector 321 selects the signal S1,
When the signal e is "0", the value 0 is selected. Selector S22
selects signal S2 when signal e is °゛1'' and e is “o”
In this case, signal S3 is selected. The signal S3 is sent to the first encoder C
Equal to 0 to the quantization step value at 0DI. Quantizer Q2 encodes whether the polarity of the difference between the quantization error component QEn of GOD I and the output value of selector S21 (difference value in adder A4) is positive or negative, and outputs a 1-bit code 12 (r+). . Logic circuit L22 has an output n
) and the output 1 for the previous sample value Xn-/. (n-1
) are the same code word, a coefficient 84 is generated which has a value of 1 or more, and which has a value of 1 or less if they are different. Therefore, the signal S2 is the output of the selector 322 multiplied by a coefficient 84. The above is the configuration and operation of COD 2.

入力信号Xnが定常的であってC0D1がXnに追従で
きている場合は出力1z(n)は中間的符号語となるの
でC0D2における論理回路L21の出力eは加°′と
なりQ2は単純にQEnの値が正か負のみを符号化し等
測的に4ビツトの量子化が行はれることになる。入力信
号Xnが非定常になってGODIが追従できなくなると
出力1 t (n )は最大符号語を送出し続ける。こ
の場合、論理回路L21の出力eは1となる。即ち、信
号S2は信号eが1となる直前の値を初期値とし係数8
4を乗算器M1で掛は合わせた値となり第2の符号器C
0D2は第1の符号器の量子化誤差QEnの値に追従す
るような適応デルタ変調回路となる。
When the input signal Xn is stationary and C0D1 can follow Xn, the output 1z(n) becomes an intermediate code word, so the output e of the logic circuit L21 at C0D2 becomes an addition °', and Q2 simply becomes QEn 4-bit quantization is performed isometrically by encoding only positive or negative values. When the input signal Xn becomes unsteady and GODI cannot follow it, the output 1 t (n) continues to send out the maximum code word. In this case, the output e of the logic circuit L21 becomes 1. That is, the signal S2 has a coefficient of 8 with the initial value immediately before the signal e becomes 1.
4 is multiplied by multiplier M1 and becomes the combined value of second encoder C.
0D2 is an adaptive delta modulation circuit that follows the value of the quantization error QEn of the first encoder.

COD ]が入力信号に追従できて出力l1(n)が最
大符号語以外の値をとるまではC0D1で発生した傾斜
ひずみをC0D2において補正する働きをする。
COD ] can follow the input signal and until the output l1(n) takes a value other than the maximum code word, C0D2 functions to correct the slope distortion generated in C0D1.

次に復号器側においては、符号器回路C0D1、C0D
2に対応して復号器回路DEC1、DEC2が構成され
るがDEClは従来の適応差分復号器と同しである。D
EC2の逆量子化器Q2 は復号!入力−、’(n )
 (D正負ニ応uテ+0,5 (!: 0,5の値を発
生する。論理回路L゛21はセレクタS′21とS′2
2を制御し入力I′f(n)が最大値以下の場合にはD
EClにおけるステップサイズΔnに乗算器M2により
0,5を乗じたのち乗算器M3によりQユの出力を乗じ
たものがQEnとしてDECIの出力Xnに加算器A6
において相加され最終の復号値Xn を得る。復号器人
力−、’(n)が最大値になった場合には符号器側と同
様に最大値をとる直前のDECIのステップサイズΔn
を初期値として論理回路L′22の出力を乗算器M5で
掛は合わせた値S5に乗算器M4の出力を加算器A7で
加えて値QEnとし、DEClの出力Xnに加算器A6
において相加される。このとき実際には入力1 ; (
n )に応じてS5に1,5の値を乗じた値または0.
5を乗じた値が加算器A6において相加される。
Next, on the decoder side, encoder circuits C0D1, C0D
2, decoder circuits DEC1 and DEC2 are constructed in correspondence with the conventional adaptive differential decoder. D
The inverse quantizer Q2 of EC2 decodes! Input −,'(n)
(D positive/negative response +0,5 (!: Generates a value of 0,5. Logic circuit L21 has selectors S'21 and S'2
2 and when the input I'f(n) is less than the maximum value, D
The step size Δn in ECl is multiplied by 0, 5 by multiplier M2, and then multiplied by the output of QU by multiplier M3, and the result is QEn, which is added to the output Xn of DECI by adder A6.
are added to obtain the final decoded value Xn. When decoder manual power -,'(n) reaches the maximum value, step size Δn of DECI immediately before taking the maximum value, similar to the encoder side.
is the initial value, the output of the logic circuit L'22 is multiplied by the multiplier M5, the output of the multiplier M4 is added to the summed value S5 by the adder A7 to obtain the value QEn, and the output Xn of DECl is multiplied by the adder A6.
are added at. At this time, actually input 1; (
n), the value obtained by multiplying S5 by a value of 1, 5 or 0.
The values multiplied by 5 are added in adder A6.

