JPH037356B2 - - Google Patents

Info

Publication number
JPH037356B2
JPH037356B2 JP56092661A JP9266181A JPH037356B2 JP H037356 B2 JPH037356 B2 JP H037356B2 JP 56092661 A JP56092661 A JP 56092661A JP 9266181 A JP9266181 A JP 9266181A JP H037356 B2 JPH037356 B2 JP H037356B2
Authority
JP
Japan
Prior art keywords
column
carboxypeptidase
acidic
acidic carboxypeptidase
fraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56092661A
Other languages
Japanese (ja)
Other versions
JPS57208988A (en
Inventor
Shinji Iwazawa
Masaji Ueda
Nobuo Myata
Kenkichi Ahiko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Snow Brand Milk Products Co Ltd
Original Assignee
Snow Brand Milk Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snow Brand Milk Products Co Ltd filed Critical Snow Brand Milk Products Co Ltd
Priority to JP56092661A priority Critical patent/JPS57208988A/en
Publication of JPS57208988A publication Critical patent/JPS57208988A/en
Publication of JPH037356B2 publication Critical patent/JPH037356B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はペニシリウム属に属する酸性カルボキ
シペプチダーゼ生産菌を培養して得られる培養物
から採取する酸性カルボキシペプチダーゼの精製
方法に関する。 従来、味噌、醤油あるいはチーズのごとき発酵
食品の製造には、それぞれ独特の微生物が利用さ
れているがこれら微生物はタンパク質分解活性の
強いものが多い。 一般にこれら微生物の分解酵素は、エキソペプ
チダーゼとエンドペプチダーゼの混在する形で、
発酵食品の風味や組織形成に重要な作用をしてい
ることが知られている。一方、タンパク質を分解
すると、時には生成するペプチドのために不快な
苦味を呈することも、また知られている。そのた
め、積極的にタンパク質分解酵素を利用して分解
を促進しようとすれば、苦味の発生によつて食品
としてはかえつて不適な物になることがある。し
かし、伝統的なタンパク質に富む発酵食品では、
エンドペプチダーゼと苦味ペプチド分解性を持つ
各種のエキソペプチダーゼの微妙なバランスの下
に独特の味を提供し、苦味を呈することはほとん
どない。これは、エキソペプチダーゼの役割がい
かに重要であるかを再認識させるものである。 このようなエキソペプチダーゼの作用上の特性
に鑑み、エキソペプチダーゼの1種である酸性カ
ルボキシペプチダーゼをエンドペプチダーゼの全
く含まない状態で取得できれば、食品中の苦味ペ
プチドの除去あるいは食品の旨味の増強に利用し
得るようになり、更にカルボキシペプチダーゼと
エンドペプチダーゼとの活性割合を調節すること
によりこれら酵素を利用した新らしい食品の開発
をもたらすのと考えられる。 従来、カルボキシペプチダーゼは、柑橘類の果
皮、発芽小麦ならびに大麦、動物の膵臓などから
分離、精製されており(カルボキシペプチダーゼ
A,B)、また、酵母や放線菌からも分離、精製
されている(酵母から分離されたものはカルボキ
シペプチダーゼYと称せられる)。さらに、アス
ペルギルス・サイトイ(Aspergillus saitoi)、ア
スペルギルス・オリゼー(Aspergillus oryzae)、
ペニシリウム・ジヤンチネラム(Penicillium
janthinellum)のごとき糸状菌からのカルボキシ
ペプチダーゼの分離、精製も報告されている。 しかしながら、従来のカルボキシペプチダーゼ
の精製においてエンドペプチダーゼを含まないカ
ルボキシペプチダーゼを得るには硫安や芒硝等を
利用した塩析法や、アルコール、アセトンあるい
はジオキサンなどを利用した有機溶媒沈殿法や、
セフアデツクス又はバイオゲルなどのゲル過ク
ロマトグラフイーを組合わせて用いた多段階の精
製法が行なわれているのが現状である。したがつ
て、このような精製法は操作が煩雑なうえに費用
も嵩むので工業的に大量生産には適さない。 本発明者らは上述したごときに背景に鑑み、酸
性カルボキシペプチダーゼの工業的規模での大量
精製に適した精製方法を提供すべく検討した結
果、該カルボキシペプチダーゼの大量生産に適し
たペニシリウム属に属する酸性カルボキシペプチ
ダーゼ生産菌を培養して得られる酸性カルボキシ
ペプチダーゼの有利な大量生産に適した精製法を
見出し、本発明に至つた。 以下本発明を詳しく説明する。 本発明は、ペニシリウム属に属する酸性カルボ
キシペプチダーゼ生産菌を培養して得られる培養
物の液を、カルボキシメチル−セフアデツクス
に通して上記培養物液中の酸性カルボキシペプ
チダーゼ画分を該カラムに吸着させ、ついでこの
カラムを洗浄した後上記画分を溶出することを特
徴とする。 本発明で酸性カルボキシペプチダーゼ画分の吸
着に用いるカルボキシメチル−セフアデツクス
(以下CM−セフアデツクスと称す)は弱酸性陽
イオン交換体としての特性を有するものであるこ
とが知られているが、酸性カルボキシペプチダー
ゼの吸着量が他のカチオン交換樹脂に比して顕著
に大きいことは本発明者が始めて知見したことで
ある。 本発明ではペニシリウム属に属する酸性カルボ
キシペプチダーゼ生産菌を培養して得られる培養
物の液は下記により得られる。上記酸性カルボ
キシペプチダーゼ生産菌として例えばペニシリウ
ム・カセイコラム(Penicillum caseicolum)微
工研菌寄第6009号、又はペニシリウム・ロツクフ
オルテイ(Penicillium roqueforti)ATCC38099
を用い、糸状菌の培養に通常用いられる小麦〓を
基質とする培地中で約20〜25℃の温度下で8〜10
日間培養し、得られた培養物に7〜10倍容量の5
〜10mM酸緩衝液(PH3.0)を添加し、混合物の
PHを3.0〜4.0、好ましくは3.5に調整しながら5℃
で5時間程度培養物中の酵素の抽出を行なう。次
いでこの抽出混合物を遠心分離又は過操作によ
り固一液分離を行なつて、粗酵素を含む培養物
液(すなわち粗酵素抽出液)を得る。 次に、このようにして得た培養物の液(PH
3.0〜4.0、好ましくは3.5)を、予め10mM酢酸緩
