JPH0373502B2 - - Google Patents

Info

Publication number
JPH0373502B2
JPH0373502B2 JP59118116A JP11811684A JPH0373502B2 JP H0373502 B2 JPH0373502 B2 JP H0373502B2 JP 59118116 A JP59118116 A JP 59118116A JP 11811684 A JP11811684 A JP 11811684A JP H0373502 B2 JPH0373502 B2 JP H0373502B2
Authority
JP
Japan
Prior art keywords
power supply
vehicle
load
drive
loads
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59118116A
Other languages
Japanese (ja)
Other versions
JPS60261750A (en
Inventor
Hiroshi Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP59118116A priority Critical patent/JPS60261750A/en
Publication of JPS60261750A publication Critical patent/JPS60261750A/en
Publication of JPH0373502B2 publication Critical patent/JPH0373502B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • B60R16/0315Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for using multiplexing techniques

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Direct Current Feeding And Distribution (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の技術分野] この発明は、車載負荷の安定した駆動を確保し
た車両負荷駆動制御装置に関する。 [発明の技術的背景及びその問題点] 車両においては通常バツテリ及びオルタネータ
から成る電源供給部が設けられており、各車載負
荷への駆動時に於ける給電を行なつている。すな
わち、オルタネータの作動による発電状態にあつ
ては各車載負荷への給電はオルタネータによつて
行なわれ、一方発電状態にない時にはバツテリか
ら各車載負荷への給電が行なわれる。 ところで、前記電源供給部における電源電圧は
車載負荷のON−OFF状態により一般的に10ボル
ト乃至15ボルト程度の変動がある。これは、近年
の車両における装備の充実化に伴なう車載負荷の
増加により特に顕著であるが、通常、車載負荷の
中でもヘツドランプ等のランプ負荷やモータ等の
誘導負荷のような大電力を要するものの駆動開始
時には、定常時の数倍乃至数十倍の突入電流が生
ずるため、電源供給部から車載負荷に至る電源経
路に一時的な電圧降下が発生するのである。しか
しながら、この電圧下は、大電力を要する車載負
荷が同時に複数駆動開始されるような場合に著し
く大きくなつて、他の車載負荷の駆動に影響を与
えるおそれがあつた。特に、最近の車両において
はマイクロコンピユータ等によつて制御せしめら
れる電子制御装置が各種装備される傾向にあり、
一般にこれらマイクロコンピユータは正常な作動
を行なうため所定の電源電圧を確保する必要があ
る。従つて、前記したような著しい電圧降下が発
生した場合には、正常な作動が保証されない恐れ
があり、何らかの対策を講ずる必要がある。ま
た、例えばドアロツク用のソレノイドやパワーウ
インドウのモータ等、同時に作動する機会の多い
車載負荷にあつては、電圧降下を予め考慮した上
で当該電圧降下の発生時においても安定動作を確
保する為にハーネス等各所で対策を講ずる必要が
あり、コストアツプを招く恐れがある。 [発明の目的] この発明は上記に鑑みてなされたもので、その
第1の目的としては車載負荷の駆動開始時に発生
する突入電流による電源電圧降下を抑制するよう
にした車両用負荷駆動制御装置を提供することに
ある。 また、この発明は、その第2の目的として、車
載電源の給電能力不足時における車載負荷の駆動
開始時に発生する突入電流による著しい電源電圧
降下を防止するようにした車両用負荷駆動制御装
置を提供することにある。 [発明の概要] 上記第1の目的を達成するため、この発明は、
第1図aに示す如く、車載電源手段1から各車載
負荷5−1〜5−nへの給電路を導通・遮断する
給電制御手段3を設け、導電制御手段9が、負荷
駆動開始要否検出手段7から出力された駆動開始
を要する車載負荷についての駆動指令信号に基づ
き前記給電制御手段3を制御して、同時入力検出
手段8によつて複数の駆動指令信号がほぼ同時に
入力されたことが検出されたときには、優先駆動
順位記憶手段6に記憶された優先駆動順位情報に
基づき駆動指令のあつた車載負荷についての給電
路を所定の設定時間毎に順次導通させるようにし
たことを要旨とする。 上記第2の目的を達成するため、この発明は、
第1図bに示す如く、車載電源手段11から各車
載負荷15−1〜15−nへの給電路を導通・遮
断する給電制御手段13を設けると共に、当該車
載電源手段11の給電能力を検出する給電能力検
出手段19を設け、導通制御手段20が、検出し
た給電能力が所定レベルに達していないときに
は、予め定められた車載負荷の優先駆動順位情報
及び負荷駆動開始要否検出手段17から出力され
た駆動開始を要する車載負荷についての駆動指令
信号に基づき前記給電制御手段13を制御して、
駆動指令のあつた車載負荷についての給電路を順
次導通させるようにしたことを要旨とする。 [発明の実施例] 以下、図面を用いてこの発明の実施例を説明す
る。 第2図は、この発明の第1の実施例を示すもの
である。同図において、21は車載のバツテリ、
23はオルタネータで、この両者によつて後述す
る車載負荷への電源供給部25が構成されてい
る。当該電源供給部25により給電がなされる車
載負荷としては、第1表に示す如く、その作動タ
イミングが車両走行機能に直接影響を与える電力
負荷群(以下「必須負荷群」と呼ぶ)27と、そ
の作動タイミングが車両走行機能に直接影響を与
えない電力負荷群(以下「許容負荷群」)29と
に予め分類されている。
[Technical Field of the Invention] The present invention relates to a vehicle load drive control device that ensures stable driving of a vehicle load. [Technical Background of the Invention and Problems Therewith] Vehicles are usually provided with a power supply section consisting of a battery and an alternator, which supplies power to each on-vehicle load during driving. In other words, when the alternator is in a power generation state, power is supplied to each on-vehicle load by the alternator, while when it is not in a power generation state, power is supplied from the battery to each on-vehicle load. Incidentally, the power supply voltage in the power supply section generally fluctuates by about 10 to 15 volts depending on the ON/OFF state of the on-vehicle load. This is particularly noticeable due to the increase in on-vehicle loads due to the enrichment of equipment in vehicles in recent years, but among on-vehicle loads, there are usually lamp loads such as headlamps and inductive loads such as motors that require large amounts of power. When an object starts to be driven, an inrush current that is several to several tens of times larger than a steady state occurs, resulting in a temporary voltage drop in the power path from the power supply section to the on-vehicle load. However, this voltage level becomes extremely large when multiple on-vehicle loads that require large amounts of power are started to be driven at the same time, and there is a fear that the driving of other on-vehicle loads may be affected. In particular, recent vehicles tend to be equipped with various electronic control devices controlled by microcomputers, etc.
Generally, these microcomputers need to secure a predetermined power supply voltage in order to operate normally. Therefore, if a significant voltage drop as described above occurs, normal operation may not be guaranteed, and it is necessary to take some countermeasures. In addition, for in-vehicle loads that often operate at the same time, such as door lock solenoids and power window motors, voltage drops should be taken into consideration in advance to ensure stable operation even when such voltage drops occur. Measures must be taken at various locations such as the harness, which may lead to increased costs. [Object of the Invention] This invention has been made in view of the above, and its first object is to provide a load drive control device for a vehicle that suppresses a power supply voltage drop due to an inrush current that occurs when driving an on-vehicle load. Our goal is to provide the following. A second object of the present invention is to provide a load drive control device for a vehicle that prevents a significant power supply voltage drop due to an inrush current that occurs when driving an on-vehicle load when the on-vehicle power source lacks power supply capacity. It's about doing. [Summary of the invention] In order to achieve the above first object, the present invention has the following features:
As shown in FIG. 1a, a power supply control means 3 is provided which conducts/cuts off the power supply path from the on-vehicle power supply means 1 to each on-vehicle load 5-1 to 5-n, and the conduction control means 9 determines whether or not it is necessary to start driving the load. The power supply control means 3 is controlled based on the drive command signal for the on-vehicle load that requires the start of driving outputted from the detection means 7, and a plurality of drive command signals are almost simultaneously inputted by the simultaneous input detection means 8. The gist is that when a drive command is detected, the power supply path for the on-vehicle load for which a drive command has been issued is sequentially made conductive at predetermined set times based on the priority drive order information stored in the priority drive order storage means 6. do. In order to achieve the above second objective, this invention
As shown in FIG. 1b, a power supply control means 13 is provided to conduct/cut off the power supply path from the on-vehicle power supply means 11 to each on-vehicle load 15-1 to 15-n, and the power supply capability of the on-vehicle power supply means 11 is detected. When the detected power supply capacity has not reached a predetermined level, the continuity control means 20 outputs predetermined on-vehicle load priority driving order information and load drive start necessity detection means 17. controlling the power supply control means 13 based on the drive command signal for the on-vehicle load that requires the start of drive;
The gist is that the power supply paths for the on-vehicle loads for which drive commands have been received are sequentially made conductive. [Embodiments of the Invention] Examples of the invention will be described below with reference to the drawings. FIG. 2 shows a first embodiment of the invention. In the figure, 21 is an in-vehicle battery;
Reference numeral 23 denotes an alternator, and together they constitute a power supply section 25 for supplying power to an on-vehicle load, which will be described later. As shown in Table 1, the on-vehicle loads to which power is supplied by the power supply unit 25 include a power load group 27 whose operation timing directly affects the vehicle running function (hereinafter referred to as "essential load group"); They are classified in advance into a power load group (hereinafter referred to as "allowable load group") 29 whose operation timing does not directly affect the vehicle running function.

