JPH037425A - Programmable logic array - Google Patents

Programmable logic array

Info

Publication number
JPH037425A
JPH037425A JP14252389A JP14252389A JPH037425A JP H037425 A JPH037425 A JP H037425A JP 14252389 A JP14252389 A JP 14252389A JP 14252389 A JP14252389 A JP 14252389A JP H037425 A JPH037425 A JP H037425A
Authority
JP
Japan
Prior art keywords
signal
term
line
dummy
term line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14252389A
Other languages
Japanese (ja)
Inventor
Tomohiro Kurozumi
知弘 黒住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14252389A priority Critical patent/JPH037425A/en
Publication of JPH037425A publication Critical patent/JPH037425A/en
Pending legal-status Critical Current

Links

Landscapes

  • Logic Circuits (AREA)

Abstract

PURPOSE:To extend a warranted time of the output signal independently of a synchronizing signal and to eliminate the variance of a delay time of an output signal by providing a dummy product term line and a sum term line selected latest. CONSTITUTION:When an L level signal PHI1 is inputted to an AND term 2, all product term lines P(k) are not selected and when an H level signal PHI1 is inputted to the AND term 2, the dummy product term line P(0) are selected latest independently of an input signal at each cycle. Moreover, when an L level signal PHI1 is inputted, all sum term lines S(m) (m=1...m) are not selected, and when H level signal PHI1 is inputted, the dummy product term line P(0) is selected latest for each cycle. Thus, the warranted period of the output of a programmable logic array is extended without provision of excess precharge control circuits, and the variance of a delay time of an output signal is eliminated.

Description

【発明の詳細な説明】 産業上の利用分野 本発明ζよ 半導体集積回路に内蔵されるプログラマブ
ルロジックアレイに係わり、特に出力信号の保証期間を
延期させ、かス 出力信号の遅延時間のバラツキをなく
したプログラマブルロジックアレイに関すa 従来の技術 従来 半導体集積回路に内蔵されるプログラマブルロジ
ックアレイでGEL  動作速度の高速化のために同期
信号を用いて動作の制御を行なっているh文 この場教
 出力信号の保証期間は同期信号に応じて次のサイクル
のプリチャージが終わるまでとなり、プログラマブルロ
ジックアレイの出力信号を他のブロックでラッチ回路等
のイネーブル信号として用いる場合等において、出力信
号の保証期間を同期信号に関係なく延期させたい場合不
都合となも 出力の保証期間を同期信号に関係なく延期
させるための手段として番え  プリチャージの終わり
を遅らせるためのプリチャージ制御回路を余分に設ける
必要があり、レイアウト面積が余分に必要となも また
 従来の同期信号を用いて動作の制御を行なうプログラ
マブルロジックアレイの構成において舷 論理和項の出
力信号は入力信号に依存するために遅延時間のバラツキ
が生じム発明が解決しようとする課題 従来の同期信号を用いて動作の制御を行なっているプロ
グラマブルロジックアレイの構成で(よ出力信号の保証
期間を延期させることが困難であり、また出力信号の保
証期間を延期させるためにプリチャージ制御回路を余分
に設ける必要がありへ また 論理和項の出力信号は入
力信号に依存するために遅延時間のバラツキが生じも 
本発明は上述の課題に鑑みてなされたもので、半導体集
積回路に内蔵され 同期信号を用いて動作の制御を行な
っているプログラマブルロジックアレイにおいて、プリ
チャージ制御回路を余分に設けることなく、出力信号の
保証期間を同期信号に関係なく延期させることを可能と
し かス 出力信号の遅延時間のバラツキをなくすこと
ができるプログラマブルロジックアレイを提供すること
を目的とすム 課題を解決するための手段 本発明は上述の課題を解決するためへ 論理積項の論理
を形成するのに必要とする積項線に加えて各サイクル毎
に入力信号に関係なく最も遅く選択されるダミーの積項
線と、論理和項の論理を形成するのに必要とする和項線
に加えて最も遅く選択されるダミーの和項線を有し 前
記ダミーの積項線が選択された後に選択される前記ダミ
ーの和項線を出力回路の制御信号として用いたプログラ
マブルロジックアレイである。
[Detailed Description of the Invention] Industrial Field of Application The present invention relates to programmable logic arrays built into semiconductor integrated circuits, in particular, to extend the guarantee period of output signals, and to eliminate variations in delay time of output signals. A related to programmable logic arrays that are conventional technology Conventional GEL is a programmable logic array built into a semiconductor integrated circuit that uses synchronization signals to control operations in order to increase operating speed Output signals The guaranteed period is until the end of the next cycle's precharging according to the synchronization signal.When using the output signal of the programmable logic array as an enable signal for a latch circuit, etc. in another block, the guaranteed period of the output signal can be synchronized. This is inconvenient if you want to postpone the output guarantee period regardless of the synchronization signal.It is necessary to provide an extra precharge control circuit to delay the end of the precharge. In addition, in the configuration of a programmable logic array that uses conventional synchronization signals to control operations, the output signal of the OR term depends on the input signal, which causes variations in delay time. Problems to be Solved by the Invention In the configuration of a programmable logic array that uses conventional synchronization signals to control operations, it is difficult to extend the guaranteed period of output signals; It is necessary to provide an extra precharge control circuit to delay the charge. Also, since the output signal of the OR term depends on the input signal, variations in delay time may occur.
The present invention has been made in view of the above-mentioned problems, and is a programmable logic array that is built into a semiconductor integrated circuit and whose operation is controlled using a synchronization signal. It is an object of the present invention to provide a programmable logic array that can extend the warranty period regardless of the synchronization signal and eliminate variations in the delay time of output signals. In order to solve the above problem, in addition to the product term line required to form the logic of the logical product term, a dummy product term line that is selected latest at each cycle regardless of the input signal, and the logical In addition to the sum term line required to form the logic of the sum term, there is a dummy sum term line that is selected latest, and the dummy sum term is selected after the dummy product term line is selected. This is a programmable logic array that uses lines as control signals for output circuits.