衝液(PH3.5)で平衡化したCM−セフアデツクス
のカラムに通して、上記液中の酸性カルボキシ
ペプチダーゼ画分を吸着させる。ここで本酵素の
CM−セフアデツクス吸着容量は約25単位/ml樹
脂であるので、使用するカラム容量はこれから計
算される交換容量の少なくとも2倍以上にする。 又、カラムは流速確保のためできるだけ太く、
短い形状のものを使用し、特に直径と長さの比が
1:3〜10のものを使用することが好ましい。 上述のごとくしてCM−セフアデツクスのカラ
ムに吸着した酸性カルボキシペプチダーゼ画分を
溶出すると、得られる溶出液中のエンドペプチダ
ーゼ活性は上記粗酵素抽出液(培養物液)中に
おける活性の約1/10に減少する。すなわち、CM
−セフアデツクスカラムへの通液により粗酵素抽
出液中の酸性カルボキシペプチダーゼが選択的に
吸着されることが確認し得る。 本発明ではエンドペプチダーゼを実質上完全に
含まない高純度酸性カルボキシペプチダーゼを得
る目的で、上記溶出処理に先立つてカラムを洗浄
して該カラムに吸着されている酸性カルボキシペ
プチダーゼ画分に若干混在しているエンドペプチ
ダーゼを溶出除去する。この洗浄は、0.2M食塩
を含む10mM酢酸緩衝液(PH3.5)を用い、少な
くとも2BV(ベツドボリウム;樹脂容量)の通液
量で行なう。なお、この洗浄によつては酸性カル
ボキシペプチダーゼの溶出は全くみられない。 上記カラムの洗浄によるエンドペプチダーゼの
除去した後の吸着酸性カルボキシペプチダーゼの
溶出はイオン強度0.5M以上、PH3.0〜4.0で、例え
ば0.5M食塩を含む10mM酢酸緩衝液(PH3.5)を
用いて行なう。この溶出は1〜2BVで完全に行
ない得、得られる溶出画分にはエンドペプチダー
ゼは検出されない。 なお、CM−セフアデツクスカラムにおける上
記吸着及び溶出操作での通液流速はSV(単位時当
りの流量を樹脂容量で除したもの)2〜3で実施
することが好ましく、また、これらの操作は0〜
5℃の低温下で行なうように留意する。 上述したごとく、本発明によるとCM−セフア
デツクスカラムへの吸着、洗浄及び溶出という簡
易な操作でエンドペプチダーゼを含まない高純度
酸性カルボキシペプチダーゼを収得できる。換言
すると、本発明は従来困難視されていたエンド型
とエキソ型とのペプチダーゼの分離を効率的且つ
完全に遂行することを可能にしたものと言える。 以下に実施例を示して本発明を具体的に説明す
る。なお、実施例中の酵素活性は下記測定法によ
る値で示したものである。 1 酸性カルボキシペプチダーゼ活性: 1mM、ベンジルオキシカルボニルグルタミ
ルチロシン(Z−Glu−Tyr)溶液0.5ml、50m
M酢酸緩衝液0.45ml(PH3.0)および酵素液0.05
mlの混合液を30℃で20分間反応させた後、
0.3M水酸化ナトリウム溶液を0.2ml添加し反応
停止を行い、20分間放置する。次に、これを
2.5%酢酸溶液0.2mlで中和後ニンヒドリン反応
をおこない、570nmの吸光度を測定する。本反
応により30℃、1分間に1μMチロシンを遊離
する酵素量を1単位として表示した。 2 酸性プロテアーゼ活性: 基質混液1.9ml(0.32%カゼイン、50mM乳
酸溶液、PH3.0)に酵素液0.1mlを加え、30℃で
反応後2.0mlの10%トリクロル酢酸溶液の添加
で反応を止め、30℃に30分間保持する。次いで
生成する沈殿を過し、液の280nmにおける
吸光度の増加を測定する。酵素単位は上記の測
定条件下で1分間に280nmの吸光度を1増加さ
せる酵素量を、1単位とした。 実施例 1 小麦〓3Kgの第2りん酸カリウム10.5g、硫酸
マグネシウム1.05gを含むイオン交換水2.1を
混合し、よくこねた後、3容三角フラスコに分
注し、121℃、1時間滅菌した。これに、あらか
じめポテトデキストロース寒天斜面で培養した
Penicillium caseicolum SBT7010(微工研菌寄
第6009号)を接種後、20℃、10日間培養した。得
られた培養物に20の5mM酢酸緩衝液(PH3.0)
を加えて5時間浸漬抽出した。この間PHを塩酸で
3.5に調整し、一定に維持した。次に、これを
過し、清澄な粗酵素抽出液約17を取得した。こ
れをあらかじめ10mM酢酸緩衝液(PH3.5)で平
衡化したCM−セフアデツクスカラム(カラム容
量200ml、形状直径4cm×長さ16cm)に通し、酸
性カルボキシペプチダーゼ画分を吸着させた。な
おこの時の流速はSV2で実施した。さらにこれを
0.2M食塩を含む酢酸緩衝液400mlで洗浄し混在す
るエンドペプチダーゼを完全に溶出した。次に、
0.5M食塩を含む同緩衝液400mlで酸性カルボキシ
ペプチダーゼを溶出し、得られる活性画分を集め
た。以上ワンステツプの精製工程でエンド、エキ
ソ型ペプチダーゼを完全に分離でき、エンドペプ
チダーゼ活性を含まない酸性カルボキシペプチダ
ーゼ活性画分300mlを取得した。なお、精製過程
の各酵素活性は表1の如き結果であり、酵素活性
の回収率は91%であつた。また、上記により得ら
れた酸性カルボキシペプチダーゼは容量的には約
55倍に、比活性(活性/タンパク質量)では約22
倍に濃縮された。
The present invention relates to a method for purifying acidic carboxypeptidase collected from a culture obtained by culturing acidic carboxypeptidase-producing bacteria belonging to the genus Penicillium. Traditionally, unique microorganisms have been used to produce fermented foods such as miso, soy sauce, and cheese, and many of these microorganisms have strong proteolytic activity. Generally, the degradative enzymes of these microorganisms are a mixture of exopeptidase and endopeptidase.
It is known to play an important role in the flavor and tissue formation of fermented foods. On the other hand, it is also known that when proteins are degraded, they sometimes exhibit an unpleasant bitter taste due to the peptides produced. Therefore, if an attempt is made to actively utilize proteolytic enzymes to promote decomposition, bitterness may develop, making the product unsuitable as a food. However, traditional protein-rich fermented foods
