JPH0374026A - Alloy type temperature fuse - Google Patents

Alloy type temperature fuse

Info

Publication number
JPH0374026A
JPH0374026A JP20879289A JP20879289A JPH0374026A JP H0374026 A JPH0374026 A JP H0374026A JP 20879289 A JP20879289 A JP 20879289A JP 20879289 A JP20879289 A JP 20879289A JP H0374026 A JPH0374026 A JP H0374026A
Authority
JP
Japan
Prior art keywords
temperature
fuse element
alloy
melting point
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20879289A
Other languages
Japanese (ja)
Other versions
JPH0766730B2 (en
Inventor
Yoshishiro Iwamoto
美城 岩本
Makoto Okumura
真 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP1208792A priority Critical patent/JPH0766730B2/en
Publication of JPH0374026A publication Critical patent/JPH0374026A/en
Publication of JPH0766730B2 publication Critical patent/JPH0766730B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fuses (AREA)

Abstract

PURPOSE:To evade deformation such as waving and twisting of a fuse element even if it is unevenly heated by generation heat at the time of ordinary operation of an equipment by using a substance having a composition causing no crystal transformation of low melting point soluble alloy at a temperature between a heating temperature at the time ordinary operation and a temperature at the time of an operation stop of the equipment. CONSTITUTION:In the temperature range from a heating temperature at an ordinary operation time to a temperature at the time of an operation stop time, a low melting point soluble alloy having a stable crystal type and no crystal transformation is used for a fuse element. For instance, no crystal transformation is caused when an alloy consisting of tin: 48wt.%, lead: 18wt.%, indium: 34wt.% is used for the fuse element, and a ceramic is fused for an insulated substrate, while epoxy resin is used for a resin mold layer. Thereby, even if temperature distribution is uneven, only simple crystal constitution can be taken, no twisting and waving of the fuse element can be caused.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はヒユーズエレメントに低融点可溶合金を用いた
合金型温度ヒユーズに関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an alloy type temperature fuse using a low melting point fusible alloy for the fuse element.

〈従来の技術〉 合金型温度ヒユーズにおいては、リード導体間に低融点
可溶合金片を橋設し、該低融点可溶合金片上にフラック
スを塗布し、このフラックス塗布合金片を絶縁カバー等
によって包囲しており、保護すべき電気機器に取付けて
使用する。而るに、低融点可溶合金片の融点を機器の許
容温度に設定してあり、機器が過電流のために発熱して
許容温度に達すると低融点可溶合金片が溶断して機器へ
の通電を遮断し、機器の熱的損傷が防止される。
<Prior art> In an alloy type temperature fuse, a piece of a low melting point fusible alloy is bridged between the lead conductors, a flux is applied to the piece of the low melting point fusible alloy, and this flux coated piece of alloy is covered with an insulating cover or the like. It is used by attaching it to the electrical equipment to be protected. The melting point of the low melting point fusible alloy flakes is set to the allowable temperature of the equipment, and when the equipment heats up due to overcurrent and reaches the allowable temperature, the low melting point fusible alloy flakes melt and reach the equipment. This prevents thermal damage to the equipment.

周知の通り、機器の許容温度は使用絶縁材料等の耐熱階
級に応じて区区であり、従って、このような許容温度に
対応した融点の低融点合金が必要である。温度ヒユーズ
のヒユーズエレメントに使用する低融点合金においては
、上記融点を主要件とし、その他、液相線温度と固相線
温度との温度差が零(共晶点)または僅少であること、
押出性・圧延性・伸線性・打抜性等の機械的加工性に優
れていること、電気抵抗が小であること、表面張力が大
きいこと、あるいは耐衝撃性が優れていること等の付帯
的諸要件が要求される。而るに、これら付帯的諸要件の
すべてを充足することは、実際上、至難であり、ある程
度の妥協はやむを得ないところである。
As is well known, the allowable temperature of equipment varies depending on the heat resistance class of the insulating material used, and therefore a low melting point alloy with a melting point corresponding to such allowable temperature is required. The main requirements for low melting point alloys used in fuse elements of temperature fuses are the above-mentioned melting point, and in addition, the temperature difference between the liquidus temperature and the solidus temperature must be zero (eutectic point) or small;
Additional features such as excellent mechanical workability such as extrudability, rollability, wire drawability, and punchability, low electrical resistance, high surface tension, and excellent impact resistance. requirements are required. However, it is actually extremely difficult to satisfy all of these incidental requirements, and some degree of compromise is unavoidable.

