JPH0374004B2 - - Google Patents
Info
- Publication number
- JPH0374004B2 JPH0374004B2 JP59126322A JP12632284A JPH0374004B2 JP H0374004 B2 JPH0374004 B2 JP H0374004B2 JP 59126322 A JP59126322 A JP 59126322A JP 12632284 A JP12632284 A JP 12632284A JP H0374004 B2 JPH0374004 B2 JP H0374004B2
- Authority
- JP
- Japan
- Prior art keywords
- electrodes
- layer
- semiconductor
- temperature
- type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004065 semiconductor Substances 0.000 claims description 35
- 239000000758 substrate Substances 0.000 description 18
- 230000000903 blocking effect Effects 0.000 description 9
- 239000012535 impurity Substances 0.000 description 9
- 238000009792 diffusion process Methods 0.000 description 7
- 239000012159 carrier gas Substances 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical group [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 238000001947 vapour-phase growth Methods 0.000 description 2
- 235000014676 Phragmites communis Nutrition 0.000 description 1
- 229910003902 SiCl 4 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 230000009191 jumping Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- RLOWWWKZYUNIDI-UHFFFAOYSA-N phosphinic chloride Chemical compound ClP=O RLOWWWKZYUNIDI-UHFFFAOYSA-N 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K7/00—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
- G01K7/01—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using semiconducting elements having PN junctions
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Thermistors And Varistors (AREA)
Description
【発明の詳細な説明】
〔発明の目的〕
本発明は所定の温度を検出する温度センサーに
関し、特に半導体にて構成した温度センサー素子
に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] The present invention relates to a temperature sensor for detecting a predetermined temperature, and particularly to a temperature sensor element made of a semiconductor.
近年、各種センサーの開発が活発化し、温度セ
ンサーも種々の構造のものが開発されている。 In recent years, the development of various sensors has become active, and temperature sensors with various structures have also been developed.
本発明の目的は、半導体にて構成した新規な構
造の温度センサー素子を提供することにある。 An object of the present invention is to provide a temperature sensor element with a novel structure made of semiconductor.
本発明によれば、第1導電型の半導体層と、該
半導体層に互に離れた位置に形成された第1及び
第2の電極と、前記半導体層に前記第1及び第2
の電極間の位置に前記第1及び第2の電極から離
れた状態に形成された、前記第1導電型とは反対
の第2導電型の電気的に浮遊せる半導体領域とを
有し、前記第1及び第2の電極間に所定の電圧を
加えたとき、周囲温度が所定の温度より低い場合
は前記半導体層と前記半導体領域との接合部分に
形成される空乏層が前記第1及び第2の電極間の
導電路を遮断しており、前記周囲温度が前記所定
の温度以上の場合は空乏層による電気導電路の遮
断が解かれて前記第1及び第2の電極間に電流が
流れることを特徴とする半導体温度センサー素子
が得られる。
According to the present invention, a semiconductor layer of a first conductivity type, first and second electrodes formed on the semiconductor layer at positions apart from each other, and a first and second electrode on the semiconductor layer.
an electrically floating semiconductor region of a second conductivity type opposite to the first conductivity type, formed at a position between the electrodes and separated from the first and second electrodes; When a predetermined voltage is applied between the first and second electrodes, if the ambient temperature is lower than the predetermined temperature, a depletion layer formed at the junction between the semiconductor layer and the semiconductor region is removed from the first and second electrodes. A conductive path between the first and second electrodes is blocked, and when the ambient temperature is equal to or higher than the predetermined temperature, the depletion layer unblocks the electrically conductive path and current flows between the first and second electrodes. A semiconductor temperature sensor element characterized by this is obtained.
次に本発明の実施例について図面を参照して説
明する。 Next, embodiments of the present invention will be described with reference to the drawings.
まず、第2図を参照して本発明の原理を説明す
る。 First, the principle of the present invention will be explained with reference to FIG.