作用 本発明は上述の構成により、最も遅く選択されるダミー
の積項線及びダミーの和項線を設けることて 出力回路
のイネーブル信号を生成できもそのため半導体集積回路
に内蔵されるプログラマブルロジックアレイの出力の保
証期間をプリチャージ制御回路を余分に設けることなく
延期でき、かス 出力信号の遅延時間のバラツキをなく
することが実現できも 実施例 第1図は本発明のプログラマブルロジックアレイの一実
施例を示すブロック構成図であも 第1図において、 
lはnビットの入力信号線I (n)を駆動する入力バ
ッファ、 2は論理積JX3は積項線のプリチャージ同
区 4は論理和項 5は和項線のプリチャージ回区 6
は出力ラッチ回路を含む出力バッファ、20は各サイク
ル毎に入力信号に関係なく最・も遅く選択状態となるダ
ミーの積項線P(0)、30はダミーの積項線P(0)
のプリチャージ同区40は論理和項4の論理を形成する
のに必要とされない各サイクル毎に最も遅く選択状態と
なるダミーの和項線5(0)、50はダミーの和項線5
(0)のプリチャージ回路であa 入力バッファ1にお
いて、同期信号Φ1が“L”レベルならばnビットの入
力信号線I (n)の値を取り込へ 十分な駆動を持た
せた信号IB(2n)を生成して論理積項2に久方ヒ 
同期信号Φ1が# H#レベルの肌 生成された信号I
B(2n)の値を保証すも 論理積項2において、イ言
号Φ1が“L″レベルらばすべての積項線P(k)は非
選択状態となり、同期信号Φ1が′″H” レベルなら
ばダミーの積項線P(0)は各サイクル毎に入力信号に
関係なく最も遅く選択状態となり、他の積項線P (k
)(k−1・・・k)は入力信号より(2n)の値に応
じて選択状態もしくは非選択状態となも 積項線のプリ
チャージ回路3.30において、共に同期信号ΦlがH
L 11レベルならばすべての積項線P (k)(k−
0・・・k)のプリチャージ動作が行なわれ 同期信号
Φ1が“H”レベルになることでプリチャージ動作が終
わム 3は積項線P (k)(k−1・・・k)のプリ
チャージ回路で積項線P (k)の反転信号をFB(k
)として出力す、6. 30はダミーの積項線P(0)
のプリチャージ回路で積項線P(0)の反転信号をPB
(0)として出力すム 論理和項4において、同期信号
Φlが“L”レベルならばすべての和項線S (m)(
m−1・・・m)は非選択状態となり、同期信号Φ1が
’H”レベルならばダミーの和項線5(0)は各サイク
ル毎に最も遅く選択状態となり、他の和項線S (n)
(m−1・・・m)は入力信号P B (k)(k−1
・・・k>の値に応じて選択状態もしくは非選択状態と
なム和項線のプリチャージ回路5,50において、共に
同期4’l 号Φ1が“L”レベルならばすべての和項
線S (m)(+n−0・・・m)のプリチャージ動作
が行なわれ同期信号Φlが”H”レベルになることでプ
リチャージ動作が終わる。5は和項線S (m)(nr
l・・・m)のプリチャージ回路で和項線S (m)の
反転信号をSB (m)として出力する。50はダミー
の和項線5(0)のプリチャージ回路で次段の出力バッ
ファ内の出力ラッチ回路のイネーブル信号Φ2を生成す
も出力バッファ6において、同期信・号Φ1が“L”レ
ベルならばイネーブル信号Φ2も“L”レベルとなるた
め前サイクルの出力信号0(m)の値を保持すム 同期
信号Φ1が゛H″レベルなった後に信号線S B (m
)(m=1・・・m)の値はそれぞれ信号線S(m)(
m=1・・・m)に応じて選択状態となも −人 イネ
ーブル信号Φ2は信号線5(0)に応じて最低 信号線
S B (m)(m−1・・・II])の値がすべて確
定されるまでの皿 十分な遅延を持って選択状態となる
た取前サイクルの出力信号0(m)の値の保証期間を遅
延することができ、か2 出力信号0(m)の遅延時間
のバラツキをなくすることができも 第2図は本発明の
プログラマブルロジックアレイの論理積項および積項線
のプリチャージ回路の具体的な回路構成を示す回路図で
あム 第2図において、20はダミーの積項線を構成す
る回路図で、nチャンネルMO8FET21はゲートを
同期信号Φ1と接続し ソースを接地し ドレインを直
列接続したnチャンネルMO3FET群22と接続して
いる。nチャンネルMO3FET群22(よ 他の積項
線P(k)(k−1−−−k)の最も多いnチャンネル
MO5FETの直列段数に対して同じかそれよりも多く
接続しnチャンネルMO8FET群22のゲートをすべ
て電源電圧と接続することて 各サイクル毎に入力信号
に関係なく最も遅く選択されるようにしていム まt−
nチャンネルMOS F ET群22のnチャンネルM
O3FET21と接続されてない側をダミーの積項線P
(0)の出力としてダミーの積項線のプリチャージ回路
30と接続していも ダミー積項線のプリチャージ回路
30f;t、、  pチャンネルMO8FET31とイ
ンバータ32によって構成さhpチャンネルMO3FE
T31のゲートを同期信号Φ1と接続し ソースを電源
電圧と接続し ドレインをダミーの積項線P (0)お
よびインバータ32の入力と接続し インバータ32の
出力をP B (0)として出力していも 同期信号Φ
1がL”レベルならばダミーの積項線P(0)は“H”
に保たれ インバータ32の出力信号PB(0)は“L
″レベルなり、非選択状態となム 同期信号Φ1がHI
+レベルならばダミーの積項線P(0)は他の積項線P
 (k)(k−1・・・k)よりも遅く “L” レベ
ルとなり、従ってインバータ32の出力信号PB(0)
は他の出力信号PB(k)(k−1・・・k)よりも最
も遅く選択状態となも 第3図は本発明のプログラマブ
ルロジックアレイの論理和項 和項線のプリチャージ回
路および出力バッファの具体的な回路構成を示す回路図
であa第3図において、40はダミーの和項線5(0)
を構成する回路図で、 nチャンネルMO3FET41
はゲートを積項線P(0)のプリチャージ回路30によ
り生成された信号P B (0)と接続し ソースを接
地しドレインをダミーの和項線5(0)と接続していも
50はダミーの和項線5(0)のプリチャージ回路でp
チャンネル間O8FET51とインバータ52と2人カ
アンド53によって構成され pチャンネル間O8FE
T51のゲートと2人カアンド53の一方の入力を同期
信号Φ1と接続LA pチャンネルMO3FET51の
ドレインとインバータ52の入力をダミーの和項線5(
0)と接続し インバータ52の出力を2人カアンド5
3の残りの入力に接続することにより、 2人カアンド
53は出力バッファ内の出力ラッチ回路のイネーブル信
号Φ2を生成すも 同期信号Φ1が“L”レベルならば
すべての和項線S(m)(m−0・・・m)は非選択状
態となり、イネーブル信号Φ2もu L nレベルとな
って出力バッファ内の出力ラッチ回路において前サイク
ルの出力信号○(m)(II+−1・・・m)の値が保
持されも 同期信号Φ1が“H”レベルになると、論理
和項において和項線S(+n)(m−1・・・m)が選
択状態あるいは非選択状態となり、その後ダミーの和項
線5(0)が選択状態となることにより、ダミーの和項
線のプリチャージ回路50においてイネーブル信号Φ2
が同期信号Φ1よりも遅延時間を持って“H”レベルと
なるた取前サイクルの出力信号0 (m)(m=1・・
・m)の値の保証期間を延期でき、か2 出力信号の遅
延時間のバラツキがなく出力させることができも 第4
図は本発明のプログラマブルロジックアレイの動作時の
タイムチャート図を示していも 第4図において、 I
 (n)は入力信号 Φ1は各サイクルを決める同期信
号IB(2n)は入力バッファの出力信号P(k)は積
項線 P(0)はダミーの積項線 PB(k)は論理和
項における積項線 PB(0)は論理和項におけるダミ
ーの積項線 S(m)は和項fil  5(0)はダミ
ーの和項線 SB(m)は出力バッファの入力となる和
項線 Φ2は出カバソファ内の出力ラッチ回路のイネー