く解決しようとする課題〉 ところで、金属においては、その電子構造に起因して温
度により結晶形が種々に変化し、上記低融点可溶合金に
おいても、その合金組成いかんによっては、温度により
結晶形が変態する。従来、合金型温度ヒユーズの試験項
目として、温度ヒユーズをエアーオーブン中でヒユーズ
溶断温度より約20℃低い温度から1℃/分の温度速度
で昇温しで、温度ヒユーズの特性変化を測定することが
必須とされている。かかる試験によれば、かかる温度範
囲のもとて結晶変態を示す組成の低融点可溶合金をヒユ
ーズエレメントに用いても、格別の特性変化を示さない
By the way, the crystalline shape of metals changes in various ways depending on the temperature due to its electronic structure, and even in the above-mentioned low-melting-point fusible alloy, the crystalline shape changes depending on the alloy composition. becomes perverted. Conventionally, the test item for alloy-type temperature fuses is to measure changes in the characteristics of the temperature fuse by increasing the temperature at a rate of 1°C/min from a temperature approximately 20°C lower than the fuse blowing temperature in an air oven. is required. According to such tests, even when a low melting point fusible alloy having a composition that exhibits crystal transformation in such a temperature range is used in a fuse element, no particular change in characteristics is shown.

しかしながら、本発明者等において、温度ヒュ、−ズを
実際、電気機器に取付けて実験したところ、特に基板型
温度ヒユーズのような断面非対象の合金型温度ヒユーズ
の場合、意外にもヒユーズエレメントの捩れ、波打ち等
の異常を観察した。この原因は、上記エアーオーブン中
での実験の場合、ヒユーズエレメントが一様に加熱され
るために結晶変態の際に生じる内部応力が一様であって
、ひずみも−様になるめに対し、実際に機器番こ取イ寸
番する場合は、ヒユーズエレメントが長さ方向、または
周方向に不均一に加熱されるために、結晶変態の際に生
じるひずみが長さ方向または周方向に不均一になって、
ヒユーズエレメントが波打ちまたは捩れ変形するに至る
ものと推定される。
However, when the present inventors conducted experiments by actually installing thermal fuses in electrical equipment, it was found that the fuse element was Abnormalities such as twisting and waving were observed. The reason for this is that in the case of the experiment in the air oven, the internal stress generated during crystal transformation is uniform because the fuse element is uniformly heated, and the strain is also uniform. When actually measuring equipment dimensions, the fuse element is heated unevenly in the lengthwise or circumferential direction, so the strain that occurs during crystal transformation is unevenly generated in the lengthwise or circumferential direction. become,
It is estimated that the fuse element becomes wavy or twisted.

本発明の目的は、機器の平常運転時発生熱によってヒユ
ーズエレメントが不均一に加熱されても、当該ヒユーズ
エレメントの波打ち、捩れ等の変形を回避できる温度ヒ
ユーズを提供することにある。
An object of the present invention is to provide a temperature fuse that can avoid deformation such as waving or twisting of the fuse element even if the fuse element is unevenly heated by the heat generated during normal operation of the device.

く課題を解決するための手段〉 本発明に係る合金型温度ヒユーズは、ヒユーズエレメン
トに低融点可溶合金を使用し、保護すべき機器の平常運
転時発生熱によってヒユーズエレメントが周方向または
長手方向に不均一に加熱される温度ヒユーズにおいて、
低融点可溶合金に機器の平常運転時発熱温度と運転停止
時温度との間の温度で結晶変態を生じない組成のものを
用いたことを特徴とする構成である。
Means for Solving the Problems> The alloy type temperature fuse according to the present invention uses a low melting point fusible alloy for the fuse element, and the fuse element is heated in the circumferential direction or longitudinal direction by the heat generated during normal operation of the equipment to be protected. In a temperature fuse that is heated unevenly to
This structure is characterized by using a low melting point fusible alloy having a composition that does not cause crystal transformation at a temperature between the heat generation temperature during normal operation of the equipment and the temperature when the equipment is stopped.