第2図Aの素子は、例えばN型のSi基体10の
両端に第1及び第2の電極11及び12が形成さ
れた半導体抵抗である。この半導体抵抗素子は、
第1及び第2の電極11及び12間に電界を加え
て電流を流す構造のもので、流れる電流量はSi基
体10の比抵抗で制御される。 The element shown in FIG. 2A is a semiconductor resistor in which first and second electrodes 11 and 12 are formed at both ends of an N-type Si substrate 10, for example. This semiconductor resistance element is
It has a structure in which an electric field is applied between the first and second electrodes 11 and 12 to flow a current, and the amount of current flowing is controlled by the specific resistance of the Si substrate 10.
第2図Bのように、Si基体10に第1及び第2
の電極11及び12間の位置に、Si基体10とは
反対の導電型(即ちP型)の2つのSi領域13
を、相互間に間隙が形成されるように、形成する
と、第1及び第2の電極11及び12間を流れる
電流が減少する。P型Si領域13は電気的に浮遊
している。上記間隙を狭くすると、2つのP型領
域13とN型基体10とで形成されるPN接合部
に発生する空乏層が互に重なり合い、両電極11
及び12間に印加する電圧が所定の電圧値となる
までは、電流が流れない状態が形成される。その
所定の電圧値は、N型基体10及びP型領域13
の不純物密度(比抵抗)と上記間隙の間隔とで決
定される。 As shown in FIG. 2B, first and second
Two Si regions 13 of a conductivity type opposite to that of the Si substrate 10 (i.e., P type) are located between the electrodes 11 and 12.
If they are formed so that a gap is formed between them, the current flowing between the first and second electrodes 11 and 12 is reduced. P-type Si region 13 is electrically floating. When the gap is narrowed, depletion layers generated at the PN junction formed by the two P-type regions 13 and the N-type substrate 10 overlap each other, and both electrodes 11
A state is formed in which no current flows until the voltage applied between the terminals and 12 reaches a predetermined voltage value. The predetermined voltage value is between the N type substrate 10 and the P type region 13
It is determined by the impurity density (specific resistance) of and the interval of the gap.
本発明は、第2図Bの素子において、N型基体
10及びP型領域13の不純物密度と上記間隙の
間隔とをある状態に設定して、第1及び第2の電
極11及び12間に印加する電圧と、本素子の周
囲温度との関係を調べた結果、電流が流れない電
圧値が、周囲温度の上昇に従つて、低下してくる
という性質を発見し、利用したものである。 In the device of FIG. 2B, the present invention sets the impurity density of the N-type substrate 10 and the P-type region 13 and the interval of the above-mentioned gap to a certain state, and creates a gap between the first and second electrodes 11 and 12. As a result of investigating the relationship between the applied voltage and the ambient temperature of this element, they discovered and utilized the property that the voltage value at which no current flows decreases as the ambient temperature rises.
即ち、本発明による半導体温度センサー素子
は、第1及び第2の電極11及び12間に所定の
電圧を加えたとき、周囲温度が所定の温度より低
い場合はN型Si基板10と2つのP型領域13と
のPN接合部に形成される空乏層が第1及び第2
の電極11及び12間の導電路を遮断しており、
周囲温度が前記所定の温度以上の場合は前記空乏
層による前記導電路の遮断が解かれて第1及び第
2の電極11及び12間に電流が流れることを特
徴とする。 That is, in the semiconductor temperature sensor element according to the present invention, when a predetermined voltage is applied between the first and second electrodes 11 and 12, if the ambient temperature is lower than the predetermined temperature, the N-type Si substrate 10 and the two P The depletion layer formed at the PN junction with the type region 13 is the first and second depletion layer.
The conductive path between the electrodes 11 and 12 is interrupted,
When the ambient temperature is equal to or higher than the predetermined temperature, the conductive path is unblocked by the depletion layer and current flows between the first and second electrodes 11 and 12.
本発明による半導体温度センサー素子は、構造
的に縦型電界効果トランジスタ(V−FET)に
似ているが、本発明による半導体温度センサー素
子は、基板10とは反対の導電型の領域13が電
気的に浮遊されている2電極の抵抗体(受動素
子)であり、増幅能力をもたない。つまり、トラ
ンジスタではない。 The semiconductor temperature sensor element according to the invention is structurally similar to a vertical field effect transistor (V-FET), but the semiconductor temperature sensor element according to the invention has a region 13 of the opposite conductivity type to the substrate 10 that is electrically It is a two-electrode resistor (passive element) that is floating in the air and has no amplification ability. In other words, it's not a transistor.