ブル信号であム 入力信号I (n)は同期信号ΦIが
L”レベルの時に変化して、次のサイクルの入力信号I
B(2n)を論理積項に与えも同期信号Φ1が“L″レ
ベル間はすべての積項線P (k)(k−i・・・k)
は非選択状態となって“H″レベル採板 同期信号Φ1
が“H”レベルになるとダミーの積項線P (0”)は
各サイクル毎に入力信号に関係なく最も遅く “Lルー
ベルとなり、他の積項線P (k)(k−1−−−k)
は入力信号IB(2n)の値に応じて選択されて“L”
レベルか選択されずに”H”レベルを保v、  PB(
k)とPB(0)はインバータによって各々P(k)と
P(0)の反転信号として得られる。同期信号Φ1が“
L”レベルならばすべての和項線S (m)(m−1・
・・l11)が非選択状態となって“H#レベルを採板
 同期信号Φ1が“H″レベルらばダミーの和項線5(
0)は各サイクル毎に最も遅く選択されて“L”レベル
となり、他の和項線S(m)(m−1・・・m)は入力
信号PB(k)の値に応U 選択されて“L”レベルか
選択されずにH”レベルを保つ。 SB(m)はインバ
ータによってS(m)の反転信号として得られ Φ2の
タイミングで出力バッファ内に取り込まれも 同期信号
Φ1が“H”レベルになると、Φ2は各サイクル毎にS
B(m)よりも最も遅く “H”レベルとなって、すで
に確定されているSB(m)の値を出力バッファに取り
込仏 同期信号Φ1が“L”レベルになると、5B(I
ll)の値が“L”レベルになる前に−早く °′L″
レベルとなって、出力信号0(m)を保証すも発明の効
果 以上のよう艮 本発明によれ(渋 半導体集積回路に内
蔵されるプログラマブルロジックアレイの出力の保証期
間をプリチャージ制御回路を余分に設けることなく延期
でき、かス 出力信号の遅延時間のバラツキをなくする
ことが可能となム
Effect of the Invention With the above-described configuration, the present invention can generate an enable signal for an output circuit by providing a dummy product term line and a dummy sum term line that are selected the latest. The output guarantee period can be extended without providing an extra precharge control circuit, and the variation in the delay time of the output signal can be eliminated. In FIG. 1, which is a block configuration diagram showing an example,
1 is the input buffer that drives the n-bit input signal line I (n), 2 is the logical product JX3 is the precharge circuit of the product term line, 4 is the logical sum term, 5 is the precharge circuit of the sum term line 6
is an output buffer including an output latch circuit, 20 is a dummy product term line P(0) that becomes selected latest regardless of the input signal in each cycle, and 30 is a dummy product term line P(0)
The precharge same section 40 is a dummy sum term line 5(0) which is not required to form the logic of the disjunction term 4 and becomes the latest selected state in each cycle, and 50 is a dummy sum term line 5.
(0) precharge circuit a In the input buffer 1, if the synchronizing signal Φ1 is at "L" level, the value of the n-bit input signal line I (n) is taken in. The signal IB has sufficient drive. (2n) and put Kugata's logic term 2 into the logical product term 2.
Sync signal Φ1 is #H# level Generated signal I
Although the value of B(2n) is guaranteed, in the logical product term 2, if the i word Φ1 is at "L" level, all the product term lines P(k) are in the non-selected state, and the synchronizing signal Φ1 is set to ``H''. In the case of level, the dummy product term line P(0) becomes the selected state the latest in each cycle regardless of the input signal, and the other product term lines P(k
)(k-1...k) are selected or unselected depending on the value of (2n) from the input signal. In the product term line precharge circuit 3.30, the synchronizing signal Φl is high
If L 11 level, all product term lines P (k) (k-
0...k) is performed, and the precharge operation ends when the synchronizing signal Φ1 becomes "H" level. 3 is the product term line P (k) (k-1...k). The precharge circuit converts the inverted signal of the product term line P(k) into FB(k
), 6. 30 is the dummy product term line P(0)
The inverted signal of the product term line P(0) is converted into PB by the precharge circuit
In the logical sum term 4, if the synchronizing signal Φl is at “L” level, all the sum term lines S (m) (
m-1...m) are in the non-selected state, and if the synchronizing signal Φ1 is at 'H' level, the dummy sum term line 5(0) becomes the selected state the latest in each cycle, and the other sum term lines S (n)
