JPH0372941B2 - - Google Patents

Info

Publication number
JPH0372941B2
JPH0372941B2 JP58183950A JP18395083A JPH0372941B2 JP H0372941 B2 JPH0372941 B2 JP H0372941B2 JP 58183950 A JP58183950 A JP 58183950A JP 18395083 A JP18395083 A JP 18395083A JP H0372941 B2 JPH0372941 B2 JP H0372941B2
Authority
JP
Japan
Prior art keywords
float
water level
signal
weir
waterway
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58183950A
Other languages
Japanese (ja)
Other versions
JPS6073419A (en
Inventor
Misao Nitsuta
Yoji Yoshida
Mitsuo Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAKAI TETSUKOSHO KK
Original Assignee
SAKAI TETSUKOSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAKAI TETSUKOSHO KK filed Critical SAKAI TETSUKOSHO KK
Priority to JP58183950A priority Critical patent/JPS6073419A/en
Publication of JPS6073419A publication Critical patent/JPS6073419A/en
Publication of JPH0372941B2 publication Critical patent/JPH0372941B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/002Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow wherein the flow is in an open channel

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Measuring Volume Flow (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Description

【発明の詳細な説明】 本発明は水理実験に於いて、自動的にせきの水
位とマノメータの水位を測定し、水路の各部の流
量及び圧力を求め、水理実験の結果を計算し、表
示、記録する水理実験用自動計測システムに関す
るものである。
[Detailed Description of the Invention] In a hydraulic experiment, the present invention automatically measures the water level of a weir and the water level of a manometer, determines the flow rate and pressure of each part of the waterway, and calculates the results of the hydraulic experiment. This relates to an automatic measurement system for displaying and recording hydraulic experiments.

従来水門鉄管の水理模型実験においては水路に
設けたせきの水位をポイントゲージにより目測し
て測定し、流量を求め、又、水路の各部の圧力を
マノメータによりスケール目盛を目測して測定す
る方法が行なわれてきた。この水理実験の計測の
自動化の方法として、例えば流量測定には歪ゲー
ジを利用した圧力変換器等が用いられ、電気的に
表示、記録する方法がとられてきた。しかしこれ
らの測定器は高価であるばかりでなく、その使用
範囲が狭く、測定の精度も低いという欠点があ
る。
In conventional water gate iron pipe hydraulic model experiments, the water level of a weir installed in a waterway is visually measured with a point gauge to determine the flow rate, and the pressure at each part of the waterway is measured by measuring the scale graduations with a manometer. has been carried out. As a method for automating measurements in hydraulic experiments, for example, a pressure transducer using a strain gauge has been used to measure flow rate, and methods have been adopted to electrically display and record the flow rate. However, these measuring instruments are not only expensive, but also have the drawbacks of a narrow range of use and low measurement accuracy.

本発明は、従来の水理実験に於ける自動計測法
の上述の欠点に鑑み、高価な測定器を用いること
なく、精度の高い広範囲の測定を自動的に行い、
更にその測定結果を自動的に演算処理して、水理
実験結果を自動的に算出することができる水理実
験用自動計測システムを提供することを目的とす
る。
In view of the above-mentioned drawbacks of automatic measurement methods in conventional hydraulic experiments, the present invention automatically measures a wide range of areas with high precision without using expensive measuring instruments.
Furthermore, it is an object of the present invention to provide an automatic measurement system for hydraulic experiments that can automatically calculate the results of hydraulic experiments by automatically processing the measurement results.

即ち本発明は、従来の測定精度の優れた、ポイ
ントゲージによるせき水位測定及びマノメータに
よる圧力測定をそれぞれマイクロコンピユータを
用いて自動化し、更にその測定結果をコンピユー
タにより演算処理し、必要な水理実験結果を自動
的に記録するようにしたものである。
That is, the present invention automates conventional weir water level measurement using a point gauge and pressure measurement using a manometer, both of which have excellent measurement accuracy, using a microcomputer, and further uses the computer to process the measurement results and perform necessary hydraulic experiments. The results are automatically recorded.