本発明の温度ヒユーズは、保護すべき機器の平常時発生
熱によってヒユーズエレメントが周方向または長手方向
に不均一に加熱されることを前提条件としている0本発
明の温度ヒユーズにおいては、保護すべき機器の平常運
転時発熱温度から運転停止時温度までの温度範囲におい
て、結晶形態が安定であって結晶変態のない低融点可溶
合金をヒユーズエレメントに使用することを必須の構成
要件としている。この結果、前記した付帯要件中の何れ
かが犠牲とされるが、結晶変態に起因するヒユーズエレ
メントの捩れ、波打ち等に基づく断線を防止できる利益
がある。
The temperature fuse of the present invention is based on the precondition that the fuse element is heated non-uniformly in the circumferential or longitudinal direction by the heat normally generated by the equipment to be protected. It is essential to use a low melting point fusible alloy for the fuse element, which has a stable crystal form and does not undergo crystal transformation in the temperature range from the temperature at which the equipment generates heat during normal operation to the temperature at which the equipment is stopped. As a result, although some of the above-mentioned incidental requirements are sacrificed, there is an advantage that disconnection due to twisting, waving, etc. of the fuse element caused by crystal transformation can be prevented.

本発明を適用する温度ヒユーズは、前後、または左右あ
るいは上下において熱抵抗的に非対象であって、ヒユー
ズエレメントが長平方向または周方向に不均一に加熱さ
れるものが対象である0例えば、第1図並びに第2図(
第1図のト1断面図)に示すように、絶縁基板1の片面
上に一対の膜電極2・2を設け、各膜電極2・2にリー
ド導線3・3を接続し、膜電極間に線状の低融点可溶合
金片4を橋設し、該合金片上にフラックス5塗布し、絶
縁基板の片面上に樹脂のモールド絶縁層6を設けたもの
を対象にでき、この温度ヒユーズにおいては、線イーイ
を基準として前後に非対象であり、線ロー0を基準とし
て上下に非対象である。低融点可溶合金片には、断面円
形線の他、断面長円形、楕円針、長方形であってエッチ
のないものも使用できる。
The temperature fuse to which the present invention is applied is one that is asymmetrical in thermal resistance front and back, left and right, or up and down, and whose fuse element is heated non-uniformly in the longitudinal direction or circumferential direction. Figure 1 and Figure 2 (
As shown in Fig. 1 (cross-sectional view of Fig. 1), a pair of membrane electrodes 2, 2 are provided on one side of the insulating substrate 1, and lead conductors 3, 3 are connected to each membrane electrode 2, 2. This can be applied to a structure in which a linear low melting point fusible alloy piece 4 is bridged over the alloy piece, a flux 5 is applied on the alloy piece, and a resin mold insulating layer 6 is provided on one side of an insulating substrate. is asymmetrical in the front and back with respect to the line Eii, and is asymmetrical in the vertical direction with the line R00 as a reference. As the low melting point fusible alloy piece, in addition to a wire having a circular cross section, it is also possible to use a piece having an oval cross section, an elliptical needle, or a rectangular cross section without etching.

本発明に係る温度ヒユーズは機器に取付けて使用し、そ
の機器の許容温度をT 1 ’Cとすれば、融点がほぼ
このT8℃であって、かつ機器の平常運転時発熱温度T
2(通常T1℃−40℃)から運転停止時温度にわたり
結晶変態のない安定な結晶形の合金組成を、機械的加工
性、電気的抵抗、表面張力、耐衝撃性等をも勘案して選
定する。
The temperature fuse according to the present invention is used by being attached to a device, and if the allowable temperature of the device is T1'C, the melting point is approximately T8℃, and the heat generation temperature of the device during normal operation is T.
2 (usually T1℃ - 40℃) to the operating shutdown temperature, an alloy composition with a stable crystalline form without crystal transformation is selected, taking into consideration mechanical workability, electrical resistance, surface tension, impact resistance, etc. do.