(m-1...m) is the input signal P B (k) (k-1
...In the sum term line precharge circuits 5 and 50, which are in a selected state or a non-selected state depending on the value of k>, all the sum term lines A precharge operation of S (m) (+n-0...m) is performed, and the precharge operation ends when the synchronizing signal Φl becomes "H" level. 5 is the sum term line S (m) (nr
l...m) outputs an inverted signal of the sum term line S (m) as SB (m). 50 is a precharge circuit for the dummy sum term line 5(0) which generates an enable signal Φ2 for the output latch circuit in the output buffer of the next stage. In this case, the enable signal Φ2 also goes to the "L" level, so the value of the output signal 0 (m) of the previous cycle is held. After the synchronizing signal Φ1 goes to the "H" level, the signal line S B (m
)(m=1...m) is the signal line S(m)(
Depending on the signal line S B (m) (m-1...II]), the enable signal Φ2 is the lowest depending on the signal line 5(0). It is possible to delay the guarantee period for the value of output signal 0(m) in the pre-cycle until all values are determined. Figure 2 is a circuit diagram showing a specific circuit configuration of the precharge circuit for the AND term and the product term line of the programmable logic array of the present invention. 20 is a circuit diagram constituting a dummy product term line, in which an n-channel MO8FET 21 has a gate connected to a synchronizing signal Φ1, a source grounded, and a drain connected to a group 22 of n-channel MO3FETs connected in series. The n-channel MO3FET group 22 (the other product term line P(k) (k-1---k) is connected in a number equal to or greater than the number of series stages of the n-channel MO5FET with the largest number of n-channel MO8FETs 22 By connecting all the gates of the circuit to the power supply voltage, the latest gate is selected in each cycle regardless of the input signal.
n-channel M of n-channel MOS FET group 22
Dummy product term line P on the side not connected to O3FET21
Even if it is connected to the dummy product term line precharge circuit 30 as the output of (0), the dummy product term line precharge circuit 30f;
The gate of T31 is connected to the synchronizing signal Φ1, the source is connected to the power supply voltage, the drain is connected to the dummy product term line P (0) and the input of the inverter 32, and the output of the inverter 32 is output as P B (0). Also synchronization signal Φ
1 is “L” level, the dummy product term line P(0) is “H”
The output signal PB (0) of the inverter 32 is “L”.
” level, it becomes a non-selected state. Synchronous signal Φ1 is HI
+ level, the dummy product term line P(0) is another product term line P
(k) becomes “L” level later than (k-1...k), so the output signal PB(0) of the inverter 32
is the selected state later than other output signals PB(k) (k-1...k). This is a circuit diagram showing the specific circuit configuration of the buffer.
In the circuit diagram configuring the n-channel MO3FET41
Even if the gate is connected to the signal P B (0) generated by the precharge circuit 30 of the product term line P (0), the source is grounded, and the drain is connected to the dummy sum term line 5 (0), the 50 p in the precharge circuit of the dummy sum term line 5(0)
The p-channel O8FE consists of an interchannel O8FET 51, an inverter 52, and a two-person circuit 53.