【表】【table】

【表】 そして、当該許容負荷群29の各負荷29−1
〜29−nには、夫々の負荷への電源供給部25
からの給電供給部25からの給電経路を導通・遮
断する負荷開閉回路31−1〜31−nが直列に
接続されている。33は、必須負荷27−1〜2
7−nからの作動指令信号および前記許容負荷2
9−1〜29−nを作動開始させる負荷作動スイ
ツチ35−1〜35−nからの作動信号の入力に
基づき後述する処理を行なつて前記負荷開始回路
31−1〜31−nを導通・遮断制御する制御回
路である。なお、制御回路33は、例えばCPU
37、ROM39、RAM41、入力ポート43,
45、出力ポート47とを有するマイクロコンピ
ユータで構成されている。 次に、この実施例の作用について、第3図を用
いて説明する。なお、第3図は前記CPU37の
処理フローチヤートを示すものである。 イグニツシヨンキー(図示せず)がONされ、
CPU37内のレジスタ、カウンタ、ラツチなど
を演算可能な状態にすると共に各定数をリセツト
することで行なわれる初期設定(図示せず)後
に、前記作動信号の入力があると、割込み処理
(INT)に入る。 当該割込み処理においては、まず、作動信号の
入力開始の状況を把握する。そして、この把握し
た状況から、許容負荷群29のうち複数の許容負
荷を作動開始すべく当該複数の許容負荷に対応す
る負荷作動スイツチがほぼ同時に作動せしめられ
たことを判断したときには、予め記憶してある許
容負荷の作動開始順位、すなわち前記第1表に基
づいて遅延作動時間の小さい許容負荷から、順次
タイミングをずらして作動菊始すべく優先順位
RL1,RL2〜,RLNを決定する(ステツプ100)。 次に、ステツプ110に進んで、作動せしめら
れた負荷作動スイツチに対応する許容負荷が全て
作動状態に未だないことを確認してステツプ12
0に進む。ステツプ120では、許容負荷の作動
開始により特に必須負荷27−1〜27−nの作
動が影響を受けないように、当該必須負荷27−
1〜27−nの作動時をはずして先に決定した優
先順位に従つて許容負荷を作動開始すべく当該許
容負荷に対応する負荷開始回路を導通状態にして
ステツプ130に進む。ステツプ130では、所
定のタイマを駆動開始させ、当該タイマにおける
設定時間Ts経過後に、次に高い優先順位の許容
負荷を作動開始すべくステツプ110に戻る。す
なわち、ステツプ130では、ステツプ120に
おいて作動開始せしめられた許容負荷の突入電流
が流れているときに、次に優先順位の高い別の許
容負荷が作動開始せしめられるようなことを防止
している。 そして、ステツプ110〜130の処理ループ
によつて、優先順位の高い許容負荷から順次作動
開始され、優先順位の決められた許容負荷がすべ
て駆動開始せしめられると、ステツプ110にお
ける判定が不成立(ON)状態となり、割込み処
理を終了する。 次に、前述した処理を第4図のA乃至Fの動作
タイムチヤートを用いて具体的に説明する。な
お、同図において、Aは必須負荷27−1〜27
−nの作動指令信号、Bは当該必須負荷27−1
〜27−nの作動電流信号、CおよびDは許容負
荷29−1で示すヘツドランプのそれぞれ導通信
号および作動電流信号、EおよびFは許容負荷2
9−nで示す間欠ワイパのそれぞれ導通信号およ
び作動電流信号である。 すなわち、必須負荷27−1〜27−nの作動
開始時に(第4図のA,B参照)、例えばヘツド
ランプ29−1の負荷作動スイツチ35−1およ
び間欠ワイパ29−nの負荷作動スイツチ35−
nがそれぞれ時刻t1およびt2でほぼ同時刻に作動
せしめられると、両許容負荷はすぐに作動開始さ
れることなく、(第4図のCおよびE参照)まず
両許容負荷の遅延許容時間の大小(第1表参照)
に基づき優先順位を決定する。具体的には、ヘツ
ドランプ29−1の遅延許容時間が数10msに対
し、間欠ワイパ29−nの遅延許容時間が数
100msなので、優先順位としてはヘツドランプ2
9−1が高くなる。そして、必須負荷27−1〜
27−nの作動電流の通流停止を待つて、まず優
先順位の高いヘツドランプ29−1から駆動開始
すべく負荷開閉回路31−1に導通信号を時刻t3
から出力開始する。これにより、ヘツドランプ2
9−1には、電源供給部25からの給電が開始さ
れ、時刻t3から作動電流が流れ始める(第4図D
参照)。 ヘツドランプ29−1が作動開始すると、この
時の突入電流の通流時を避けてヘツドランプ29
−1の作動電流が安定する設定時間Ts経過後
(時刻t4)に、間欠ワイパ29−nを作動開始し
ようとする。しかし、この時には、必須負荷27
−1〜27−nの作動時に当つているため、間欠
ワイパ29−nを作動開始すべく負荷開閉回路3
1−nに導通信号が出力されない(第4図E参
照)。このため、必須負荷27−1〜27−nの
作動電流の通流停止を待つて(時刻t5)、負荷開
始回路31−nに導通信号を出力して、電源供給
部25から間欠ワイパ29−nへの給電を開始さ
せる。これにより、間欠ワイパ29−nには、時
刻t5から作動電流が流れ始める(第4図F参照)。 したがつて、この実施例によれば、許容負荷に
ついての作動開始のため優先順位を予め記憶して
おき、負荷作動スイツチからの作動信号が競合し
たときには、この競合した許容負荷の中で作動開
始順位を決定し、必須負荷の作動に影響を与えな
いように順次決められた順位で作動開始するよう
にしている。このため、当該作動開始時における
電源供給部25から必須負荷群27および許容負
荷群29に至る給電経路において著しい電圧降下
が発生することがなく、もつて他の負荷の作動に
影響を与えることを防止しつつ、適切な負荷の作
動開始を確保することができる。またバツテリの
劣化も少なくなる。 第5図は、この発明の第2の実施例を示すもの
で、その特徴としては、電源供給部55から必須
負荷群57および許容負荷群59への給電能力を
監視しておき、給電能力が不足している状態で許
容負荷59−1〜59−nの作動開始が競合する
ようなときには、作動開始させる優先順位を決定
して、これに従つて作動開始させるようにしたこ
とにある。 第5図において、51は車載のバツテリ、53
はオルタネータで、この両者によつて後述する車
載負荷への電源供給部55が構成されている。当
該電源供給部55により給電がなされる車載負荷
としては、前述した第1表に示す如く、その作動
タイミングが車両走行機能に直接影響を与える電
力負荷群(以下「必須負荷群」と呼ぶ)57と、
その作動タイミングが車両走行機能に直接影響を
与えない電力負荷群(以下「許容負荷群」)59
とに予め分類されている。そして、当該許容負荷
群59の各負荷59−1〜59−nには、夫々の
負荷への電源供給部55からの給電経路を導通・
遮断する負荷開閉回路61−1〜61−nが直列
に接続されている。63はエンジンの回転数を検
出するエンジン回転検出器79からの回転数信
号、バツテリ51の端子電圧を検出する電圧検出
器81からの電圧信号、必須負荷57−1〜57
−nからの作動指令信号および前記許容負荷59
−1〜59−nを作動開始させる負荷作動スイツ
チ65−1〜65−nんらの作動信号の入力に基
づき後述する処理を行なつて前記負荷開閉回路6
1−1〜61−nを導通・遮断制御する制御回路
である。 なお、制御回路33は、例えばCPU67、
ROM69、RAM71、入力ポート73,75、
主力ポート77とを有するマイクロコンピユータ
で構成されている。 次に、この実施例の作用について、第6図およ
び第7図に示すCPU77の処理フローチヤート
を用いて説明する。なお、第6図は、電源供給部
55における給電能力状態を判定する処理であ
る。第7図は、必須負荷57−1〜57−nおよ
び許容負荷59−1〜59−nの作動開始制御の
処理である。 第6図に示す給電能力状態の判定処理について
は、イグニツシヨンキー(図示せず)がONされ
CPU77内のレジスタ、カウンタ、ラツチなど
を演算可能な状馳にすると共に各定数をリセツト
することで行なわれる処理の設定(図示せず)後
における所定時間ごとの割込み処理によつて行な
われる。 すなわち、同処理においては、まず電圧検出器
81で検出されたバツテリ51の端子電圧を読み
込んで、この電圧が設定電圧以上か否かを判定す
る(ステツプ200,210)。この判定におい
て、端子電圧が設定電圧以上であればステツプ2
20に進むが、逆であればステツプ250に進ん
で給電能力不足を示すフラグFをセツトして割込
み処理を終了させる。 ステツプ220に進むと、エンジン回転検出器
79で検出されたエンジン回転数を読み込んで、
現在のエンジン回転数が設定回転数以上か否かを
判定する(ステツプ220,230)。この結果、
現在のエンジン回転数が設定回転数以上であれ
ば、ステツプ240に進んで前記フラグFをリセ
ツトして割込み処理を終了するが、逆の場合には
ステツプ250に進んで前記フラグFをセツトし
て割込み処理を終了する。 したがつて、前述した処理(ステツプ200〜
250)においては、バツテリ51の端子電圧が
オルタネータ53の発電能力が低下した時でも車
載負荷への作動開始時の給電が他の車載負荷の作
動に影響を与えることなく安定して行なえる程度
に高いことを前提として、現在のオルタネータ5
3における給電能力が十分であることを確認し
て、前記フラグFをリセツトしている。 このように、所定時間毎に電源供給部55にお
ける給電能力状態の判定処理を行なつているとき
に、前記作動信号の入力があると、第7図に示す
作動開始制御のための割込み処理(INT)に入
る。 この割込み処理に入ると、まず、前記フラグF
の状態を判別する(ステツプ300)。この判別
の結果、フラグFがリセツト状態であれば車載負
荷への給電能力が十分であるので、ステツプ35
0に進んで、作動信号の入力に応じた許容負荷の
作動を開開始すべく、作動開始しようとする負荷
開閉回路に導通信号を出力する。これにより、負
荷作動スイツチの作動操作後時間遅れなく許容負
荷が作動開始する。一方、逆に、フラグFがセツ
ト状態にあれば給電能力が十分ではないので、ス
テツプ310に進み、許容負荷の作動開始を制御
する。 ステツプ310に進むと、まず、作動信号の入
力開始の状況を把握する。そして、この把握した
状況から、許容負荷群59のうち複数の許容負荷
を作動開始すべく当該複数の許容負荷に対応する
負荷作動スイツチがほぼ同時に作動せしめられた
ことを判断したときには、予め記憶してある許容
負荷の作動開始順位、すなわち前記第1表に基づ
いて遅延作動時間の小さい許容負荷から順次タイ
ミングをずらして作動開始すべく優先順位RL1
RL2,〜,RLN)を決定する。 次に、ステツプ320に進んで、作動せしめら
れた負荷作動スイツチに対応する許容負荷が全て