本発明が説示するところは、低融点可溶合金からなるヒ
ユーズエレメントが周方向、長さ方向に一様に加熱され
るならば、機器の平常運転時発熱温度と運転停止時温度
との間の温度範囲における当該合金の結晶構造の安定性
に拘束されることなしに合金組成を選定し得、同上ヒュ
ーズエレメントの加熱が不均一な場合のみ、上記温度範
囲において結晶変態を呈さない安定結晶構造の組成の合
金を選定すべしということにある。すなわち、温度に応
じてα、β・・・結晶形をとる組成の合金をヒユーズエ
レメントに使用する場合、ヒユーズエレメントの温度が
変化しても、ヒユーズエレメントの温度分布が一様であ
れば結晶分布も一様となって、ヒユーズエレメントの捩
り、波打ちは回避できるが、温度分布が不均一であると
、ある部分ではα結晶に、他のある部分ではβ結晶とな
り、結晶分布が不均一となって、ヒユーズエレメントの
捩り、波打ちが惹起されるのであるが、温度分布が不均
一であっても、単一の結晶構造しかとり得ないのであれ
ば、結晶変態が生じ得す、従って、ヒユーズエレメント
の捩り、波付は等は起り得ないのである。
The present invention explains that if a fuse element made of a low melting point fusible alloy is heated uniformly in the circumferential direction and length direction, the temperature between the heat generation temperature during normal operation of the equipment and the temperature when the equipment is stopped is The alloy composition can be selected without being constrained by the stability of the crystal structure of the alloy in the temperature range, and only if the heating of the above fuse element is non-uniform, it is possible to select a stable crystal structure that does not exhibit crystal transformation in the above temperature range. The key is to select an alloy with the same composition. In other words, if an alloy with a composition that takes α, β, etc. crystal forms depending on the temperature is used in the fuse element, even if the temperature of the fuse element changes, if the temperature distribution of the fuse element is uniform, the crystal distribution will be maintained. However, if the temperature distribution is uneven, alpha crystals will form in some areas and beta crystals will form in other areas, resulting in an uneven crystal distribution. However, even if the temperature distribution is uneven, if only a single crystal structure is possible, crystal transformation may occur. Twisting, corrugation, etc. cannot occur.

〈実施例の説明〉 実施例 上記基板型温度ヒユーズにおいて、ヒユーズエレメント
にスズ:48重量%、鉛:18重量%、インジニウム:
34重量%からなる合金を使用し、絶縁基体&ミはセラ
ミックを、樹脂モールド層にはエポキシ樹脂をそれぞれ
使用した。この合金の液相線温度は約130℃であり、
結晶変態は生じない。
<Description of Examples> Example In the above-mentioned substrate type temperature fuse, the fuse element contains tin: 48% by weight, lead: 18% by weight, and indinium:
An alloy consisting of 34% by weight was used, ceramic was used for the insulating substrate & M, and epoxy resin was used for the resin mold layer. The liquidus temperature of this alloy is about 130°C,
No crystal transformation occurs.

比較例 実施例に対し、ヒユーズエレメントに、スズ:35重量
%、鉛=15重量%、インジニウム:50重量%からな
る合金を使用した以外、実#1例と同じとした、この合
金はα、βの結晶形をとる。
Comparative Example The same procedure as Example #1 was used except that an alloy consisting of 35% by weight of tin, 15% by weight of lead, and 50% by weight of indium was used for the fuse element. It takes the crystal form of β.

上記実施測高並びに比較測高のそれぞれにつき、温度ヒ
ユーズの最高温度を100℃とする通電電流のオン・オ
フによりヒートサイクル試験を行った。
For each of the above-mentioned actual height measurement and comparative height measurement, a heat cycle test was conducted by turning on and off the current flowing with the temperature fuse having a maximum temperature of 100°C.

100サイクル目においてヒユーズエレメントをX線透
視したところ、比較測高では捩れと波打ちが観られたが
、実施測高では何ら異常は観ちれなかった。
When the fuse element was subjected to X-ray inspection at the 100th cycle, twisting and waving were observed in the comparative height measurement, but no abnormality was observed in the actual height measurement.