It provides a unique taste due to the delicate balance of endopeptidase and various exopeptidases that can degrade bitter peptides, and almost never exhibits bitterness. This reminds us how important the role of exopeptidase is. Considering these functional characteristics of exopeptidases, if acidic carboxypeptidase, a type of exopeptidase, can be obtained without any endopeptidase, it could be used to remove bitter peptides from foods or enhance the flavor of foods. Furthermore, by adjusting the activity ratio of carboxypeptidase and endopeptidase, it is thought that new foods using these enzymes will be developed. Conventionally, carboxypeptidases have been isolated and purified from citrus peels, germinated wheat and barley, animal pancreas, etc. (carboxypeptidases A and B), and have also been isolated and purified from yeast and actinomycetes (yeast The product isolated from the enzyme is called carboxypeptidase Y). In addition, Aspergillus saitoi, Aspergillus oryzae,
Penicillium
The isolation and purification of carboxypeptidase from filamentous fungi such as P. janthinellum has also been reported. However, in the conventional purification of carboxypeptidase, in order to obtain carboxypeptidase that does not contain endopeptidase, a salting-out method using ammonium sulfate or Glauber's salt, an organic solvent precipitation method using alcohol, acetone, dioxane, etc.
Currently, multi-step purification methods are being carried out using a combination of gel perchromatography such as Sephadex or biogel. Therefore, such a purification method is not suitable for industrial mass production because of complicated operations and high costs. In view of the above-mentioned background, the present inventors conducted studies to provide a purification method suitable for large-scale purification of acidic carboxypeptidase on an industrial scale. We have discovered a purification method suitable for advantageous mass production of acidic carboxypeptidase obtained by culturing acidic carboxypeptidase-producing bacteria, leading to the present invention. The present invention will be explained in detail below. The present invention involves passing a culture solution obtained by culturing acidic carboxypeptidase-producing bacteria belonging to the genus Penicillium through a carboxymethyl-sephadex, and adsorbing the acidic carboxypeptidase fraction in the culture solution onto the column; The column is then washed and the above fraction is eluted. Carboxymethyl-cephadex (hereinafter referred to as CM-cephadex) used in the present invention to adsorb the acidic carboxypeptidase fraction is known to have properties as a weakly acidic cation exchanger. The present inventor discovered for the first time that the adsorption amount of cation exchange resin is significantly larger than that of other cation exchange resins. In the present invention, the culture solution obtained by culturing acidic carboxypeptidase-producing bacteria belonging to the genus Penicillium is obtained as follows. Examples of the acidic carboxypeptidase-producing bacteria include Penicillium caseicolum No. 6009, or Penicillium roqueforti ATCC38099.