作動状態に未だないことを確認してステツプ33
0に進む。ステツプ330では、許容負荷の作動
開始により特に必須負荷57−1〜57−nの作
動が影響を受けないように、当該必須負荷57−
1〜57−nの作動時をはずして先に決定した優
先順位に従つて許容負荷を作動開始すべく当該許
容負荷に対応する負荷開閉回路を導通状態にして
ステツプ340に進む。ステツプ340では、所
定のタイマを駆動開始させ、当該タイマにおける
設定時間Ts経過後に、次に高い優先順位の許容
負荷を作動開始すべくステツプ320に戻る。す
なわち、ステツプ340では、ステツプ330に
おいて作動開始せしめられた許容負荷の突入電流
が流れているときに、次に優先順位の高い別の許
容負荷が作動開始せしめられるようなことを防止
している。 そして、ステツプ320〜340の処理ループ
によつて、優先順位の高い許容負荷から順次作動
開始され、優先順位の決められた許容負荷がすべ
て駆動開始せしめられると、ステツプ320にお
ける判定が不成立(NO)状態となり、割込み処
理を終了する。 したがつて、この実施例によれば、電源供給部
における必須負荷群および許容負荷群への給電能
力が不足している状態で許容負荷の困動開始が競
合するようなときのみ、所定の優先順位に従つて
許容負荷を時間をずらして順次作動開始するよう
にしている。このため、電源供給部における給電
能力が十分なときには、許容負荷がスイツチ操作
によりただちに作動開始するので、作動開始に際
しての時間遅れの発生を必要最低限にとどめるこ
とができると共に、作動開始に際して他の負荷の
作動に影響を与えることを防止できる。 [発明の効果] 以上説明したように、この発明によれば、車載
負荷の駆動開始が競合するようなときには、予め
定められた車載負荷の優先駆動順位情報に基づい
て駆動開始順序を決定し、この決定した順序に従
つて順次車載負荷を駆動開始させるようにしたの
で、複数の車載負荷、特に大電力を要する車載負
荷の同時駆動開始に伴う大きな突入電流による電
源電圧降下を抑制でき、これにより他の車載負荷
の作動に影響を与えることはない。 また、この発明によれば、前記駆動開始順序に
応じた車載負荷の駆動開始制御を、車載電源の供
電電力が低下しているときに行なうようにしたの
で、不必要な車載負荷の駆動開始の遅延をなくし
つつ、車載電源の供給能力が不足している状態で
の車載負荷の駆動開始時に発生する突入電流によ
る著しい電源電圧降下を防止できる。 そして、今後各種の電子制御システムが車両に
拡大採用されることが予想される反面、車両の電
源供給能力が重量の制限、燃費からの制約で余り
増加されることはないものと思われることから考
えると、本発明の意図するところの消費電力の時
間的分散化は非常に有効になるものと思われる。
[Table] And each load 29-1 of the permissible load group 29
~29-n includes a power supply unit 25 for each load.
Load switching circuits 31-1 to 31-n are connected in series to conduct/interrupt the power supply path from the power supply section 25. 33 is the required load 27-1 to 2
Operation command signal from 7-n and the allowable load 2
The load start circuits 31-1 to 31-n are turned on and off by performing the process described later based on the input of the operation signal from the load operation switches 35-1 to 35-n that start the operation of the load start circuits 31-1 to 29-n. This is a control circuit that performs cut-off control. Note that the control circuit 33 includes, for example, a CPU.
37, ROM39, RAM41, input port 43,
45 and an output port 47. Next, the operation of this embodiment will be explained using FIG. 3. Incidentally, FIG. 3 shows a processing flowchart of the CPU 37. The ignition key (not shown) is turned on,
After the initial settings (not shown) are made by setting the registers, counters, latches, etc. in the CPU 37 to a computable state and resetting each constant, when the activation signal is input, interrupt processing (INT) is performed. enter. In the interrupt processing, first, the status of the start of input of the actuation signal is determined. Based on this grasped situation, when it is determined that the load operation switches corresponding to the plurality of allowable loads in the allowable load group 29 are activated almost simultaneously in order to start operating the plurality of allowable loads, the load operating switches corresponding to the plurality of allowable loads are activated almost simultaneously. Based on the order of start of operation of the allowable loads, that is, the order of start of operation of the allowable loads, that is, the order of start of operation at sequentially shifted timings, starting from the allowable load with the shortest delay time based on Table 1 above.
R L1 , R L2 -, R LN are determined (step 100). Next, the process proceeds to step 110, where it is confirmed that all allowable loads corresponding to the actuated load actuating switches are not yet in the actuated state, and the process proceeds to step 12.
Go to 0. In step 120, the essential loads 27-1 to 27-n are changed so that the operations of the essential loads 27-1 to 27-n are not affected by the start of the operation of the allowable loads.
1 to 27-n are turned off and the load start circuit corresponding to the permissible load is made conductive in order to start the permissible load according to the previously determined priority order, and the process proceeds to step 130. In step 130, a predetermined timer is started, and after the set time Ts in the timer has elapsed, the process returns to step 110 in order to start operating the allowable load with the next highest priority. That is, in step 130, when the rush current of the allowable load started in step 120 is flowing, another allowable load having the next highest priority is prevented from being started. Then, through the processing loop of steps 110 to 130, the permissible loads with the highest priority are sequentially started to operate, and when all the permissible loads with the determined priorities have started driving, the determination in step 110 is not satisfied (ON). state, and the interrupt processing ends. Next, the above-described processing will be specifically explained using the operation time charts A to F in FIG. 4. In addition, in the same figure, A is the essential load 27-1 to 27