(f>発明の効果 実施例で詳述したごとく、入力信号の非定常な部分での
量子化誤差の軽減が計られ、さらに本発明の回路構成す
なわち後段の量子化符号器の予測回路がフィードバック
系でないので伝送ビットエラがあっても不安定にならな
い効果がある。
(f> Effects of the Invention As detailed in the embodiment, the quantization error in the non-stationary portion of the input signal is reduced, and the circuit configuration of the present invention, that is, the prediction circuit of the subsequent quantization encoder, provides feedback. Since it is not a system, it has the effect of not becoming unstable even if there is a transmission bit error.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の差分PCM符号復号器全体、第2図は本
発明に関係する差分量子化器回路のブロック図である。 図において、C0D1、C0D2は差分符号器、DBC
I、DEC2は差分復号器、Qは量子化器、Q−/は逆
量子化器、SAは量子化ステップ適応回路、Pは予測器
、L21、L22は論理回路、521、S22はセレク
タである。 0
FIG. 1 is a block diagram of an entire conventional differential PCM code decoder, and FIG. 2 is a block diagram of a differential quantizer circuit related to the present invention. In the figure, C0D1 and C0D2 are differential encoders, DBC
I and DEC2 are differential decoders, Q is a quantizer, Q-/ is an inverse quantizer, SA is a quantization step adaptation circuit, P is a predictor, L21 and L22 are logic circuits, and 521 and S22 are selectors. . 0

Claims (1)

【特許請求の範囲】[Claims] 入力信号の過去の標本値から次の標本値の予測値を予測
し、その予測値と実際の標本値との差分のみを量子化し
符号化して伝送する差分PCM符号復号器において、符
号器側は2つの差分量子化器回路を具え第1の差分量子
化器回路によって入力信号を差分符号化し伝送すると共
に該差分量子化器回路において発生した量子化誤差値を
第2の差分量子化器回路によって差分符号化し伝送し、
復号器側では別々に伝送された第1、第2の差分符号器
の符号値を夫々復号し相加することにより最終の復号値
を得ることを特徴とした差分PCM符号復号器。
In a differential PCM code decoder that predicts the predicted value of the next sample value from the past sample value of the input signal, and quantizes and encodes only the difference between the predicted value and the actual sample value and transmits it, the encoder side It has two differential quantizer circuits, the first differential quantizer circuit differentially encodes and transmits the input signal, and the second differential quantizer circuit converts the quantization error value generated in the differential quantizer circuit. differentially encode and transmit,
A differential PCM code decoder characterized in that, on the decoder side, separately transmitted code values of first and second differential encoders are decoded and added to obtain a final decoded value.
JP16687683A 1983-09-10 1983-09-10 Differential pcm code decoder Granted JPS6058722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16687683A JPS6058722A (en) 1983-09-10 1983-09-10 Differential pcm code decoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16687683A JPS6058722A (en) 1983-09-10 1983-09-10 Differential pcm code decoder

Publications (2)

Publication Number Publication Date
JPS6058722A true JPS6058722A (en) 1985-04-04
JPH0374536B2 JPH0374536B2 (en) 1991-11-27

Family

ID=15839259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16687683A Granted JPS6058722A (en) 1983-09-10 1983-09-10 Differential pcm code decoder

Country Status (1)

Country Link
JP (1) JPS6058722A (en)

Also Published As

Publication number Publication date
JPH0374536B2 (en) 1991-11-27

Similar Documents

Publication Publication Date Title
US4751736A (en) Variable bit rate speech codec with backward-type prediction and quantization
US4468790A (en) System for the quantization of signals
US4685115A (en) Apparatus for transmitting digital signals
US4592070A (en) ADPCM encoder/decoder with improved tracking
JP2754741B2 (en) Encoding device
US4573167A (en) Digital communication system, particularly color television transmission system
JPH0234498B2 (en)
US4797653A (en) DPCM encoder
US4542516A (en) ADPCM Encoder/decoder with zero code suppression
US4847866A (en) Differential pulse code modulation scheme incorporating a reconstructed value constrainer
JPS6058722A (en) Differential pcm code decoder
Boddie et al. Digital signal processor: Adaptive differential pulse-code-modulation coding
US5202685A (en) Digital sigma-delta modulator having a limiter circuit
JP2809524B2 (en) Digital transmission system synchronization
JPH073953B2 (en) Code converter
US7098816B2 (en) Tri-state delta codec method and system
Tombras et al. New adaptation algorithm for a two-digit adaptive delta modulation system
JPS5875341A (en) Data compression device using finite difference
JP2006528858A (en) Noise shaping apparatus and method with improved lossless compression and high audio quality for hi-fi audio
JP2797411B2 (en) Encoding device
JP2809307B2 (en) Encoding device
JP3101118B2 (en) ADPCM codec
JP3055269B2 (en) Transmission line error compensation method
JPS6028453B2 (en) Encoding method
JPS6032433A (en) Over-sample type coder