The gate of T51 and one input of the two-man circuit 53 are connected to the synchronizing signal Φ1 LA. The drain of the p-channel MO3FET 51 and the input of the inverter 52 are connected to the dummy summation line 5 (
0) and connect the output of inverter 52 to 5
By connecting to the remaining input of 3, the two-man circuit 53 generates the enable signal Φ2 of the output latch circuit in the output buffer. (m-0...m) becomes a non-selected state, the enable signal Φ2 also becomes u L n level, and the output signal of the previous cycle ○(m)(II+-1... Even if the value of m) is held, when the synchronizing signal Φ1 goes to "H" level, the sum term line S(+n) (m-1...m) becomes the selected state or non-selected state in the logical sum term, and then the dummy By selecting the sum term line 5(0), the enable signal Φ2 is activated in the dummy sum term line precharge circuit 50.
The output signal 0 (m) (m=1...
・It is possible to extend the guarantee period for the value of m), and (2) it is possible to output signals without variations in the delay time of the output signal. (4)
The figure shows a time chart during operation of the programmable logic array of the present invention.
(n) is the input signal Φ1 is the synchronization signal that determines each cycle IB (2n) is the output signal of the input buffer P (k) is the product term line P (0) is the dummy product term line PB (k) is the disjunction term PB(0) is the dummy product term line in the disjunction term S(m) is the sum term fil 5(0) is the dummy sum term line SB(m) is the sum term line that becomes the input of the output buffer Φ2 is an enable signal for the output latch circuit in the output buffer sofa. Input signal I (n) changes when the synchronizing signal ΦI is at L" level, and becomes the input signal I for the next cycle.
Even if B(2n) is applied to the logical product term, all the product term lines P (k) (ki...k) while the synchronization signal Φ1 is at "L" level.
is in a non-selected state and the “H” level is detected. Synchronous signal Φ1
When becomes "H" level, the dummy product term line P (0) becomes the slowest "L rubel" in each cycle regardless of the input signal, and the other product term lines P (k) (k-1--- k)
is selected according to the value of input signal IB (2n) and becomes “L”
Keep the “H” level without selecting the level, PB(
k) and PB(0) are obtained as inverted signals of P(k) and P(0), respectively, by an inverter. The synchronization signal Φ1 is “
If it is L” level, all the sum term lines S (m) (m-1・
... l11) is in the non-selected state and the "H# level is detected. If the synchronization signal Φ1 is the "H" level, the dummy sum term line 5 (
0) is selected the latest in each cycle and becomes the "L" level, and the other sum term lines S(m) (m-1...m) are selected according to the value of the input signal PB(k). SB(m) is obtained as an inverted signal of S(m) by the inverter and is taken into the output buffer at the timing of Φ2, but the synchronizing signal Φ1 remains "H". ” level, Φ2 becomes S every cycle.
When the synchronizing signal Φ1 becomes “H” level later than B(m) and takes the already determined value of SB(m) into the output buffer, 5B(I
Before the value of ll) reaches the "L" level - quickly °'L"
According to the present invention, the guarantee period of the output of the programmable logic array built into the semiconductor integrated circuit is extended by adding an extra precharge control circuit. It is possible to delay the delay time without having to provide a