-n operation command signal, B is the relevant essential load 27-1
~27-n operating current signals, C and D are conductive signals and operating current signals, respectively, of the headlamp shown with permissible load 29-1, E and F are permissible load 2
9-n are the conduction signal and operating current signal of the intermittent wiper, respectively. That is, when the essential loads 27-1 to 27-n start operating (see A and B in FIG. 4), for example, the load operating switch 35-1 of the headlamp 29-1 and the load operating switch 35- of the intermittent wiper 29-n are activated.
When n are activated at approximately the same time at times t 1 and t 2, respectively, both allowable loads do not start operating immediately (see C and E in Figure 4), but the allowable delay time of both allowable loads first increases. (See Table 1)
Decide on priorities based on Specifically, while the allowable delay time for the headlamp 29-1 is several tens of milliseconds, the allowable delay time for the intermittent wiper 29-n is several tens of milliseconds.
Since it is 100ms, the priority is headlamp 2.
9-1 becomes higher. And essential load 27-1~
27-n, a conduction signal is sent to the load switching circuit 31-1 at time t3 to start driving the headlamp 29-1, which has a higher priority.
Start outputting from. As a result, head lamp 2
At 9-1, power supply from the power supply unit 25 is started, and the operating current starts flowing from time t3 (Fig. 4D).
reference). When the headlamp 29-1 starts operating, the headlamp 29-1 is turned on, avoiding the time when the rush current is flowing.
After the set time Ts (time t 4 ) in which the -1 operating current is stabilized, the intermittent wiper 29-n attempts to start operating. However, at this time, the required load 27
-1 to 27-n, the load switching circuit 3 is in order to start operating the intermittent wiper 29-n.
No conductive signal is output to 1-n (see Fig. 4E). Therefore, after waiting for the operation current to stop flowing through the essential loads 27-1 to 27-n (time t5 ), a conduction signal is output to the load start circuit 31-n, and the power supply unit 25 outputs a conduction signal to the intermittent wiper 29. -Start power supply to n. As a result, an operating current begins to flow through the intermittent wiper 29-n from time t5 (see FIG. 4F). Therefore, according to this embodiment, the order of priority is stored in advance for starting the operation for the allowable loads, and when the actuation signals from the load operation switches conflict, the operation is started within the conflicting allowable loads. The order is determined, and the operations are started in the determined order so as not to affect the operation of the essential loads. Therefore, a significant voltage drop does not occur in the power supply path from the power supply section 25 to the essential load group 27 and the permissible load group 29 at the start of the operation, thereby preventing the operation of other loads from being affected. While preventing this, it is possible to ensure appropriate start of load operation. Also, battery deterioration is reduced. FIG. 5 shows a second embodiment of the present invention, which is characterized by monitoring the power supply capacity from the power supply section 55 to the essential load group 57 and the permissible load group 59, and When the permissible loads 59-1 to 59-n conflict with each other in starting operations in a state of insufficient load, the priority order for starting the operations is determined and the operations are started in accordance with the order of priority. In Fig. 5, 51 is an in-vehicle battery, 53
is an alternator, and together they constitute a power supply section 55 for a vehicle-mounted load, which will be described later. As shown in Table 1 above, the in-vehicle loads to which power is supplied by the power supply section 55 include a group of power loads (hereinafter referred to as "essential load group") 57 whose operation timing directly affects the vehicle running function. and,
A group of electric power loads whose activation timing does not directly affect the vehicle running function (hereinafter referred to as “allowable load group”) 59
It is pre-classified into. Each of the loads 59-1 to 59-n of the permissible load group 59 is connected to a power supply path from the power supply section 55 to each load.
Load switching circuits 61-1 to 61-n to be cut off are connected in series. 63 is a rotation speed signal from an engine rotation detector 79 that detects the engine rotation speed, a voltage signal from a voltage detector 81 that detects the terminal voltage of the battery 51, and essential loads 57-1 to 57.