At a temperature of about 20 to 25°C, the cells were grown for 8 to 10 days in a wheat-based medium, which is commonly used for culturing filamentous fungi.
After culturing for 1 day, add 7 to 10 times the volume of the resulting culture to 5
Add ~10mM acid buffer (PH3.0) to the mixture.
5℃ while adjusting the pH to 3.0-4.0, preferably 3.5
The enzyme in the culture is extracted for about 5 hours. Next, this extraction mixture is subjected to solid-liquid separation by centrifugation or over-operation to obtain a culture solution containing the crude enzyme (ie, a crude enzyme extract). Next, the culture solution obtained in this way (PH
3.0 to 4.0, preferably 3.5) is passed through a CM-Sephadex column equilibrated in advance with 10 mM acetate buffer (PH 3.5) to adsorb the acidic carboxypeptidase fraction in the above solution. Here, the enzyme
Since the CM-Sephadex adsorption capacity is approximately 25 units/ml resin, the column volume used should be at least twice the exchange capacity calculated from this. In addition, the column should be made as thick as possible to ensure the flow rate.
It is preferable to use a short shape, particularly one with a diameter to length ratio of 1:3 to 10. When the acidic carboxypeptidase fraction adsorbed on the CM-Sephadex column is eluted as described above, the endopeptidase activity in the resulting eluate is approximately 1/10 of the activity in the crude enzyme extract (culture solution). decreases to In other words, CM
- It can be confirmed that acidic carboxypeptidase in the crude enzyme extract is selectively adsorbed by passing the solution through the Sephadex column. In the present invention, in order to obtain high-purity acidic carboxypeptidase that is substantially completely free of endopeptidase, the column is washed prior to the elution process to remove a small amount of the acidic carboxypeptidase adsorbed on the column. Elute and remove the endopeptidase present. This washing is carried out using a 10 mM acetate buffer (PH3.5) containing 0.2 M sodium chloride at a flow rate of at least 2 BV (vehicle volume; resin volume). Note that no elution of acidic carboxypeptidase is observed by this washing. After the endopeptidase is removed by washing the column, the adsorbed acidic carboxypeptidase is eluted at an ionic strength of 0.5M or higher and a pH of 3.0 to 4.0, using, for example, a 10mM acetate buffer (PH3.5) containing 0.5M sodium chloride. Let's do it. This elution can be completed in 1 to 2 BV, and no endopeptidase is detected in the elution fraction obtained. In addition, it is preferable that the liquid flow rate in the above adsorption and elution operations in the CM-Sephadex column be carried out at an SV (flow rate per unit hour divided by resin capacity) of 2 to 3. is 0~
Care should be taken to perform the test at a low temperature of 5°C. As described above, according to the present invention, highly pure acidic carboxypeptidase free from endopeptidase can be obtained by simple operations of adsorption onto a CM-Sephadex column, washing and elution. In other words, the present invention can be said to have made it possible to efficiently and completely separate endo-type and exo-type peptidases, which had been considered difficult in the past. EXAMPLES The present invention will be specifically described below with reference to Examples. In addition, the enzyme activity in the examples is shown as a value determined by the following measurement method. 1 Acidic carboxypeptidase activity: 1mM, benzyloxycarbonylglutamyltyrosine (Z-Glu-Tyr) solution 0.5ml, 50ml