次に本発明の内容を図面により詳しく説明す
る。第1図は本発明の自動計測システムに用いら
れるせき水位検出装置の概略図である。これは従
来流量を測定するため、水路に設けたせきの水位
を読取る測定器として用いられているポイントゲ
ージをマイクロコンピユータの制御下で自動的に
作動させ、常に水面の位置を追跡し、せき水深を
測定するものである。
Next, the content of the present invention will be explained in detail with reference to the drawings. FIG. 1 is a schematic diagram of a weir water level detection device used in the automatic measurement system of the present invention. In order to measure flow rate, a point gauge, which is conventionally used as a measuring device to read the water level in a weir installed in a waterway, is automatically operated under the control of a microcomputer, constantly tracking the position of the water surface, and measuring the weir water depth. It is used to measure

第1図に於て、1はせき上流の水面、2はポイ
ントゲージであり、ポイントゲージは下端に触針
4及び没水検針5が取付けられた検針支持棒3と
検針支持棒を支持し、上下に駆動するパワーシリ
ンダー6と、検針支持棒3に固着され、マグネツ
トスケール7に沿つて摺動する磁気ヘツド8より
なる。触針4と没水検針5とは、その先端位置が
上下に一定距離だけ離れるように、且つ互に電気
的に絶縁して検針支持棒3に固定される。没水検
針5は常に水中に没し、触針4が常に水面を追跡
するように、マイクロコンピユータ9により制御
されて、パルスモータ10が回転しパワーシリン
ダー6が駆動される。即ち、触針4と、没水検針
5からの接水信号をインタフエース11を介しマ
イクロコンピユータ9に入力し、マイクロコンピ
ユータ9の出力により、パルスモータ駆動回路1
2より、正転又は逆転の駆動パルスを出力し、パ
ルスモータ10を正転又は逆転させ、パワーシリ
ンダー6を上下に駆動する。
In FIG. 1, 1 is the water surface upstream of the weir, 2 is a point gauge, and the point gauge supports a meter-reading support rod 3 and a meter-reading support rod with a stylus 4 and a submerged meter 5 attached to the lower end, It consists of a power cylinder 6 that drives up and down, and a magnetic head 8 that is fixed to the meter reading support rod 3 and slides along the magnetic scale 7. The stylus 4 and the submerged probe 5 are fixed to the probe support rod 3 so that their tip positions are vertically separated by a certain distance and are electrically insulated from each other. The submerged probe 5 is always submerged in water, and is controlled by a microcomputer 9 to rotate a pulse motor 10 and drive a power cylinder 6 so that the stylus 4 always tracks the water surface. That is, the water contact signals from the stylus 4 and submerged meter 5 are input to the microcomputer 9 via the interface 11, and the output of the microcomputer 9 is used to control the pulse motor drive circuit 1.
2 outputs a drive pulse for forward or reverse rotation, causing the pulse motor 10 to rotate forward or reverse, and driving the power cylinder 6 up and down.

このせき水位検出の制御フローを第2図に示
す。せき水位検出装置は手動、自動を切換えるこ
とができ、手動スイツチを入れると手動回路が動
作し、デイスプレイに「手動」を表示し、水面と
無関係に触針を上下させることができる。自動ス
イツチを入れると自動計測回路が作動し、触針4
の水面検出信号により、触針が空中にある場合に
は、触針を降下させるための下降パルス信号が、
触針が水中にある場合には、上昇させるための上
昇パルス信号がマイクロコンピユータ9より出力
され、パルスモータ10を駆動させることによ
り、パワーシリンダー6を上下させ、触針が常に
水面の上下に一定微小範囲を振動するようにして
水面を追跡させる。
The control flow for this weir water level detection is shown in FIG. The weir water level detection device can be switched between manual and automatic mode, and when the manual switch is turned on, the manual circuit operates, ``manual'' is displayed on the display, and the stylus can be moved up and down regardless of the water level. When the automatic switch is turned on, the automatic measurement circuit operates and the stylus 4
If the stylus is in the air based on the water surface detection signal, a descending pulse signal to lower the stylus is sent.
When the stylus is underwater, the microcomputer 9 outputs a rising pulse signal to raise the stylus, which drives the pulse motor 10 to move the power cylinder 6 up and down, keeping the stylus always above and below the water surface. The water surface is tracked by vibrating in a minute range.