これに対して、V−FETは3電極能動素子で
あり、もちろん増幅能力をもつており、第3の電
極(ゲート電極)は浮遊しておらず、制御の為に
電圧が印加される。 On the other hand, the V-FET is a three-electrode active element, and of course has an amplification ability, and the third electrode (gate electrode) is not floating, and a voltage is applied for control.
なお、本発明による半導体温度センサー素子
は、第3図のように、Si基板10の両面に第1及
び第2の電極11及び12を形成すれば、Si基板
10の厚み方向縦に電流が流れる抵抗体となる。
また、第4図のように、N型Si層10の片側の面
に、第1及び第2の電極11及び12を作れば、
N型Si層10に横方向(Si層10の径方向)に電
流が流れる抵抗体となる。第4図において、14
はP型Si基板である。 In addition, in the semiconductor temperature sensor element according to the present invention, if the first and second electrodes 11 and 12 are formed on both sides of the Si substrate 10, as shown in FIG. Becomes a resistor.
Also, as shown in FIG. 4, if the first and second electrodes 11 and 12 are formed on one side of the N-type Si layer 10,
The N-type Si layer 10 serves as a resistor through which current flows laterally (in the radial direction of the Si layer 10). In Figure 4, 14
is a P-type Si substrate.
次に本発明の実施例について説明する。 Next, examples of the present invention will be described.
第1図及び第5図はいずれも本発明の実施例に
よる半導体温度センサー素子を示すものである。
第5図はP+層3を埋込んだものであり、P+層3
とP+パツド層3′とは外部でつながつている。第
1図はP+層3を切込み溝の底部に拡散により形
成したものであり、第5図の場合と同様P+層3
とP+パツド層3′とは外部でつながつている。な
お、第1図及び第5図において、1はN+Si基板、
2はN-層、4はN+層である。 1 and 5 both show semiconductor temperature sensor elements according to embodiments of the present invention.
Figure 5 shows the P + layer 3 embedded, and the P + layer 3
and the P + pad layer 3' are connected externally. In Fig. 1, the P + layer 3 is formed at the bottom of the cut groove by diffusion, and as in the case of Fig. 5, the P + layer 3 is formed at the bottom of the cut groove.
and the P + pad layer 3' are connected externally. In addition, in FIG. 1 and FIG. 5, 1 is an N + Si substrate,
2 is the N − layer and 4 is the N + layer.
第1図及び第5図において、N+Si基板1が第
2図Bの第1の電極11に対応し、N+層4が第
2図Bの第2の電極12に対応し、P+層3及び
P+パツド層3′が第2図BのP型領域13に対応
する。 1 and 5, the N + Si substrate 1 corresponds to the first electrode 11 in FIG. 2B, the N + layer 4 corresponds to the second electrode 12 in FIG. 2B, and the P + Layer 3 and
P + pad layer 3' corresponds to P type region 13 in FIG. 2B.
第1図及び第5図には導電路Wを半導体基板の
厚み方向に形成した構造すなわち縦型の例を示し
たが、第4図に従つて、導電路Wを基板の径方向
に形成した構造すなわち横型も可能である。要
は、導電路の幅WとN-層2の不純物密度との関
係を一定の条件の下に形成すれば良いのである。
又、導電路の数あるいは面積は、トランジスタほ
ど多くしたり、大きくする必要も無く任意に設計
して良い。 1 and 5 show an example of a structure in which the conductive path W is formed in the thickness direction of the semiconductor substrate, that is, a vertical type, but according to FIG. 4, the conductive path W is formed in the radial direction of the substrate. A horizontal structure is also possible. The point is that the relationship between the width W of the conductive path and the impurity density of the N - layer 2 should be established under certain conditions.
Further, the number or area of the conductive paths does not need to be as large or large as in the case of a transistor, and may be designed as desired.