M acetate buffer 0.45ml (PH3.0) and enzyme solution 0.05
After reacting ml of the mixture at 30℃ for 20 minutes,
Add 0.2 ml of 0.3M sodium hydroxide solution to stop the reaction, and leave it for 20 minutes. Then do this
After neutralizing with 0.2 ml of 2.5% acetic acid solution, perform a ninhydrin reaction and measure the absorbance at 570 nm. The amount of enzyme that releases 1 μM tyrosine in 1 minute at 30°C by this reaction is expressed as one unit. 2. Acid protease activity: Add 0.1 ml of enzyme solution to 1.9 ml of substrate mixture (0.32% casein, 50 mM lactic acid solution, PH3.0), react at 30°C, and stop the reaction by adding 2.0 ml of 10% trichloroacetic acid solution. Hold at 30 °C for 30 minutes. The resulting precipitate is then filtered and the increase in absorbance of the liquid at 280 nm is measured. One enzyme unit was defined as the amount of enzyme that increased the absorbance at 280 nm by 1 per minute under the above measurement conditions. Example 1 Wheat = 3 kg of ion-exchanged water containing 10.5 g of dibasic potassium phosphate and 1.05 g of magnesium sulfate were mixed, kneaded well, and then dispensed into 3-volume Erlenmeyer flasks and sterilized at 121°C for 1 hour. . This was previously cultured on potato dextrose agar slants.
After inoculation with Penicillium caseicolum SBT7010 (Feikoken Bacteria No. 6009), the cells were cultured at 20°C for 10 days. Add 20 mL of 5mM acetate buffer (PH3.0) to the resulting culture.
was added and extracted by immersion for 5 hours. During this time, adjust the pH with hydrochloric acid.
Adjusted to 3.5 and held constant. Next, this was passed to obtain about 17 ml of clear crude enzyme extract. This was passed through a CM-Sephadex column (column capacity: 200 ml, diameter: 4 cm x length: 16 cm) that had been equilibrated with 10 mM acetate buffer (PH 3.5) to adsorb the acidic carboxypeptidase fraction. Note that the flow rate at this time was SV2. Further this
The mixture was washed with 400 ml of acetate buffer containing 0.2M sodium chloride to completely elute the contaminating endopeptidase. next,
Acidic carboxypeptidase was eluted with 400 ml of the same buffer containing 0.5M sodium chloride, and the resulting active fractions were collected. Through the one-step purification process described above, endo- and exo-type peptidases could be completely separated, and 300 ml of an acidic carboxypeptidase active fraction containing no endopeptidase activity was obtained. The results of each enzyme activity during the purification process are shown in Table 1, and the recovery rate of enzyme activity was 91%. In addition, the acidic carboxypeptidase obtained above has a capacity of approximately
55 times, and the specific activity (activity/protein amount) is approximately 22
concentrated twice.