検針支持棒3に固着され、これと一体に上下し
てマグネツトスケール7に沿つて摺動する磁気ヘ
ツド8は触針4の上昇下降に応じて、マグネツト
スケール7の目盛を読み取り、その位置を水深と
して表示器13に表示し、更にその出力を後述の
中央演算処理装置に入力する。
A magnetic head 8, which is fixed to the needle-reading support rod 3 and slides up and down along the magnetic scale 7, reads the scale of the magnetic scale 7 according to the rise and fall of the stylus 4, and determines its position. is displayed on the display 13 as the water depth, and the output is further input to a central processing unit, which will be described later.

このせき水位検出装置の測定範囲はパワーシリ
ンダーのストロークによつて決まり、その最小表
示単位はマグネツトスケールの精度によりきま
る。例えば400mmの範囲を0.1mmの精度により測定
することができる。
The measurement range of this weir water level detection device is determined by the stroke of the power cylinder, and its minimum display unit is determined by the accuracy of the magnetic scale. For example, a range of 400 mm can be measured with an accuracy of 0.1 mm.

第3図は本発明で用いられるマノメータ水位検
出装置の概略図である。流体圧力を測定する方法
として広く用いられているマノメータの水柱高さ
を目視測定するかわりに、マイクロコンピユータ
制御下で光センサにより水面を監視させ、水柱の
変動に追随して自動的に水面を追跡、水柱高さを
測定、表示させるようにしたものである。
FIG. 3 is a schematic diagram of a manometer water level detection device used in the present invention. Instead of visually measuring the height of the water column with a manometer, which is widely used as a method of measuring fluid pressure, the water surface is monitored by an optical sensor under microcomputer control, and the water surface is automatically tracked by following fluctuations in the water column. , the height of the water column is measured and displayed.

第3図に於て、14は透明アクリル樹脂パイプ
よりなるマノメータであつて、電磁弁15によ
り、水路に設けられた複数個の圧力測定孔に切換
えて連通させるようになつている。マノメータ1
4の水面には浮き16を浮遊させ、光源と受光部
よりなる上下2組の光センサ17,18を備えた
浮位置検出器19がマノメータ14に沿つて上下
に摺動可能に配設され、又この浮位置検出器19
はマグネツトスケール20に沿つて上下に摺動す
る磁気ヘツド21と一体に結合され、これと一体
に上下する。22は駆動用ローラ23に結合した
パルスモータであつて、両端を磁気ヘツド21に
結合したワイヤ24が駆動用ローラ23、ガイド
ローラ25,25′,25″を経て環状に巻回さ
れ、パルスモータ22の回転により、磁気ヘツド
21及び浮位置検出器19が上下に駆動されるよ
うになつている。26及び27は、磁気ヘツドの
上昇、下降を制御する上限リミツトスイツチ及び
下限リミツトスイツチである。
In FIG. 3, reference numeral 14 denotes a manometer made of a transparent acrylic resin pipe, which is connected to a plurality of pressure measurement holes provided in the water channel by switching the manometer 14 by means of an electromagnetic valve 15. Manometer 1
A float 16 is suspended on the water surface of 4, and a floating position detector 19 equipped with two sets of upper and lower optical sensors 17 and 18 consisting of a light source and a light receiving part is arranged so as to be slidable up and down along the manometer 14. Also, this floating position detector 19
is integrally coupled with a magnetic head 21 that slides up and down along a magnetic scale 20, and moves up and down together with it. 22 is a pulse motor connected to a driving roller 23. A wire 24 whose both ends are connected to the magnetic head 21 is wound in an annular shape via the driving roller 23 and guide rollers 25, 25', 25''. The magnetic head 21 and the floating position detector 19 are driven up and down by the rotation of 22. 26 and 27 are upper limit switches and lower limit switches that control the raising and lowering of the magnetic head.