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明におけるプログラマブルロジックアレイ
の一実施例を示すブロックは 第2図は本発明のプログ
ラマブルロジックアレイの論理積項および積項線のプリ
チャージ回路の具体的な回路構成を示す回路医 第3図
は本発明のプログラマブルロジックアレイの論理和風 
和項線のプリチャージ回路および出力バッファの具体的
な回路構成を示す回路諷 第4図は本発明のプログラマ
ブルロジックアレイの動作を説明したタイムチャート図
であ4 1・・・・入力バッファ、 2・・・・論理積項 3・
・・・積項線のプリチャージ同区 4・・・・論理和項
 5・・・・和項線のプリチャージ同区 6・・・・出
力バッファ、20・・・・ダミーの積項線30・・・・
ダミーの積項線のプリチャージ同区40・・・・ダミー
の和項線50・・・・ダミーの和項線のプリチャージ回
臨第 1 図 第 2 図 第 3 し4
FIG. 1 is a block diagram showing an embodiment of the programmable logic array according to the present invention. Figure 3 shows the logical sum style of the programmable logic array of the present invention.
Figure 4 is a time chart diagram illustrating the operation of the programmable logic array of the present invention. 1... Input buffer, 2 ...Conjunction term 3.
...Precharge same section of product term line 4...Order term 5...Precharge same section of sum term line 6...Output buffer, 20...Dummy product term line 30...
Precharge cycle of dummy product term line 40... Dummy sum term line 50... Precharge cycle of dummy sum term line Figure 1 Figure 2 Figure 3 and 4