【表】 次に上述のごとくして得られた酸性カルボキシ
ペプチダーゼを用い、苦味ペプチド分解性につい
て検討した。カゼインの苦味ペプチド調製は、5
%カゼイン溶液に0.01%の結晶トリプシンを添
加、PH7.5、25℃で24時間分解し、分解液中の苦
味画分をn−ブタノールで抽出後、酸処理(PH
5.4)による除タンパクを行い、凍結乾燥して苦
味ペプチドを得た。ここで得られた苦味ペプチド
の1%溶液1mlにたいして、0.3単位の本酵素標
品を添加し、25℃、PH3.0で反応させ、苦味の軽
減を官能評価により調べた。官能評価は、パネラ
ー5人を用い、酵素液及び苦味ペプチドと酵素混
合液の反応前後の3種につき、苦味の強弱を比較
した。この結果は、表2にみられるごとく、明ら
かに本酵素は苦味ペプチド分解活性が存在し、有
効なものであると判断された。
[Table] Next, the acidic carboxypeptidase obtained as described above was used to examine its ability to decompose bitter peptides. Casein bitter peptide preparation
% casein solution was added to 0.01% crystalline trypsin and decomposed at 25°C for 24 hours at pH 7.5. After extracting the bitter fraction in the decomposition solution with n-butanol, acid treatment (PH
Protein removal was performed according to 5.4), and the bitter peptide was obtained by freeze-drying. To 1 ml of the 1% solution of the bitter peptide obtained here, 0.3 units of this enzyme preparation was added and reacted at 25° C. and PH 3.0, and the reduction in bitterness was examined by sensory evaluation. In the sensory evaluation, five panelists were used to compare the intensity of bitterness between the enzyme solution and the bitter peptide and enzyme mixture before and after the reaction. As shown in Table 2, the present enzyme clearly has bitter peptide degrading activity and was judged to be effective.