〈発明の効果〉 上述した通り、本発明に係る合金型温度ヒユーズによれ
ば、低融点可溶合金からなるヒユーズエレメントの結晶
変態に起因する同エレメントの損傷を回避でき、合金型
温度ヒユーズの信頼上を高揚できる。
<Effects of the Invention> As described above, according to the alloy type temperature fuse according to the present invention, damage to the fuse element caused by crystal transformation of the fuse element made of a low melting point fusible alloy can be avoided, and the reliability of the alloy type temperature fuse can be improved. You can exalt yourself.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す説明図、第2図は第1
図における■〜■断面図である。 4・−・低融点可溶合金
FIG. 1 is an explanatory diagram showing one embodiment of the present invention, and FIG.
It is a sectional view of ■ to ■ in the figure. 4.--Low melting point fusible alloy

Claims (1)

【特許請求の範囲】[Claims] ヒューズエレメントに低融点可溶合金を使用し、保護す
べき機器の平常時発生熱によってヒューズエレメントが
周方向または長手方向に不均一に加熱される温度ヒュー
ズにおいて、低融点可溶合金に、機器の平常運転時発熱
温度と運転停止時温度との間の温度で結晶変態を生じな
い組成のものを用いたことを特徴とする合金型温度ヒュ
ーズ。
In thermal fuses, in which a low melting point fusible alloy is used for the fuse element, and the fuse element is heated unevenly in the circumferential or longitudinal direction by the heat normally generated by the equipment to be protected, the low melting point fusible alloy is An alloy-type thermal fuse characterized by using a composition that does not cause crystal transformation at a temperature between the temperature at which heat is generated during normal operation and the temperature at which operation is stopped.
JP1208792A 1989-08-11 1989-08-11 Alloy type thermal fuse Expired - Fee Related JPH0766730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1208792A JPH0766730B2 (en) 1989-08-11 1989-08-11 Alloy type thermal fuse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1208792A JPH0766730B2 (en) 1989-08-11 1989-08-11 Alloy type thermal fuse

Publications (2)

Publication Number Publication Date
JPH0374026A true JPH0374026A (en) 1991-03-28
JPH0766730B2 JPH0766730B2 (en) 1995-07-19

Family

ID=16562192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1208792A Expired - Fee Related JPH0766730B2 (en) 1989-08-11 1989-08-11 Alloy type thermal fuse

Country Status (1)

Country Link
JP (1) JPH0766730B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4001757B2 (en) 2002-03-06 2007-10-31 内橋エステック株式会社 Alloy type temperature fuse
JP3990169B2 (en) 2002-03-06 2007-10-10 内橋エステック株式会社 Alloy type temperature fuse
JP4101536B2 (en) 2002-03-06 2008-06-18 内橋エステック株式会社 Alloy type thermal fuse

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS598230A (en) * 1982-07-02 1984-01-17 松下電器産業株式会社 Temperature fuse
JPS6298135U (en) * 1985-12-10 1987-06-23

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS598230A (en) * 1982-07-02 1984-01-17 松下電器産業株式会社 Temperature fuse
JPS6298135U (en) * 1985-12-10 1987-06-23

Also Published As

Publication number Publication date
JPH0766730B2 (en) 1995-07-19

Similar Documents

Publication Publication Date Title
US6911892B2 (en) Alloy type thermal fuse and fuse element thereof
US6774761B2 (en) Alloy type thermal fuse and fuse element thereof
US6841845B2 (en) Alloy type thermal fuse and wire member for a thermal fuse element
JP2003328066A (en) Alloy-type thermal fuse
JPH0374026A (en) Alloy type temperature fuse
JPH06325670A (en) Alloy type temperature fuse
US20070188292A1 (en) Alloy type thermal fuse and wire member for a thermal fuse element
US7160504B2 (en) Alloy type thermal fuse and fuse element thereof
JP3696635B2 (en) How the temperature protector works
CN215731128U (en) Epoxy thermistor
JPH11238440A (en) Alloy type thermal fuse
JP2001195963A (en) Alloy temperature fuse
JP2001143592A (en) Fuse alloy
JPH0343925A (en) Flat thermal fuse
JP2574700B2 (en) Flat thermal fuse
JPH04126325A (en) Alloy type temperature fuse
JPS61142433A (en) Temperature fuse sensor for high temperature
JPS60249349A (en) Sealing method for flat package
JPH10284307A (en) Resistor
JPH04181625A (en) Thermal fuse
JPH02265218A (en) Overload fusing type resistor
JPH11339617A (en) Thermal fuse and its usage
JP2001143589A (en) Alloy fuse
JPH0343926A (en) Thermal fuse
JPH0448528A (en) Circuit breaking element

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees