JPH0374030B2 - - Google Patents

Info

Publication number
JPH0374030B2
JPH0374030B2 JP7149884A JP7149884A JPH0374030B2 JP H0374030 B2 JPH0374030 B2 JP H0374030B2 JP 7149884 A JP7149884 A JP 7149884A JP 7149884 A JP7149884 A JP 7149884A JP H0374030 B2 JPH0374030 B2 JP H0374030B2
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
electrode foil
side electrode
tcnq salt
solid electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7149884A
Other languages
Japanese (ja)
Other versions
JPS60214519A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP7149884A priority Critical patent/JPS60214519A/en
Publication of JPS60214519A publication Critical patent/JPS60214519A/en
Publication of JPH0374030B2 publication Critical patent/JPH0374030B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、固体電解コンデンサの製造方法に
係り、特に、TCNQ塩を含浸する固体電解コン
デンサの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a solid electrolytic capacitor, and particularly to a method for manufacturing a solid electrolytic capacitor impregnated with TCNQ salt.

〔従来の技術〕[Conventional technology]

従来、巻回型素子を用いた固体電解コンデンサ
では、素子の巻回工程と、電解質の含浸工程と
は、分離して処理されている。
Conventionally, in a solid electrolytic capacitor using a wound type element, the element winding process and the electrolyte impregnation process are performed separately.

固体電解コンデンサは、アルミニウム等の皮膜
形成金属に陽極酸化皮膜を形成して陽極側電極を
形成し、これに固体電解質を付着した構造を採用
している。
A solid electrolytic capacitor has a structure in which an anode-side electrode is formed by forming an anodized film on a film-forming metal such as aluminum, and a solid electrolyte is attached to this.

従来の固体電解コンデンサには、固体電解質と
して二酸化マンガンが使用されてきたが、これは
二酸化マンガン層を形成する際の熱分解で、陽極
側電極の酸化皮膜が損傷を受ける、また、二酸化
マンガンによる陽極酸化皮膜の修復性が低い等の
欠点を有する。
Manganese dioxide has been used as a solid electrolyte in conventional solid electrolytic capacitors, but the oxide film on the anode side electrode is damaged due to thermal decomposition during the formation of the manganese dioxide layer. It has drawbacks such as poor repairability of the anodic oxide film.

そこで、有機半導体であるTCNQ塩を固体電
解質として使用することが提案され、実用化され
ている。このTCNQ塩とは、7,7,8,8テ
トラシアノキノジメタンの塩をいう。
Therefore, the use of TCNQ salt, an organic semiconductor, as a solid electrolyte has been proposed and put into practical use. This TCNQ salt refers to a salt of 7,7,8,8 tetracyanoquinodimethane.

このTCNQ塩では、通常粉末状の結晶を形成
しており、高い伝導度と二酸化マンガンでは得ら
れない皮膜修復性を呈するが、粉末状の結晶体で
あるために、加工しにくい欠点がある。特に、電
極にTCNQ塩を付着作業中に、劣化を生じ易い
ので、TCNQ塩を付着させた、たとえば、箔状
電極を巻回する等の作業は困難である。
This TCNQ salt usually forms powder-like crystals, and exhibits high conductivity and film repair properties that cannot be obtained with manganese dioxide, but because it is a powder-like crystal, it is difficult to process. In particular, deterioration tends to occur during the process of attaching TCNQ salt to an electrode, so it is difficult to perform a process such as winding a foil-shaped electrode to which TCNQ salt is attached.

従来、粉末状のTCNQ塩を加熱溶解すること
によつて液化し、この中に電極を浸漬して固体電
解コンデンサ素子を形成する方法が試みられてい
る。
Conventionally, attempts have been made to liquefy powdered TCNQ salt by heating and melting it, and immerse electrodes in this to form a solid electrolytic capacitor element.