- the operation command signal from n and the allowable load 59;
-1 to 59-n, the load switching circuit 6 performs the process described later based on the input of the operation signal of the load operation switches 65-1 to 65-n.
This is a control circuit that controls conduction/cutoff of 1-1 to 61-n. Note that the control circuit 33 includes, for example, the CPU 67,
ROM69, RAM71, input ports 73, 75,
It consists of a microcomputer with a main port 77. Next, the operation of this embodiment will be explained using the processing flowchart of the CPU 77 shown in FIGS. 6 and 7. Note that FIG. 6 shows a process for determining the power supply capability state of the power supply unit 55. FIG. 7 shows processing for controlling the start of operation of the essential loads 57-1 to 57-n and the allowable loads 59-1 to 59-n. Regarding the power supply capability status determination process shown in Figure 6, the ignition key (not shown) is turned on.
This is carried out by interrupt processing at predetermined time intervals after the processing is set (not shown) by making the registers, counters, latches, etc. in the CPU 77 operable and resetting each constant. That is, in this process, first, the terminal voltage of the battery 51 detected by the voltage detector 81 is read, and it is determined whether this voltage is equal to or higher than the set voltage (steps 200 and 210). In this judgment, if the terminal voltage is higher than the set voltage, step 2
The process proceeds to step 20, but if the opposite is true, the process proceeds to step 250, where a flag F indicating insufficient power supply capacity is set and the interrupt process is terminated. Proceeding to step 220, the engine speed detected by the engine speed detector 79 is read, and
It is determined whether the current engine rotation speed is equal to or higher than the set rotation speed (steps 220 and 230). As a result,
If the current engine rotation speed is equal to or higher than the set rotation speed, the process proceeds to step 240, where the flag F is reset and the interrupt process ends; however, in the opposite case, the process proceeds to step 250, where the flag F is set. Ends interrupt processing. Therefore, the above-mentioned processing (steps 200 to 200)
250), the terminal voltage of the battery 51 is set to such an extent that even when the power generation capacity of the alternator 53 is reduced, power can be stably supplied to the on-vehicle load at the start of operation without affecting the operation of other on-vehicle loads. Current alternator 5 assuming high
After confirming that the power supply capacity in step 3 is sufficient, the flag F is reset. In this way, when the operation signal is input while the power supply unit 55 is performing the process of determining the power supply capability state at predetermined time intervals, the interrupt process for operation start control shown in FIG. INT). When entering this interrupt processing, first, the flag F
(step 300). As a result of this determination, if the flag F is in the reset state, the power supply capacity to the on-vehicle load is sufficient, so step 35 is performed.
0, and outputs a conduction signal to the load switching circuit whose operation is to be started in order to start the operation of the allowable load according to the input of the operation signal. As a result, the allowable load starts operating without any time delay after the load operating switch is operated. On the other hand, if the flag F is in the set state, the power supply capacity is insufficient, so the process proceeds to step 310 and the start of operation of the allowable load is controlled. Proceeding to step 310, first, the situation at which input of the actuation signal starts is ascertained. From this grasped situation, when it is determined that the load operation switches corresponding to the plurality of allowable loads in the allowable load group 59 are activated almost simultaneously in order to start operating the plurality of allowable loads, the load operating switches corresponding to the plurality of allowable loads are activated almost at the same time. Based on the order of start of operation of a certain allowable load, that is, the order of start of operation of a certain allowable load, that is, the priority order R L1 , in order to start operation by shifting the timing sequentially from the allowable load with the shortest delay time based on the above-mentioned Table 1.