第6図は本発明の一実施例である第1図の構造
の素子に於て、N-層2の不純物密度N-を2×
1013cm-3として一定とした場合に、導電路の幅W
を適当に変化させた時の室温(25℃)下での素子
特性を示す。第1の電極1と第2の電極4との間
に印加される電圧を横軸に、第1及び第2の電極
1及び4間に導電路を通つて流れる電流を縦軸に
プロツトしたものである。導電路幅Wが1.7μmの
場合ほぼ400Vまでは電流は流れず(電気抵抗無
限大)、400V以上で急に電流が流れ始める。又、
W=3.0μmの場合は電圧100Vまでは電流が流れ
ず(電気抵抗無限大)、100Vを越えると急激に電
流が流れ始める。すなわち、室温に於る素子の阻
止電圧は前者で400V、後者で100Vということに
なる。以上の様にN-層2の不純物密度を一定に
保ち、導電路幅Wを適当に変化させれば室温に於
る阻止電圧の値を任意に選べるのである。 FIG. 6 shows an example of the present invention in which the impurity density N - of the N - layer 2 is set to 2× in the device having the structure shown in FIG.
Width W of conductive path when constant as 10 13 cm -3
The device characteristics at room temperature (25°C) are shown when the temperature is changed appropriately. The voltage applied between the first electrode 1 and the second electrode 4 is plotted on the horizontal axis, and the current flowing through the conductive path between the first and second electrodes 1 and 4 is plotted on the vertical axis. It is. When the conductive path width W is 1.7 μm, no current flows until approximately 400V (electrical resistance is infinite), and current suddenly begins to flow above 400V. or,
When W = 3.0 μm, no current flows until the voltage reaches 100V (infinite electrical resistance), and when the voltage exceeds 100V, the current begins to flow suddenly. In other words, the blocking voltage of the device at room temperature is 400V for the former and 100V for the latter. As described above, by keeping the impurity density of the N - layer 2 constant and changing the conductive path width W appropriately, the value of the blocking voltage at room temperature can be arbitrarily selected.
さて、次に第6図のW=1.7μm(阻止電圧
400V)の素子に関し、阻止電圧の温度変化を調
べたものを第7図に示す。W=1.7μm、N-不純
物密度が2×1013cm-3、素子に於て、素子温度を
変化させながら測定した阻止電圧のデータが示さ
れている。この様に温度により、阻止電圧は種々
の値に変化する。以上の振舞に着目して、導電路
の不純物密度N-と、幅Wとを適当に選ぶことに
より、阻止状態(抵抗無限大)から導通状態へ移
るポイント(阻止電圧)を温度によつて任意に選
ぶことが出来ることから、本発明の様な半導体温
度センサー素子が得られるのである。 Now, next in Figure 6, W = 1.7 μm (blocking voltage
Figure 7 shows the temperature change in blocking voltage of a device with a voltage of 400V. The data shows the blocking voltage measured while varying the device temperature in a device with W=1.7 μm and N - impurity density of 2×10 13 cm −3 . In this way, the blocking voltage changes to various values depending on the temperature. Focusing on the above behavior, by appropriately selecting the impurity density N - and the width W of the conductive path, the point at which the blocking state (infinite resistance) changes to the conducting state (blocking voltage) can be set arbitrarily depending on the temperature. The semiconductor temperature sensor element of the present invention can be obtained because the temperature sensor can be selected as follows.
尚、本発明の素子は、メタルフレームの先端に
貼付けられ、樹脂封止されてリード線が引出さ
れ、検温部分に直付けさせて使用されるものであ
ることは当然である。 It goes without saying that the element of the present invention is used by being attached to the tip of a metal frame, sealed with resin, with lead wires drawn out, and directly attached to the temperature measuring part.
以下にセンサー素子の製造方法を具体的に述べ
る。 The method for manufacturing the sensor element will be specifically described below.
第1図及び第2図において、1は比抵抗ρが
0.02Ωcm以下のN+形Si基板であり、2はN+形Si
基板1上にSicl4を原料としてH2をキヤリアガス
とし、1200℃の温度で気相成長させた高抵抗N-
層である。比抵抗ρは200〜250Ωcmであり、厚さ
は約30μmとする。このN-もしくはN+の二層構
造のSi基板1の全面に通常の熱酸化によりSiO2
膜を形成した後、通常の方がタイプフオトレジス
タを用いたフオトリングラフイー手法により局所
的に開孔窓を形成する。その後でP+層3及び
3′が選択拡散されるようにSiO2膜が局所的に開
孔される。 In Figures 1 and 2, 1 indicates that the specific resistance ρ is
It is an N + type Si substrate with a resistance of 0.02Ωcm or less, and 2 is an N + type Si substrate.