〔発明が解決しようとする問題点〕 この方法は、TCNQ塩を電解コンデンサ素子
に付着させることはできるものの、TCNQ塩の
加熱融解は、それ自体を電気的絶縁物化し、固体
電解質としての機能を損なうおそれがあり、その
付着作業等、素子形成に時間的な制限を受け安定
した電気的特性を持つ電解コンデンサ素子を多量
に生産するには適さないものである。特に、電極
箔を巻回するものでは、実験的には可能であつて
も、製造上、歩留りが低下する欠点がある。
[Problems to be Solved by the Invention] Although this method allows TCNQ salt to adhere to the electrolytic capacitor element, heating and melting the TCNQ salt turns it into an electrical insulator and does not function as a solid electrolyte. It is not suitable for mass production of electrolytic capacitor elements with stable electrical characteristics due to time constraints on element formation such as attachment work. Particularly, in the case of winding the electrode foil, although it is possible experimentally, there is a drawback in that the yield rate decreases in manufacturing.

また、電解コンデンサ素子を形成した後、溶融
しているTCNQ塩に素子を浸漬して含浸する方
法は、小型の電解コンデンサ素子の場合には可能
であるが、大型の電解コンデンサ素子では、含浸
時間が長く、しかも、その含浸が不十分になるお
それがある。
In addition, after forming an electrolytic capacitor element, immersing the element in molten TCNQ salt is possible for small electrolytic capacitor elements, but for large electrolytic capacitor elements, the impregnation time may be too long. However, there is a risk that the impregnation will be insufficient.

そこで、この発明は、TCNQ塩の含浸処理と
素子の巻回処理とを同時に行い、TCNQ塩の固
体電解質としての機能を損なうことなく、安定し
た電気的特性を備えた固体電解コンデンサの製造
方法の提供を目的とする。
Therefore, the present invention provides a method for manufacturing a solid electrolytic capacitor with stable electrical characteristics by simultaneously performing TCNQ salt impregnation treatment and element winding treatment, without impairing the function of TCNQ salt as a solid electrolyte. For the purpose of providing.

〔問題点を解決するための手段〕[Means for solving problems]

この発明の固体電解コンデンサの製造方法は、
陽極側電極箔14、陰極側電極箔10及び電解紙
(第1の電解紙8、第2の電解紙12)に減圧下
で加熱して溶解させたTCNQ塩15を含浸させ
ながら、前記陽極側電極箔、前記陰極側電極箔及
び前記電解紙を重ね合わせて巻回することにより
固体電解コンデンサ素子26を形成することを特
徴とする。
The method for manufacturing a solid electrolytic capacitor of this invention includes:
While impregnating the anode side electrode foil 14, the cathode side electrode foil 10, and electrolytic paper (first electrolytic paper 8, second electrolytic paper 12) with TCNQ salt 15 dissolved by heating under reduced pressure, the anode side A solid electrolytic capacitor element 26 is formed by overlapping and winding the electrode foil, the cathode side electrode foil, and the electrolytic paper.

具体的には、真空加熱炉の中に陽極側電極箔、
陰極側電極箔及びセパレータとしての電解紙を設
置し、これらに個別に粉末状のTCNQ塩を供給
しつつ移送し、且つ巻回し、固体電解コンデンサ
素子を形成する。
Specifically, the anode side electrode foil,
A cathode side electrode foil and electrolytic paper as a separator are installed, and powdered TCNQ salt is individually supplied and transferred to these, and then wound to form a solid electrolytic capacitor element.

次に、この固体電解コンデンサ素子を真空冷却
炉で冷却し、次いで常圧冷却炉にて冷却する。
Next, this solid electrolytic capacitor element is cooled in a vacuum cooling furnace, and then in a normal pressure cooling furnace.

〔作用〕[Effect]

このようにすれば、TCNQ塩の含浸が良好に
なるとともに、素子の巻回が同時に行え、従来の
ように別工程にすることによる不都合を回避する
ことができる。
In this way, impregnation with the TCNQ salt is improved, and the winding of the element can be performed at the same time, thereby avoiding the inconvenience caused by separate steps as in the conventional method.

〔実施例〕〔Example〕

以下、この発明を図面に示した実施例を参照し
て詳細に説明する。
Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings.

第1図はこの発明の固体電解コンデンサの製造
方法の実施例を示している。
FIG. 1 shows an embodiment of the method for manufacturing a solid electrolytic capacitor according to the present invention.

この製造方法は、真空加熱炉2、真空冷却炉4
及び常圧冷却炉6を隣接して設置し、これらの炉
2,4,6の順で素子構成素材及び製造される電
解コンデンサ素子が速やかに移送可能に設定す
る。真空加熱炉2および真空冷却炉4は、所定の
減圧状態に維持するものとする。
This manufacturing method includes a vacuum heating furnace 2, a vacuum cooling furnace 4
and a normal pressure cooling furnace 6 are installed adjacent to each other, and the element constituent materials and the electrolytic capacitor elements to be manufactured can be quickly transferred to these furnaces 2, 4, and 6 in this order. The vacuum heating furnace 2 and the vacuum cooling furnace 4 are maintained at a predetermined reduced pressure state.

この実施例では、真空加熱炉2には、第1の電
解紙8、陰極側電極箔10、第2の電解紙12及
び陽極側電極箔14が一定の間隔をおいて設置さ
れ、素子の製造に際して巻戻し可能なロール状を
成している。第1及び第2の電解紙8,12は、
陰極側及び陽極側電極箔10,14の間に介在さ
せるセパレータとして機能するものである。
In this embodiment, a first electrolytic paper 8, a cathode-side electrode foil 10, a second electrolytic paper 12, and an anode-side electrode foil 14 are installed at regular intervals in the vacuum heating furnace 2, and the device is manufactured. It is in the form of a roll that can be rewound. The first and second electrolytic paper 8, 12 are
It functions as a separator interposed between the cathode side and anode side electrode foils 10 and 14.

また、陰極側及び陽極側電極箔10,14は、
アルミニウム、ニオブ、タンタル等の皮膜形成金
属で構成され、それぞれにはエツチング処理によ
つて拡面処理が施され、陽極側電極箔14には、
化成処理によつて陽極酸化皮膜が形成されてい
る。
In addition, the cathode side and anode side electrode foils 10 and 14 are
It is composed of film-forming metals such as aluminum, niobium, and tantalum, each of which has been subjected to surface enlargement treatment by etching, and the anode side electrode foil 14 is
An anodic oxide film is formed by chemical conversion treatment.

そして、第1の電解紙8、陰極側電極箔10、
第2の電解紙12及び陽極側電極箔14の平板状
に引き延ばされた部分の上方には、微粉末の
TCNQ塩15を供給する供給手段16,18,
20,22が順次設置されている。
Then, the first electrolytic paper 8, the cathode side electrode foil 10,
Above the flat plate-shaped portion of the second electrolytic paper 12 and the anode side electrode foil 14, there is a layer of fine powder.
Supply means 16, 18 for supplying TCNQ salt 15,
20 and 22 are installed in sequence.

また、真空加熱炉2の内部には、第1の電解紙
8、陰極側電極箔10、第2の電解紙12及び陽
極側電極箔14を集合させて巻回する素子巻回部
24が設置されている。
Further, inside the vacuum heating furnace 2, an element winding section 24 is installed in which the first electrolytic paper 8, the cathode side electrode foil 10, the second electrolytic paper 12, and the anode side electrode foil 14 are assembled and wound. has been done.

以上の構成において、固体電解コンデンサの製
造方法を説明する。
A method for manufacturing a solid electrolytic capacitor with the above configuration will be described.