R L2 , ~, R LN ) are determined. Next, the process proceeds to step 320, where it is confirmed that all allowable loads corresponding to the actuated load actuating switches are not yet in the actuated state, and the process proceeds to step 33.
Go to 0. In step 330, the essential loads 57-1 to 57-n are changed so that the operations of the essential loads 57-1 to 57-n are not affected by the start of the operation of the allowable loads.
1 to 57-n are turned off and the load switching circuit corresponding to the permissible load is brought into conduction in order to start operating the permissible load according to the previously determined priority order, and the process proceeds to step 340. In step 340, a predetermined timer is started, and after the set time Ts in the timer has elapsed, the process returns to step 320 in order to start operating the allowable load with the next highest priority. That is, in step 340, when the rush current of the allowable load started in step 330 is flowing, another allowable load having the next highest priority is prevented from being started. Then, through the processing loop of steps 320 to 340, the permissible loads with the highest priority are sequentially started to operate, and when all the permissible loads with the determined priorities have started driving, the determination in step 320 is not satisfied (NO). state, and the interrupt processing ends. Therefore, according to this embodiment, the predetermined priority is applied only when the power supply capacity to the essential load group and the allowable load group in the power supply unit is insufficient and the permissible loads are in conflict with each other. According to the order, the allowable loads are staggered and the operations are started sequentially. Therefore, when the power supply capacity of the power supply section is sufficient, the allowable load starts operating immediately by operating the switch, so it is possible to keep the time delay at the start of operation to the necessary minimum, and also to This can prevent the operation of the load from being affected. [Effects of the Invention] As described above, according to the present invention, when there is a conflict in the drive start of the on-vehicle loads, the drive start order is determined based on predetermined drive priority information of the on-vehicle loads, Since the on-vehicle loads are started to be driven one after another in accordance with this determined order, it is possible to suppress the power supply voltage drop due to the large inrush current that occurs when multiple on-vehicle loads, especially on-vehicle loads that require large amounts of power, are started to be driven at the same time. It does not affect the operation of other on-vehicle loads. Further, according to the present invention, the drive start control of the on-vehicle load according to the drive start order is performed when the power supplied by the on-vehicle power source is decreasing, so that unnecessary start of drive of the on-vehicle load is avoided. While eliminating delays, it is possible to prevent a significant power supply voltage drop due to rush current that occurs when driving an on-vehicle load when the on-vehicle power supply capacity is insufficient. Although it is expected that various electronic control systems will be widely adopted in vehicles in the future, it is thought that the power supply capacity of vehicles will not increase much due to weight restrictions and fuel efficiency constraints. Considering this, it seems that the temporal dispersion of power consumption as intended by the present invention will be very effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図のaおよびbはクレーム対応図、第2図
はこの発明の第1の実施例の構成図、第3図は当
該第1の実施例における処理フローチヤート、第
4図は当該第1の実施例における動作タイムチヤ
ート、第5図はこの発明の第2の実施例の構成
図、第6図および第7図は当該第2の実施例にお
ける処理フローチヤートである。 1…負荷電源手段、3…給電制御手段、5…車
載負荷、7…負荷駆動開始要否検出手段、9…電
流制御手段、11…車載電源手段、13…給電制
御手段、15…車載負荷、17…負荷駆動開始要
否検出手段、19…給電能力検出手段、20…電
流制御手段。
Fig. 1 a and b are claim correspondence diagrams, Fig. 2 is a configuration diagram of the first embodiment of the present invention, Fig. 3 is a processing flowchart in the first embodiment, and Fig. 4 is a diagram showing the first embodiment of the present invention. FIG. 5 is a block diagram of a second embodiment of the present invention, and FIGS. 6 and 7 are processing flow charts of the second embodiment. DESCRIPTION OF SYMBOLS 1...Load power supply means, 3...Power supply control means, 5...Vehicle load, 7...Load drive start necessity detection means, 9...Current control means, 11...Vehicle power supply means, 13...Power supply control means, 15...Vehicle load, 17... Load drive start necessity detection means, 19... Power supply capability detection means, 20... Current control means.