High-resistance N - is grown on the substrate 1 in a vapor phase at a temperature of 1200°C using SiCl 4 as a raw material and H 2 as a carrier gas.
It is a layer. The specific resistance ρ is 200 to 250 Ωcm, and the thickness is about 30 μm. SiO 2 is deposited on the entire surface of this N - or N + two-layer structure Si substrate 1 by normal thermal oxidation.
After forming the film, aperture windows are usually formed locally by a photorinography method using a type photoresistor. Thereafter, the SiO 2 film is locally opened so that the P + layers 3 and 3' are selectively diffused.
第5図のP+層埋め込み型の場合は、次いで通
常の開管液体拡散源拡散手法によりBBr3もしく
はBcl3を原料とし、N2とO2をキヤリアガスとし
て950℃のプレデポジシヨン、引き続き110℃のド
ライブインを行つてP+層3,3′の拡散を行う。
P+層3,3′の表面不純物濃度Nsは1×1019cm-3
以上とする。次に、Sicl4を原料としH2をキヤリ
アガスとして気相成長を行いP+層3,3′をN-
層中に埋め込む。この第2の気相成長に際して
は、温度は約100℃、一回目の成長時より低くす
る。これはP+層3,3′からのボロン原子の飛び
だしを防ぎ、埋め込み後のP+層3,3′間の導電
路幅Wを正確に形成するためである。第2の成長
層の比抵抗ρは5〜50Ωcmで10μm前後が上述の
導電路幅Wの形成の観点からやり易い値である。
N-層間のP+層3,3′を埋め込んだ後、全面に
通常の開管液体拡散源拡散によりN+層4を形成
する。N+層4はPOcl3を原料としてN2及びO2を
キヤリアガスとして行われる。表面不純物濃度
Nsは1×1020cm-3以上が望ましい。 In the case of the P + layer embedded type shown in Fig. 5, pre-deposition is performed at 950°C using BBr 3 or Bcl 3 as a raw material and N 2 and O 2 as carrier gas, followed by a pre-deposition at 110°C using the usual open tube liquid diffusion source diffusion method. Drive-in is performed to diffuse the P + layers 3 and 3'.
The surface impurity concentration Ns of P + layers 3 and 3' is 1×10 19 cm -3
The above shall apply. Next, vapor phase growth is performed using Sicl 4 as a raw material and H 2 as a carrier gas to form P + layers 3 and 3' with N -
Embed in the layer. During this second vapor phase growth, the temperature is approximately 100° C., lower than that during the first growth. This is to prevent boron atoms from jumping out from the P + layers 3, 3' and to accurately form the conductive path width W between the P + layers 3, 3' after embedding. The specific resistance ρ of the second growth layer is 5 to 50 Ωcm, and around 10 μm is an easy value from the viewpoint of forming the above-mentioned conductive path width W.
After embedding the P + layers 3 and 3' between the N - layers, an N + layer 4 is formed on the entire surface by diffusion using a conventional open-tube liquid diffusion source. The N + layer 4 is formed using POCl 3 as a raw material and N 2 and O 2 as carrier gases. Surface impurity concentration
Ns is preferably 1×10 20 cm -3 or more.
主電極はN+層1,4であり、その表面にはAl
などの電極金属が蒸着などの手段で形成されて素
子が完成される。 The main electrodes are N + layers 1 and 4, with Al on the surface
The element is completed by forming electrode metals such as by vapor deposition or other means.
一方、、第1図の切り込み型の場合は、前述の
P+層3及び3′の選択拡散窓に開孔後、通常のシ
リコンエツチング液(たとえばHF:HNO3:=
1:2)により4〜7μ程度選択エツチを行い、
引き続きイオン注入により切溝の底部にボロンを
拡散させてP+層3及び3′とする。N+層4の形
成は通常のフオトリソグラフイー手法と前述と同
様の拡散法により行われ、電極金属の形成も同様
に行われる。 On the other hand, in the case of the notch type shown in Figure 1, the above-mentioned
After opening the selective diffusion windows of P + layers 3 and 3', use a conventional silicon etching solution (for example, HF:HNO 3 :=
1:2), perform selective etching of about 4 to 7μ,
Subsequently, boron is diffused into the bottom of the kerf by ion implantation to form P + layers 3 and 3'. The N + layer 4 is formed by the usual photolithography method and the same diffusion method as described above, and the electrode metal is formed in the same way.