【表】 実施例 2 小麦〓10Kgとイオン交換水8Kgを混合し、この
混合物を麹培養専用トイレに入れ、121℃、30分
間減菌した。これにあらかじめポテトデキストロ
ース寒天培地で培養した、Penicillium
roqueforti ATCCNo.38099を接種後、25℃、湿度
100%の室で8日間培養した。 培養物を集め、80の5mM酢酸緩衝液(PH
3.0)を加え、途中PHを3.5に調整しつつ、10℃、
4時間の浸漬抽出を行つた。 浸漬抽出後、まず、ふるいを用い〓及び大きな
固型物を取り除き、次に連続高速遠心分離機(シ
ンマルエンタープライズ製)によつて沈殿物を完
全に取り除き、清澄な粗酵素液65を得た。別に
10mM酢酸緩衝波(PH3.5)で平衡化したCM−セ
フアデツクスカラム(直径3cm、長さ20cmの形状
を有するカラムが10本たばねられたもので1本当
りのカラム容量は100ml)を用意し、これに粗酵
素抽出液を同時にカラム1本当り6.5づつ流し、
酸性カルボキシペプチダーゼを吸着させた。 次に実施例1と同様に0.2M食塩を含む10mM
酢酸緩衝液(2BV)での洗浄、つづいて0.5M食
塩を含む同緩衝液(2BV)による酸性カルボキ
シペプチダーゼの溶出を行つた。 精製結果を表3に示す。表3にみられるごと
く、カルボキシペプチダーゼとエンドペプチダー
ゼを完全に分離することができた。 なお、活性画分は1.2を取得でき、容量では
54倍に比活性では21倍に濃縮された。
[Table] Example 2 10 kg of wheat and 8 kg of ion-exchanged water were mixed, and this mixture was placed in a toilet dedicated to culturing koji and sterilized at 121°C for 30 minutes. Penicillium, which was previously cultured on potato dextrose agar medium,
After inoculating with roqueforti ATCC No.38099, 25℃, humidity
The cells were cultured in a 100% chamber for 8 days. The culture was collected and diluted with 5mM acetate buffer (PH
3.0), and while adjusting the pH to 3.5, 10℃,
A 4 hour immersion extraction was performed. After immersion extraction, first remove large solid matter using a sieve, then completely remove the precipitate using a continuous high-speed centrifuge (manufactured by Shinmaru Enterprises) to obtain a clear crude enzyme solution 65. . separately
Prepare a CM-Sephadex column (10 columns with a diameter of 3 cm and a length of 20 cm, each column capacity is 100 ml) equilibrated with 10 mM acetate buffer (PH3.5). Then, simultaneously flow the crude enzyme extract at a rate of 6.5 times per column.
Acidic carboxypeptidase was adsorbed. Next, 10mM containing 0.2M salt as in Example 1.
Washing with acetic acid buffer (2BV) was followed by elution of acidic carboxypeptidase with the same buffer (2BV) containing 0.5M NaCl. The purification results are shown in Table 3. As seen in Table 3, carboxypeptidase and endopeptidase could be completely separated. In addition, the active fraction can be obtained at 1.2, and the volume is
The specific activity was 54 times more concentrated, and the specific activity was 21 times more concentrated.