Claims (1)

【特許請求の範囲】 1 複数の車載負荷に給電を行う車載電源手段
と、 該車載電源手段から各車載負荷への給電路を導
通・遮断する給電制御手段と、 各車載負荷の駆動開始の要否を検出して駆動開
始を要する車載負荷についての駆動指令信号を出
力する負荷駆動開始要否検出手段と、 複数の駆動指令信号がほぼ同時に入力されたこ
とを検出したとき、同時入力信号を出力する同時
入力検出手段と、 各車載負荷の駆動を開始する優先順位を優先駆
動順位情報として記憶されている優先駆動順位記
憶手段と、 前記同時入力信号が入力されないときには、前
記給電制御手段を制御して駆動指令信号が入力さ
れた車載負荷についての給電路を導通させ、前記
同時入力信号が入力されたときには、前記給電制
御手段を制御して駆動指令信号が入力された車載
負荷についての給電路を、前記優先駆動順位情報
に基づき所定の設定時間ごとに順次導通させる導
通制御手段と、 を有することを特徴とする車両用負荷駆動制御装
置。 2 複数の車載負荷に給電を行なう車載電源手段
と、当該車載電源手段から各車載負荷への給電路
を導通・遮断する給電制御手段と、各車載負荷の
駆動開始の要否を検出して、駆動開始を要する車
載負荷についての駆動指令信号を出力する負荷駆
動開始要否検出手段と、当該車載電源手段の給電
能力を検出する給電能力検出手段と、検出した給
電能力が所定レベルに達していないときには、予
め定められた車載負荷の優先駆動順位情報及び駆
動指令信号に基づき前記給電制御手段を制御して
駆動指令のあつた車載負荷についての給電路を順
次導通させる導通制御手段を有することを特徴と
する車両負荷駆動制御装置。
[Scope of Claims] 1. An on-vehicle power supply means for supplying power to a plurality of on-vehicle loads, a power supply control means for conducting/cutting off a power supply path from the on-vehicle power supply means to each on-vehicle load, and a key for starting driving of each on-vehicle load. load drive start necessity detection means for detecting whether or not driving is required and outputting a drive command signal for an on-vehicle load that requires drive start; and outputting a simultaneous input signal when detecting that multiple drive command signals are input almost simultaneously. a simultaneous input detection means for detecting the driving of each on-vehicle load; a priority driving order storage means for storing a priority order for starting driving of each on-vehicle load as priority driving order information; and when the simultaneous input signal is not input, the power feeding control means is controlled. conducts the power supply path for the on-vehicle load to which the drive command signal has been inputted, and when the simultaneous input signal is inputted, controls the power supply control means to conduct the power supply path for the onboard load to which the drive command signal has been inputted. A load drive control device for a vehicle, comprising: a conduction control means that sequentially conducts conduction at predetermined set time intervals based on the priority drive order information. 2. An on-vehicle power supply means that supplies power to a plurality of on-vehicle loads, a power supply control means that conducts or cuts off a power supply path from the on-vehicle power supply means to each on-vehicle load, and detects whether or not it is necessary to start driving each on-vehicle load; load drive start necessity detection means for outputting a drive command signal for an on-vehicle load that requires drive start; a power supply capability detection means for detecting power supply capability of the vehicle-mounted power supply means; and a power supply capability detection means that detects that the detected power supply capability has not reached a predetermined level. In some cases, the vehicle may include a conduction control means that controls the power supply control means based on predetermined drive priority information of the on-vehicle loads and a drive command signal to sequentially conduct the power supply paths for the on-vehicle loads for which a drive command has been received. Vehicle load drive control device.
JP59118116A 1984-06-11 1984-06-11 Driving controller for load on car Granted JPS60261750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59118116A JPS60261750A (en) 1984-06-11 1984-06-11 Driving controller for load on car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59118116A JPS60261750A (en) 1984-06-11 1984-06-11 Driving controller for load on car