以上のようにして得られた素子は、通常の半導
体用ケース、たとえば、TO−3形金属ケースや
TO−220形モールドケースに組み込んで完成品
となる。 The device obtained as described above can be used in a normal semiconductor case, such as a TO-3 type metal case.
It is assembled into a TO-220 type molded case to create a completed product.
次に第8図を参照して本発明による半導体温度
センサー素子の使用法を説明する。即ち、第8図
では、本発明による半導体温度センサー素子10
0を、サーマルリードスイツチ等の代りに置き換
えて、冷却フアン200と電源(例えば
AC100V)との間の接続線に直列に挿入接続し
て、恒温槽(室)300内の温度検知用センサー
として用いる。恒温槽300内の温度が上昇して
所定の温度に達すると、半導体温度センサー素子
100に電流が流れ(即ち、半導体温度センサー
素子100がON状態となり)、冷却フアン20
0が回転して、恒温槽300内の温度を低下させ
る。恒温槽300内の温度が下がれば、半導体温
度センサー素子100も再びOFFとなり、冷却
フアン200は回転をストツプする。 Next, the method of using the semiconductor temperature sensor element according to the present invention will be explained with reference to FIG. That is, in FIG. 8, a semiconductor temperature sensor element 10 according to the present invention is shown.
0 in place of a thermal reed switch, etc., and connect the cooling fan 200 and power supply (for example,
It is used as a sensor for detecting the temperature inside the thermostatic chamber (chamber) 300 by inserting and connecting it in series to the connection line between the thermostat (AC100V) and the thermostat (room) 300. When the temperature inside the constant temperature bath 300 rises and reaches a predetermined temperature, a current flows through the semiconductor temperature sensor element 100 (that is, the semiconductor temperature sensor element 100 turns on), and the cooling fan 20
0 rotates to lower the temperature inside the constant temperature bath 300. When the temperature inside the constant temperature bath 300 falls, the semiconductor temperature sensor element 100 is also turned off again, and the cooling fan 200 stops rotating.
以上説明したように本発明によれば、半導体に
て構成した新規な構造の温度センサー素子を得る
ことができる。
As explained above, according to the present invention, it is possible to obtain a temperature sensor element with a novel structure made of a semiconductor.
第1図は本発明の一実施例による半導体温度セ
ンサー素子の断面図、第2図〜第4図は本発明の
原理を説明するための素子断面図、第5図は本発
明の別の実施例による半導体温度センサー素子の
断面図、第6図は第1図の実施例の室温における
素子特性を示した図、第7図は第1図の実施例の
阻止電圧の温度依存特性を示した図、第8図は本
発明による半導体温度センサー素子の使用例を示
した図である。
1及び11……第1の電極、4及び12……第
2の電極、2及び10……N型Si層、3,3′及
び13……P型Si領域。
FIG. 1 is a sectional view of a semiconductor temperature sensor element according to an embodiment of the invention, FIGS. 2 to 4 are sectional views of the element for explaining the principle of the invention, and FIG. 5 is another embodiment of the invention. A cross-sectional view of a semiconductor temperature sensor element according to an example, FIG. 6 is a diagram showing the element characteristics at room temperature of the embodiment of FIG. 1, and FIG. 7 is a diagram showing the temperature dependence characteristics of the blocking voltage of the embodiment of FIG. 1. 8 are diagrams showing an example of use of the semiconductor temperature sensor element according to the present invention. 1 and 11...first electrode, 4 and 12...second electrode, 2 and 10...N-type Si layer, 3, 3' and 13...P-type Si region.