28は磁気ヘツド21により読み取られたマグ
ネツトスケール20の読みを表示する表示器であ
つて、更にその出力を後述の中央演算処理装置に
入力する。
A display 28 displays the reading of the magnetic scale 20 read by the magnetic head 21, and further inputs the output to a central processing unit to be described later.

浮き16が光センサ17,18の光を遮断した
という信号はインタフエース29を介してマイク
ロコンピユータ30に伝えられ、マイクロコンピ
ユータ30の出力により、パルスモータ駆動回路
31より上昇又は下降パルスをパルスモータ22
に送り、光センサ17,18を浮き16に追随さ
せて上昇下降させ浮きを追跡させる。
A signal that the float 16 has blocked the light from the optical sensors 17 and 18 is transmitted to the microcomputer 30 via the interface 29, and based on the output of the microcomputer 30, the pulse motor drive circuit 31 sends a rising or falling pulse to the pulse motor 22.
The optical sensors 17 and 18 are moved up and down to follow the float 16 to track the float.

光センサ17,18と浮き16の関係を第4図
に示す。浮き16が上下2組のセンサ光を遮断し
た状態(a)では停止状態にあるが、浮きが上昇し下
センサ18の光が透過すると(状態(b))この信号
をマイクロコンピユータが判断して上昇信号を発
する。(c)のように浮き16が下降し上センサ17
の光が透過すると下降信号を発する。更に(d)、(e)
に示すように浮き16が上下2組のセンサ17,
18からはずれ、上下センサの光が透過すると浮
きを見失なつたと判断し、浮きを探索する探索信
号を発する。このときセンサは上昇を始め、浮き
を探索する。浮きが発見できずに上限に達すると
上限リミツトの信号により、下降に移る。下降中
においても浮きが発見できないと下限に達し、下
限リミツトの信号により再度上昇、この動作を繰
り返しながら浮きを探索する。
The relationship between the optical sensors 17, 18 and the float 16 is shown in FIG. In the state (a) where the float 16 blocks the upper and lower sensor lights, it is in a stopped state, but when the float rises and the light from the lower sensor 18 passes through (state (b)), the microcomputer judges this signal. Give a rising signal. As shown in (c), the float 16 descends and the upper sensor 17
When light passes through it, it emits a falling signal. Furthermore (d), (e)
As shown in the figure, the float 16 connects two sets of upper and lower sensors 17,
18 and the light from the upper and lower sensors passes through it, it is determined that the float has been lost, and a search signal is issued to search for the float. At this time, the sensor begins to rise and searches for floats. If the float is not found and the upper limit is reached, the upper limit signal will cause the robot to descend. If no float is found during the descent, the lower limit is reached, and the lower limit signal causes the robot to rise again, repeating this operation while searching for the float.

第5図a〜dは、上記のマノメータ水位検出制
御を示すフローチヤートである。第5図aの「手
動運転」の部分の詳細を第5図cに、「自動運転」
の部分の詳細を第5図cに示す。第5図cの「浮
追跡」の部分の詳細を第5図dに示す。
5A to 5D are flowcharts showing the above manometer water level detection control. The details of the "manual operation" part in Figure 5 a are shown in Figure 5 c, and the "automatic operation" part is shown in Figure 5 c.
The details of the part are shown in FIG. 5c. Details of the "floating tracking" part in FIG. 5c are shown in FIG. 5d.

第5図a及びbに示す如く、手動運転スイツチ
を入れると、手動運転回路が作動し上下スイツチ
を切換えることにより、センサを自由に上下させ
ることができる。自動運転スイツチを入れると自
動運転回路が作動し、浮きの探索を始める。浮き
を発見すると浮き追跡回路に移り、常に浮きの動
きを追跡し続ける。浮きを見失うと浮き探索回路
に戻り、浮きの探索を始める。
As shown in FIGS. 5a and 5b, when the manual operation switch is turned on, the manual operation circuit is activated and the sensor can be moved up and down freely by switching the up and down switch. When the automatic operation switch is turned on, the automatic operation circuit activates and begins searching for the float. When it discovers a float, it switches to the float tracking circuit and constantly tracks the float's movement. When it loses sight of the float, it returns to the float search circuit and begins searching for the float.