Claims (1)

【特許請求の範囲】[Claims] 入力バッファと、論理を形成するのに必要とする積項線
に加えて各サイクル毎に入力信号に関係なく最も遅く選
択されるダミーの積項線を有する論理積項と、積項線の
プリチャージ回路と、論理を形成するのに必要とする和
項線に加えて最も遅く選択されるダミーの和項線を有す
る論理和項と、和項線のプリチャージ回路と、出力ラッ
チ回路を含む出力バッファとを備え、前記ダミーの積項
線が選択された後に選択される前記ダミーの和項線を前
記出力ラッチ回路の制御信号として用いることを特徴と
するプログラマブルロジックアレイ。
An input buffer and a logic product term with the product term lines needed to form the logic plus a dummy product term line that is selected latest each cycle regardless of the input signal, and a product term line pre-processor. Includes a charge circuit, a disjunction term having a dummy sum term line selected latest in addition to the sum term line required to form the logic, a precharge circuit for the sum term line, and an output latch circuit. and an output buffer, wherein the dummy sum term line selected after the dummy product term line is selected is used as a control signal for the output latch circuit.
JP14252389A 1989-06-05 1989-06-05 Programmable logic array Pending JPH037425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14252389A JPH037425A (en) 1989-06-05 1989-06-05 Programmable logic array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14252389A JPH037425A (en) 1989-06-05 1989-06-05 Programmable logic array