真空加熱炉2は、TCNQ塩15が加熱溶融す
る温度、たとえば、200℃程度に設定する。この
ため、減圧下で、第1の電解紙8、陰極側電極箔
10、第2の電極紙12及び陽極側電極箔14は
加熱され、各第1の電解紙8、陽極側電極箔1
0、第2の電解紙12及び陽極側電極箔14の供
給手段16ないし22から個別に供給される
TCNQ塩15の微粉末も加熱される。この結果、
第1の電解紙8、陰極側電極箔10、第2の電解
紙12及び陽極側電極箔14に対してTCNQ塩
15の含浸が良好になる。
The vacuum heating furnace 2 is set at a temperature at which the TCNQ salt 15 is heated and melted, for example, about 200°C. Therefore, under reduced pressure, the first electrolytic paper 8, the cathode electrode foil 10, the second electrode paper 12, and the anode electrode foil 14 are heated, and each first electrolytic paper 8, anode electrode foil 1
0, the second electrolytic paper 12 and the anode side electrode foil 14 are individually supplied from the supply means 16 to 22
A fine powder of TCNQ salt 15 is also heated. As a result,
The first electrolytic paper 8, the cathode electrode foil 10, the second electrolytic paper 12, and the anode electrode foil 14 are well impregnated with the TCNQ salt 15.

このようなTCNQ塩15の含浸をしながら、
第1の電解紙8、陰極側電極箔10、第2の電解
紙12及び陽極側電極箔14は、素子巻回部24
に移送し、所定の形状に巻回して固体電解コンデ
ンサ素子26を形成する。なお、1つの素子の形
成において、巻回開始から巻回終了までの真空冷
却炉4に移送するまでの時間は、TCNQ塩15
の熱分解を防止するために、たとえば、3分以内
とする。
While impregnating with TCNQ salt 15 like this,
The first electrolytic paper 8, the cathode side electrode foil 10, the second electrolytic paper 12, and the anode side electrode foil 14 are connected to the element winding portion 24.
The solid electrolytic capacitor element 26 is formed by transferring the solid electrolytic capacitor element 26 to a solid electrolytic capacitor element 26 and winding it into a predetermined shape. In addition, in the formation of one element, the time from the start of winding to the end of winding until transfer to the vacuum cooling furnace 4 is TCNQ salt 15
In order to prevent thermal decomposition, the heating time is, for example, within 3 minutes.

この固体電解コンデンサ素子26は、真空冷却
炉4に移送され、TCNQ塩15の劣化を避ける
ために、真空冷却される。次いで、常圧冷却炉6
において最終的な冷却処理が施される。
This solid electrolytic capacitor element 26 is transferred to the vacuum cooling furnace 4 and vacuum cooled to avoid deterioration of the TCNQ salt 15. Next, the normal pressure cooling furnace 6
A final cooling process is carried out at .

第2図は以上の製造方法によつて製造された固
体電解コンデンサ素子26を示しており、陰極側
及び陽極側タブ28,30は、素子の巻回工程に
おいて、対応する電極箔10,14に電気的に接
続するものとする。
FIG. 2 shows a solid electrolytic capacitor element 26 manufactured by the above manufacturing method, and the cathode side and anode side tabs 28, 30 are attached to the corresponding electrode foils 10, 14 during the element winding process. shall be electrically connected.