光センサ17,18を備えた浮位置検出器19
が浮き16を追跡すると、これと一体に磁気ヘツ
ド21がマグネツトスケール20に沿つて摺動し
てセンサの位置はマグネツトスケールで測定さ
れ、表示器28に表示される。
Floating position detector 19 with optical sensors 17, 18
When the float 16 is tracked, the magnetic head 21 slides along the magnetic scale 20, and the position of the sensor is measured by the magnetic scale and displayed on the display 28.

第6図は本発明の水理実験用自動計測システム
全体のブロツクダイヤグラムである。水理実験用
の水路に複数の電動バルブ32、複数の流量測定
用のせき及びそのせき水位検出装置33を設け、
更に必要な水路の各部に圧力測定孔を設け、これ
を測定個所切換用の電磁弁15を備えたマノメー
タ水位検出装置34に繋ぐ、各電動バルブ32の
開度信号、せき水位検出装置33の測定値及びマ
ノメータ水位検出装置34の測定値はそれぞれイ
ンタフエース35を介し、中央演算処理装置
(CPU)36及び、操作表示盤37に入力され、
操作表示盤に表示される。中央演算処理装置36
は、マノメータ切換用電磁弁のON−OFF制御信
号を出力し順次圧力測定個所を切換え、又予め設
定された実験条件と、上記各検出端からの入力信
号に応じて、電動バルブ32開閉の制御信号を出
力し、インタフエース35を介して操作表示盤3
7に伝え、これに応じて、操作表示盤37からは
電動バルブ32に開閉用電流を加え、開閉を調節
する。
FIG. 6 is a block diagram of the entire automatic measurement system for hydraulic experiments according to the present invention. A plurality of electric valves 32, a plurality of weirs for measuring flow rate, and a weir water level detection device 33 are provided in a waterway for hydraulic experiments,
Furthermore, pressure measurement holes are provided in each necessary part of the waterway, and these are connected to a manometer water level detection device 34 equipped with a solenoid valve 15 for switching measurement points, and the opening signal of each electric valve 32 and measurement of the weir water level detection device 33 The value and the measured value of the manometer water level detection device 34 are respectively input to a central processing unit (CPU) 36 and an operation display panel 37 via an interface 35.
Displayed on the operation display panel. Central processing unit 36
outputs an ON-OFF control signal for the manometer switching solenoid valve to sequentially switch the pressure measurement points, and also controls the opening and closing of the electric valve 32 according to preset experimental conditions and input signals from each of the detection terminals mentioned above. Outputs the signal and displays it on the operation display panel 3 via the interface 35.
7, and in response, the operation display panel 37 applies an opening/closing current to the electric valve 32 to adjust opening/closing.

電動バルブ32の開度、せき水位、マノメータ
水位等の測定値は中央演算処理装置36で演算処
理し、その結果を表示器にグラフイツク表示する
と共に、プリンター38に印字する。バルブ等の
手動操作は現場スイツチ39及び操作表示盤37
のスイツチにより可能である。せき水位及びマノ
メータ水位の測定値は現場表示器40及び操作室
の操作表示盤37の双方に表示される。
Measured values such as the opening degree of the electric valve 32, the weir water level, and the manometer water level are processed by the central processing unit 36, and the results are graphically displayed on the display and printed on the printer 38. For manual operation of valves, etc., use the field switch 39 and operation display panel 37.
This is possible with the switch. The measured values of the weir water level and the manometer water level are displayed on both the field display 40 and the operation display panel 37 in the operation room.