Claims (1)
離れた位置に形成された第1及び第2の電極と、
前記半導体層に前記第1及び第2の電極間の位置
に前記第1及び第2の電極から離れた状態に形成
された、前記第1導電型とは反対の第2導電型の
電気的に浮遊せる半導体領域とを有し、前記第1
及び第2の電極間に所定の電圧を加えたとき、周
囲温度が所定の温度より低い場合は前記半導体層
と前記半導体領域との接合部分に形成される空乏
層が前記第1及び第2の電極間の導電路を遮断し
ており、前記周囲温度が前記所定の温度以上の場
合は空乏層による前記導電路の遮断が解かれて前
記第1及び第2の電極間に電流が流れることを特
徴とする半導体温度センサー素子。1 a first conductivity type semiconductor layer, first and second electrodes formed in the semiconductor layer at positions separated from each other;
electrically of a second conductivity type opposite to the first conductivity type, formed in the semiconductor layer at a position between the first and second electrodes and separated from the first and second electrodes; a floating semiconductor region;
When a predetermined voltage is applied between the first and second electrodes, if the ambient temperature is lower than the predetermined temperature, the depletion layer formed at the junction between the semiconductor layer and the semiconductor region is A conductive path between the electrodes is blocked, and when the ambient temperature is equal to or higher than the predetermined temperature, the conductive path is unblocked by the depletion layer and a current flows between the first and second electrodes. Characteristic semiconductor temperature sensor element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59126322A JPS616881A (en) | 1984-06-21 | 1984-06-21 | Semiconductor temperature sensor element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59126322A JPS616881A (en) | 1984-06-21 | 1984-06-21 | Semiconductor temperature sensor element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS616881A JPS616881A (en) | 1986-01-13 |
JPH0374004B2 true JPH0374004B2 (en) | 1991-11-25 |
Family
ID=14932313
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59126322A Granted JPS616881A (en) | 1984-06-21 | 1984-06-21 | Semiconductor temperature sensor element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS616881A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4322650A1 (en) * | 1993-07-07 | 1995-01-12 | Siemens Ag | Temperature sensor with a p-n transition |
JP2785797B2 (en) * | 1996-04-10 | 1998-08-13 | 日本電気株式会社 | Semiconductor temperature sensor element |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51129191A (en) * | 1975-05-02 | 1976-11-10 | Fujitsu Ltd | Semiconductor device |
JPS531191A (en) * | 1976-05-19 | 1978-01-07 | Basf Ag | Catalysts for manufacturing ethylene oxide |
-
1984
- 1984-06-21 JP JP59126322A patent/JPS616881A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51129191A (en) * | 1975-05-02 | 1976-11-10 | Fujitsu Ltd | Semiconductor device |
JPS531191A (en) * | 1976-05-19 | 1978-01-07 | Basf Ag | Catalysts for manufacturing ethylene oxide |
Also Published As
Publication number | Publication date |
---|---|
JPS616881A (en) | 1986-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4607270A (en) | Schottky barrier diode with guard ring | |
JP3315456B2 (en) | Semiconductor switch | |
JPH08152356A (en) | Infrared sensor | |
JPH0116017B2 (en) | ||
US4626886A (en) | Power transistor | |
JP3644697B2 (en) | Integrated structure current sensing resistor for power MOS devices | |
US20180315746A1 (en) | Power mos device having an integrated current sensor and manufacturing process thereof | |
US3436282A (en) | Method of manufacturing semiconductor devices | |
US5140299A (en) | Article comprising a high value resistor | |
JPH0374004B2 (en) | ||
JP2577345B2 (en) | Semiconductor device | |
JPH068758B2 (en) | Temperature sensor | |
US4559551A (en) | Semiconductor device | |
GB2105109A (en) | Thermosensitive semiconductor devices | |
JPS6224944B2 (en) | ||
JPS6048111B2 (en) | Non-volatile semiconductor memory device | |
JP4418542B2 (en) | Semiconductor element | |
JPS59213167A (en) | Thyristor | |
JP2964552B2 (en) | Non-volatile memory | |
JPH07297412A (en) | Piezoelectric resistance element | |
JP2002368222A (en) | Semiconductor device with overheating detecting function | |
JP2952990B2 (en) | Semiconductor device | |
JPH04256370A (en) | Semiconductor device | |
JPS588142B2 (en) | Semiconductor integrated circuit device and its manufacturing method | |
JPH0728035B2 (en) | Semiconductor device |