Publications (1)

Publication Number Publication Date
JPH037425A true JPH037425A (en) 1991-01-14

Family

ID=15317340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14252389A Pending JPH037425A (en) 1989-06-05 1989-06-05 Programmable logic array

Country Status (1)

Country Link
JP (1) JPH037425A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0856149A (en) * 1994-02-18 1996-02-27 Sgs Thomson Microelettronica Spa Programmable logic array structure for nonvolatile memory ofsemiconductor,especially flash eprom
US5623462A (en) * 1993-06-21 1997-04-22 Fujitsu Limited Optical information recording/reproducing apparatus
KR100578142B1 (en) * 2004-12-09 2006-05-10 삼성전자주식회사 Programmable logic array

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5623462A (en) * 1993-06-21 1997-04-22 Fujitsu Limited Optical information recording/reproducing apparatus
JPH0856149A (en) * 1994-02-18 1996-02-27 Sgs Thomson Microelettronica Spa Programmable logic array structure for nonvolatile memory ofsemiconductor,especially flash eprom
JP3181009B2 (en) * 1994-02-18 2001-07-03 エスジェエス−トムソン ミクロエレクトロニクス エスアールエル Programmable logic array structure for semiconductor non-volatile memory, especially flash EPROM
KR100578142B1 (en) * 2004-12-09 2006-05-10 삼성전자주식회사 Programmable logic array
US7609088B2 (en) 2004-12-09 2009-10-27 Samsung Electronics Co., Ltd. Programmable logic array

Similar Documents

Publication Publication Date Title
EP0690577B1 (en) CMOS integrated circuit for fast propagation of a signal edge
US4645944A (en) MOS register for selecting among various data inputs
US5083047A (en) Precharged-type logic circuit having dummy precharge line
US5682175A (en) Data driver generating two sets of sampling signals for sequential-sampling mode and simultaneous-sampling mode
US4569032A (en) Dynamic CMOS logic circuits for implementing multiple AND-functions
US6111447A (en) Timing circuit that selectively triggers on a rising or falling input signal edge
US5504441A (en) Two-phase overlapping clocking technique for digital dynamic circuits
US5448529A (en) High speed and hierarchical address transition detection circuit
JPH037425A (en) Programmable logic array
JPH0573268A (en) Adder
US3976892A (en) Pre-conditioning circuits for MOS integrated circuits
US5394363A (en) Pulse write driver circuit
JPS62270098A (en) Semiconductor sensing circuit
JP4386523B2 (en) Dynamic logic circuit
US5099502A (en) Shift register for producing pulses in sequence
KR0186102B1 (en) Data input circuit of semiconductor memory
US4745306A (en) Half adder having a pair of precharged stages
JP2690516B2 (en) Ring counter
KR0120559B1 (en) Toggle and buffering apparatus
JP3235105B2 (en) Arithmetic circuit
JPS5963821A (en) Transition detector circuit
KR940008732B1 (en) Clock selected control circuit
JPH09130213A (en) Dynamic latch circuit
JPS63282531A (en) Register circuit
JPS6295792A (en) Memory circuit