本発明の水理実験用自動計測システムの実施例
として、これを用いて、分岐管の水理実験を行つ
た場合の計測の概要図を第7図に示す。高水槽4
1から主管42を経て分岐管43に水を流し、2
本の枝管44,44′に分岐させ各枝管の下流に
それぞれ電動バルブ32,32及び三角せき4
5,45及びせき水位検出装置33,33を設
け、主管42及び枝管44,44′の各部に圧力
測定孔46を設け、マノメータ水位検出装置34
につなぐ。これらの電動バルブ32、せき水位検
出装置33及びマノメータ水位検出装置34を、
第6図のダイヤグラムの如く結び、第8図に示す
フローチヤートに従つて、中央演算処理装置によ
り制御して、自動的に測定を行つた。自動計測を
スタートさせると、電動バルブ32,32を制御
しながら、左右の枝管44,44′内を流れる流
量を測定する。左右の管内流量を比較し、設定条
件に達するまでバルブを微調整する。条件設定が
終ると電磁弁15を切換えながら各圧力測定孔4
6の圧力測定を順次行ない、その結果を用いて水
頭勾配線を引き、分岐損失を計算する。この手順
を繰返しながら測定を続ける。
As an embodiment of the automatic measurement system for hydraulic experiments of the present invention, FIG. 7 shows a schematic diagram of measurement when a hydraulic experiment of a branch pipe is conducted using this system. High water tank 4
1 through the main pipe 42 to the branch pipe 43,
It branches into main branch pipes 44, 44', and downstream of each branch pipe there are electric valves 32, 32 and a triangular weir 4, respectively.
5, 45 and weir water level detection devices 33, 33 are provided, pressure measurement holes 46 are provided in each part of the main pipe 42 and branch pipes 44, 44', and a manometer water level detection device 34 is provided.
Connect to. These electric valve 32, weir water level detection device 33, and manometer water level detection device 34,
The connections were made as shown in the diagram of FIG. 6, and measurements were automatically performed under control by the central processing unit according to the flowchart shown in FIG. When automatic measurement is started, the flow rate flowing through the left and right branch pipes 44, 44' is measured while controlling the electric valves 32, 32. Compare the flow rates in the left and right pipes and fine-tune the valves until the set conditions are reached. After setting the conditions, each pressure measurement hole 4 is opened while switching the solenoid valve 15.
6 pressure measurements are performed in sequence, and the results are used to draw a water head slope line and calculate the branch loss. Continue measuring by repeating this procedure.

分岐管43として、第9図に示す主管径120mm
φ、枝管径85mmφ、球径180mmφ、分枝角度90゜の
2又球形分岐管を用いて模型実験を行つた。その
結果の一例を第10図に示す。図のa〜cはレイ
ノルズ数(RE)の異なる条件下で測定した結果
より動水勾配線を描かせたものであり、そのとき
の流量(Q)、損失(LOSS)、損失係数
(ZETA)、レイノルズ数(RE)を計算して表示
している。この図の縦軸で示した線が分岐点を示
し、左側が主管、右側が枝管を示す。この3つの
結果をレイノルズ数で整理した結果を第10図d
に示す。縦軸は損失係数、横軸はレイノルズ数を
示す。
As the branch pipe 43, the main pipe diameter is 120 mm as shown in Fig. 9.
A model experiment was conducted using a bifurcated spherical branch pipe with a diameter of 85 mm, a sphere diameter of 180 mm, and a branch angle of 90°. An example of the results is shown in FIG. Figures a to c are hydraulic gradient lines drawn from the results of measurements under different conditions of Reynolds number (RE), and the flow rate (Q), loss (LOSS), and loss coefficient (ZETA) at that time. , the Reynolds number (RE) is calculated and displayed. The line shown on the vertical axis of this figure shows the branch point, with the left side showing the main pipe and the right side showing the branch pipe. Figure 10d shows the results of organizing these three results using Reynolds number.
Shown below. The vertical axis shows the loss coefficient, and the horizontal axis shows the Reynolds number.

次に本発明の水理実験用自動計測システムを用
いて、フード付呑口を有し、放流ゲートとして高
圧ラジアルゲードを装備した主放流管の模型実験
を行つた場合の例について説明する。第11図
は、測定に用いた主放流管模型の断面図である。
47は主放流管であり、48はラジアルゲートで
ある。模型の各部の寸法は図中に示す通りであ
り、曲線Aは図中のXA,YA,Dにより XA 2/D2+YA 2/(0.32D)2=1 で表わされ、曲線Bは同様に XB 2/D2+YB 2/(0.16D)2=1 で表わされる形状をなす。
Next, an example will be described in which the automatic measurement system for hydraulic experiments of the present invention is used to conduct a model experiment of a main discharge pipe having a hooded spout and equipped with a high-pressure radial gade as a discharge gate. FIG. 11 is a cross-sectional view of the main discharge pipe model used in the measurements.
47 is a main discharge pipe, and 48 is a radial gate. The dimensions of each part of the model are as shown in the figure, and the curve A is expressed by X A , Y A , and D in the figure as X A 2 /D 2 +Y A 2 /(0.32D) 2 =1, Similarly, curve B has a shape expressed by X B 2 /D 2 +Y B 2 /(0.16D) 2 =1.