以上説明したように、この製造方法によれば、
真空加熱炉2中で第1の電解紙8、陰極側電極箔
10、第2の電解紙12及び陽極側電極箔14と
TCNQ塩15を加熱しながら個別に含浸し、同
時に素子の巻回処理を行うので、含浸工程と素子
巻回工程と同時処理することができ、製造工程の
簡略化と、迅速化とが図れる。また、素子の巻回
処理と、TCNQ塩15の含浸工程を同時に行う
ことにより、TCNQ塩15の劣化を防止するこ
とができ、また、その冷却も真空冷却炉4におい
て行うため、TCNQ塩15の固体電解質として
の機能を損なうことがなく、極めて安定した信頼
性の高い電気的特性を持つ電解コンデンサを大量
に、且つ、高い歩留りを以て製造することができ
る。
As explained above, according to this manufacturing method,
In the vacuum heating furnace 2, the first electrolytic paper 8, the cathode side electrode foil 10, the second electrolytic paper 12, and the anode side electrode foil 14.
Since the TCNQ salt 15 is individually impregnated while being heated and the element is wound at the same time, the impregnation process and the element winding process can be performed simultaneously, simplifying and speeding up the manufacturing process. Furthermore, by performing the winding process of the element and the impregnation process with the TCNQ salt 15 at the same time, it is possible to prevent the TCNQ salt 15 from deteriorating, and since the cooling is also performed in the vacuum cooling furnace 4, the TCNQ salt 15 Electrolytic capacitors having extremely stable and reliable electrical characteristics without impairing their function as a solid electrolyte can be manufactured in large quantities and at a high yield.

また、TCNQ塩15は、減圧下で加熱してい
るため、熱分解温度が低下するので、含浸時間が
延び、電解コンデンサ素子26に対するTCNQ
塩15の含浸効率を高めることができる。
In addition, since the TCNQ salt 15 is heated under reduced pressure, the thermal decomposition temperature is lowered, so the impregnation time is extended, and the TCNQ salt 15 is heated under reduced pressure.
The impregnation efficiency of salt 15 can be increased.

なお、実施例では、巻回型の電解コンデンサ素
子を例に取つて説明したが、この発明は、巻回し
ない多層形電極で構成される固体電解コンデンサ
に適用しても同様の効果が期待できる。
Although the embodiments have been explained using a wound type electrolytic capacitor element as an example, the same effect can be expected even if the present invention is applied to a solid electrolytic capacitor composed of a multilayer electrode that is not wound. .

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明によれば、次の
ような効果が得られる。
As explained above, according to the present invention, the following effects can be obtained.

(1) 製造工程の簡略化と、TCNQ塩で構成され
る固体電解質の含浸処理途上における特性劣化
の防止ができ、安定した電気的特性を持つ電解
コンデンサを効率良く製造することができ、信
頼性の高い製品を安価に提供することができ
る。
(1) It is possible to simplify the manufacturing process and prevent characteristic deterioration during the impregnation process of the solid electrolyte composed of TCNQ salt, making it possible to efficiently manufacture electrolytic capacitors with stable electrical characteristics and improving reliability. It is possible to provide high-quality products at low prices.

(2) 特に、大型の巻回素子について、素子を溶融
させたTCNQ塩に浸漬して含浸する方法に比
較し、TCNQ塩の含浸が良好になり、その含
浸効率の向上によつて、電気的特性の安定化を
改善できる。
(2) In particular, for large wound elements, compared to the method of immersing the element in molten TCNQ salt, the impregnation with TCNQ salt is better, and the improved impregnation efficiency improves electrical performance. Stability of characteristics can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の固体電解コンデンサの製造
方法の実施例を示す説明図、第2図は固体電解コ
ンデンサ素子を示す斜視図である。 2……真空加熱炉、4……真空冷却炉、8……
第1の電解紙、10……陰極側電極箔、12……
第2の電解紙、14……陽極側電極箔、15……
TCNQ塩、26……固体電解コンデンサ素子。
FIG. 1 is an explanatory view showing an embodiment of the method for manufacturing a solid electrolytic capacitor according to the present invention, and FIG. 2 is a perspective view showing a solid electrolytic capacitor element. 2...Vacuum heating furnace, 4...Vacuum cooling furnace, 8...
First electrolytic paper, 10... Cathode side electrode foil, 12...
Second electrolytic paper, 14... Anode side electrode foil, 15...
TCNQ salt, 26...Solid electrolytic capacitor element.