【表】【table】

Claims (1)

【特許請求の範囲】 1 ペニシリウム属に属する酸性カルボキシペプ
チダーゼ生産菌を培養して得られる培養物の濾液
をカルボキシメチル−セフアデツクスのカラムに
通して上記培養物濾液中の酸性カルボキシペプチ
ダーゼ画分を該カラムに吸着させ、ついでこのカ
ラムを洗浄した後上記画分を溶出することを特徴
とする酸性カルボキシペプチダーゼの精製方法。 2 培養物の濾液をイオン強度0.2M以下、PH3.0
−4.0でカラムに通液し、且つカラムに吸着した
酸性カルボキシペプチダーゼ画分をイオン強度
0.5M以上、PH3.0〜4.0で溶出する、特許請求の範
囲第1項記載の精製方法。
[Scope of Claims] 1. A filtrate of a culture obtained by culturing an acidic carboxypeptidase-producing bacterium belonging to the genus Penicillium is passed through a column of carboxymethyl-sephadex, and the acidic carboxypeptidase fraction in the culture filtrate is collected in the column. 1. A method for purifying acidic carboxypeptidase, which comprises adsorbing it to a column, washing the column, and eluting the fraction. 2 The filtrate of the culture was adjusted to an ionic strength of 0.2M or less and a pH of 3.0.
-4.0 through the column and the acidic carboxypeptidase fraction adsorbed on the column at ionic strength
The purification method according to claim 1, which elutes at 0.5M or more and pH 3.0 to 4.0.
JP56092661A 1981-06-16 1981-06-16 Purification of acidic carboxypeptidase Granted JPS57208988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56092661A JPS57208988A (en) 1981-06-16 1981-06-16 Purification of acidic carboxypeptidase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56092661A JPS57208988A (en) 1981-06-16 1981-06-16 Purification of acidic carboxypeptidase

Publications (2)

Publication Number Publication Date
JPS57208988A JPS57208988A (en) 1982-12-22
JPH037356B2 true JPH037356B2 (en) 1991-02-01

Family

ID=14060651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56092661A Granted JPS57208988A (en) 1981-06-16 1981-06-16 Purification of acidic carboxypeptidase

Country Status (1)

Country Link
JP (1) JPS57208988A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110052757A1 (en) * 2007-12-20 2011-03-03 Robert John Bromley Savage Novel sialidase
CN108275369A (en) * 2017-12-27 2018-07-13 东莞市厚威包装科技股份有限公司 A kind of mycelia packaging cushion of packing box

Also Published As

Publication number Publication date
JPS57208988A (en) 1982-12-22

Similar Documents

Publication Publication Date Title
JP3881494B2 (en) Natto bacteria culture extract
AU666531B2 (en) Processes for the preparation of amylase inhibitor
Tomita et al. Formation of γ-glutamylglycyglycine by extracellular glutaminase of Aspergillus oryzae
JP5626748B2 (en) Peptide-containing seasoning
JPH037356B2 (en)
US4226764A (en) α-Amylase inhibitor from a streptomycete and process for its preparation
JP3373156B2 (en) Method for producing water-soluble potato peptide
JPH0866165A (en) Production of fermented seasoning using chicken bone as raw material
JP2000106826A (en) Composition containing chlorella peptide
US4035234A (en) Process for the preparation of the kallikrein-trypsin inhibitor
US3645850A (en) Preparation of acid carboxypeptidase
US4100028A (en) Method for purification of proteolytic enzymes
JP4295886B2 (en) Peptide purification method
JP2631202B2 (en) Peptide production method
JP3911282B2 (en) How to recover vitamin K2
JP3547834B2 (en) Compound 460A and method for producing the same
JP3585592B2 (en) Oral intake
CA1057221A (en) Methods for extracting and purifying kallidinogenase
JPS5840472B2 (en) Method for removing kinin-degrading enzyme from kallikrein-containing solution
US3592738A (en) Purification and recovery of neutral and alkaline protease using cationic sulfonated phenol-formaldehyde resin
JPH0543872A (en) Amino acid composition and its preparation
JPH0753106B2 (en) Enzyme preparation for peptide production
JPS606634B2 (en) Method for producing cyclic-3',5'-guanylic acid
JP3403472B2 (en) Method for improving taste of protein hydrolyzate
JPH0723397B2 (en) Human urinary trypsin inhibitor and human urinary kallikrein concentrated separation method