第11図の主放流管についての自動計測結果を
第12図に示す。(a)は主放流管と放流状態での開
度を示すゲート位置図を描き、圧力測定点を点線
で図示し、その各点の管壁圧力の計測結果を、最
大値、平均値、最小値で示す。次にこれを無次元
化処理して軸距離を横軸に、圧力を縦軸にとり、
第12図bに示す。更に管に作用する圧力変動を
知るために、横軸に時間軸をとり、各測定孔につ
いて100回測定の結果をプロツトして第12図c
に示す。
FIG. 12 shows the automatic measurement results for the main discharge pipe shown in FIG. 11. (a) depicts the main discharge pipe and the gate position showing the opening degree in the discharge state, shows the pressure measurement points with dotted lines, and displays the measurement results of the pipe wall pressure at each point, including the maximum value, average value, and minimum value. Show by value. Next, we process this to make it dimensionless and take the axial distance on the horizontal axis and the pressure on the vertical axis,
It is shown in FIG. 12b. Furthermore, in order to understand the pressure fluctuations acting on the pipe, the time axis is plotted on the horizontal axis, and the results of 100 measurements for each measurement hole are plotted as shown in Figure 12c.
Shown below.

本発明の水理実験用自動車計測システムによれ
ば、水理実験に於いて、高価な測定器を用いるこ
となく、精度の高い広範囲の測定を行うことがで
き、予め設定した実験条件に従つて自動的にバル
ブの開度を調節して流量を調節し、水路の各部の
流量及び圧力を自動的に測定して、その測定結果
を演算処理し、結果を表示し、印字することがで
きる。特に、流れの状態が時間的に変動する場合
には、測定を自動的に繰返してその変動の状態を
正確に測定することができる。
According to the automotive measurement system for hydraulic experiments of the present invention, it is possible to perform highly accurate measurements over a wide range in hydraulic experiments without using expensive measuring instruments, and it is possible to perform measurements over a wide range with high accuracy according to preset experimental conditions. It is possible to automatically adjust the opening degree of the valve to adjust the flow rate, automatically measure the flow rate and pressure of each part of the waterway, process the measurement results, and display and print the results. In particular, when the flow condition changes over time, the measurement can be automatically repeated to accurately measure the changing condition.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の水理実験用自動計測システム
に用いられるせき水位検出装置の概略図、第2図
は同せき水位検出のフローチヤート、第3図は本
発明の自動計測システムに用いられるマノメータ
水位検出装置の概略図、第4図は同マノメータ水
位検出装置のセンサと浮きの関係を示す説明図、
第5図は同マノメータ水位検出装置の制御を示す
フローチヤート、第6図は本発明の水理実験用自
動計測システム全体のブロツクダイヤグラム、第
7図は本発明の自動計測システムによる分岐管の
水理実験の計測の概要図、第8図は同分岐管自動
計測のフローチヤート、第9図は球形分岐管模型
の断面図、第10図は本発明の自動計測システム
により測定した球形分岐管の自動計測結果を印字
したグラフである。第11図は主放流管模型の断
面図、第12図は主放流管の自動計測結果を印字
したグラフである。 符号の説明、1…水面、2…ポイントゲージ、
3…検針支持棒、4…触針、5…没水検針、6…
パワーシリンダー、7…マグネツトスケール、8
…磁気ヘツド、9…マイクロコンピユータ、10
…パルスモータ、11…インタフエース、12…
パルスモータ駆動回路、13…表示器、14…マ
ノメータ、15…電磁弁、16…浮き、17,1
8…光センサ、19…浮位置検出器、20…マグ
ネツトスケール、21…磁気ヘツド、22…パル
スモータ、23…駆動用ローラ、24…ワイヤ、
25,25′,25″…ガイドローラ、26…上限
リミツトスイツチ、27…下限リミツトスイツ
チ、28…表示器、29…インタフエース、30
…マイクロコンピユータ、31…パルスモータ駆
動回路、32…電動バルブ、33…せき水位検出
装置、34…マノメータ水位検出装置、35…イ
ンタフエース、36…中央演算処理装置、37…
操作表示盤、38…プリンター、39…現場スイ
ツチ、40…現場表示器、41…高水槽、42…
主管、43…分岐管、44,44′…枝管、45