Publications (2)

Publication Number Publication Date
JPS60261750A JPS60261750A (en) 1985-12-25
JPH0373502B2 true JPH0373502B2 (en) 1991-11-22

Family

ID=14728422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59118116A Granted JPS60261750A (en) 1984-06-11 1984-06-11 Driving controller for load on car

Country Status (1)

Country Link
JP (1) JPS60261750A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61188250A (en) * 1985-02-14 1986-08-21 Mazda Motor Corp Vehicle power supply device
JPH0662074B2 (en) * 1985-02-14 1994-08-17 マツダ株式会社 Vehicle power supply device
JP4874617B2 (en) * 2005-10-04 2012-02-15 トヨタ自動車株式会社 Vehicle control device
JP2010120545A (en) * 2008-11-20 2010-06-03 Autonetworks Technologies Ltd Control device for automobile
JP2011105280A (en) * 2009-11-20 2011-06-02 Kanto Auto Works Ltd Power control apparatus for automobile
JP2019041508A (en) * 2017-08-25 2019-03-14 株式会社フジクラ Power supply system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5870307A (en) * 1981-10-01 1983-04-26 バイエリツシエ・モ−ト−レン・ウエルケ・アクチエンゲゼルシヤフト Electric apparatus for releasing switching function of automobile

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5870307A (en) * 1981-10-01 1983-04-26 バイエリツシエ・モ−ト−レン・ウエルケ・アクチエンゲゼルシヤフト Electric apparatus for releasing switching function of automobile

Also Published As

Publication number Publication date
JPS60261750A (en) 1985-12-25

Similar Documents

Publication Publication Date Title
US7689335B2 (en) Highly reliable vehicle system start controller
US20190013664A1 (en) On-vehicle power source switch apparatus and control apparatus
WO2014068883A1 (en) Vehicle power supply device
EP3435515A1 (en) Power supply system and method for controlling same
JP4940681B2 (en) Electronic control device
JPH10201076A (en) Overcurrent interrupting circuit
US10340106B2 (en) Load driver
CN113169582A (en) Vehicle-mounted standby power supply control device and vehicle-mounted standby power supply device
JP4072684B2 (en) Vehicle battery charge / discharge management device
CN110352545B (en) Power supply system
JPH0373502B2 (en)
JP2004090787A (en) Communication error detecting method in bus system communication network
JP2010200552A (en) Battery controller for electric automobile and battery system
US20120078384A1 (en) Switch supervision device, control system and control method
WO2008136738A1 (en) Controlled shut down
US11034314B2 (en) Vehicular power supply system with semiconductor switching device
WO2020166210A1 (en) Backup power supply system for shift-by-wire, and control program
US20220219543A1 (en) Electronic control apparatus
JP6597456B2 (en) Electronic control unit
JP2008063967A (en) Glow plug control device
JP3726430B2 (en) Vehicle power supply
JP2002341978A (en) Electronic controller
JP2020204410A (en) Backup power source device and backup system
US11155222B2 (en) Power distribution device
JP3923274B2 (en) Collision information storage device