Claims (1)

【特許請求の範囲】 1 陽極側電極箔、陰極側電極箔及び電解紙に減
圧下で加熱して溶融させたTCNQ塩を含浸させ
ながら、前記陽極側電極箔、前記陰極側電極箔及
び前記電極紙を重ね合わせて巻回することにより
固体電解コンデンサ素子を形成することを特徴と
する固体電解コンデンサの製造方法。 2 前記TCNQ塩を含浸した固体電解コンデン
サ素子は、減圧下で冷却した後、常圧下で冷却す
ることを特徴とする特許請求の範囲第1項に記載
の固体電解コンデンサの製造方法。
[Claims] 1. While impregnating the anode side electrode foil, the cathode side electrode foil, and the electrolytic paper with TCNQ salt heated and melted under reduced pressure, the anode side electrode foil, the cathode side electrode foil, and the electrode A method for manufacturing a solid electrolytic capacitor, comprising forming a solid electrolytic capacitor element by overlapping and winding papers. 2. The method for manufacturing a solid electrolytic capacitor according to claim 1, wherein the solid electrolytic capacitor element impregnated with the TCNQ salt is cooled under reduced pressure and then cooled under normal pressure.
JP7149884A 1984-04-09 1984-04-09 Method of producing solid electrolytic condenser Granted JPS60214519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7149884A JPS60214519A (en) 1984-04-09 1984-04-09 Method of producing solid electrolytic condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7149884A JPS60214519A (en) 1984-04-09 1984-04-09 Method of producing solid electrolytic condenser

Publications (2)

Publication Number Publication Date
JPS60214519A JPS60214519A (en) 1985-10-26
JPH0374030B2 true JPH0374030B2 (en) 1991-11-25

Family

ID=13462388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7149884A Granted JPS60214519A (en) 1984-04-09 1984-04-09 Method of producing solid electrolytic condenser

Country Status (1)

Country Link
JP (1) JPS60214519A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63111609A (en) * 1986-10-30 1988-05-16 昭和電工株式会社 Manufacture of solid electrolytic capacitor
WO2017022337A1 (en) * 2015-08-05 2017-02-09 株式会社皆藤製作所 Winding device

Also Published As

Publication number Publication date
JPS60214519A (en) 1985-10-26

Similar Documents

Publication Publication Date Title
JPH01225112A (en) Method of manufacture of aluminum electrolytic capacitor and capacitor with unified anode obtained by the method
JPH0158856B2 (en)
KR920009178B1 (en) An organic semiconductor electrolyte capacitor and process for producing the same
JPH0374030B2 (en)
JP2783932B2 (en) Manufacturing method of organic semiconductor solid electrolytic capacitor
JP2755767B2 (en) Manufacturing method of organic semiconductor solid electrolytic capacitor
JP3135072B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0821515B2 (en) Method for manufacturing laminated solid electrolytic capacitor
JP3800913B2 (en) Manufacturing method of solid electrolytic capacitor
JPS6337609A (en) Manufacture of solid electrolytic capacitor
JP2000277389A (en) Solid electrolytic capacitor and its manufacturing method
JP3093810B2 (en) Method for manufacturing solid electrolytic capacitor
JP2957630B2 (en) Manufacturing method of organic semiconductor solid electrolytic capacitor
JPH0467331B2 (en)
JPS6151908A (en) Solid electrolytic condenser
JPH01205412A (en) Manufacture of solid electrolytic capacitor
WO2000058979A1 (en) Solid electrolytic capacitor and production method thereof
JPH0744131B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0426534B2 (en)
JPH01261811A (en) Metal strip formed for manufacture of solid electrolytic capacitor, its manufacture and capacitor obtained with the strip
JPH0255930B2 (en)
JPS63232413A (en) Solid electrolytic capacitor and manufacture of the same
JPS6151907A (en) Solid electrolytic condenser
JPS6151909A (en) Solid electrolytic condenser
JPH03244113A (en) Solid electrolytic capacitor and manufacture thereof