…三角せき、46…圧力測定孔、47…主放流
管、48…ラジアルゲート。
Figure 1 is a schematic diagram of the weir water level detection device used in the automatic measurement system for hydraulic experiments of the present invention, Figure 2 is a flowchart of the weir water level detection, and Figure 3 is the system used in the automatic measurement system of the present invention. A schematic diagram of the manometer water level detection device, FIG. 4 is an explanatory diagram showing the relationship between the sensor and the float of the manometer water level detection device,
Fig. 5 is a flowchart showing the control of the manometer water level detection device, Fig. 6 is a block diagram of the entire automatic measurement system for hydraulic experiments of the present invention, and Fig. 7 is a flowchart showing the control of the manometer water level detection device. Figure 8 is a flowchart of the automatic measurement of the branch pipe, Figure 9 is a cross-sectional view of the spherical branch pipe model, and Figure 10 is a diagram of the spherical branch pipe measured by the automatic measurement system of the present invention. This is a graph printed with automatic measurement results. FIG. 11 is a cross-sectional view of the main discharge pipe model, and FIG. 12 is a graph printed with automatic measurement results of the main discharge pipe. Explanation of symbols, 1...Water surface, 2...Point gauge,
3...Meter reading support rod, 4...Stylus, 5...Submerged needle reading, 6...
Power cylinder, 7...Magnetic scale, 8
...Magnetic head, 9...Microcomputer, 10
...Pulse motor, 11...Interface, 12...
Pulse motor drive circuit, 13... Display, 14... Manometer, 15... Solenoid valve, 16... Float, 17, 1
8... Optical sensor, 19... Floating position detector, 20... Magnetic scale, 21... Magnetic head, 22... Pulse motor, 23... Drive roller, 24... Wire,
25, 25', 25''... Guide roller, 26... Upper limit switch, 27... Lower limit switch, 28... Display, 29... Interface, 30
...Microcomputer, 31...Pulse motor drive circuit, 32...Electric valve, 33...Weir water level detection device, 34...Manometer water level detection device, 35...Interface, 36...Central processing unit, 37...
Operation display panel, 38... Printer, 39... Field switch, 40... Field display, 41... High water tank, 42...
Main pipe, 43... Branch pipe, 44, 44'... Branch pipe, 45
...triangular weir, 46...pressure measurement hole, 47...main discharge pipe, 48...radial gate.

Claims (1)

【特許請求の範囲】 1 (a) 水理実験の水路を開閉する電動バルブ
と、 (b) 該水路に設けたせきと、 (c) せきの水位を検知する触針と、該触針の接水
を検知して接水信号を出力する手段と、該接水
信号に応じてモータを駆動して検針を昇降し、
水面を追跡させる手段と、検針の上下位置を自
動的に読み取り、位置信号を出力する手段を備
えたせき水位検出装置と、 (d) せき水位検出装置からの位置信号を演算して
水路の流量の測定値を算出する手段と、 (e) 水路の流量を予め設定された流量に一致する
ように電動バルブ開閉用の駆動信号を出力する
手段と、 (f) 透明管よりなるマノメータと、マノメータ水
面に浮遊する浮きと、光センサにより該浮きを
検知して検知信号を出力する浮位置検知器と、
該検知信号に応じてモータを駆動して該浮位置
検知器をマノメータに沿つて昇降させ、浮きを
追跡させる手段と、該浮位置検知器の上下位置
を自動的に読み取り、圧力の測定値を出力する
手段を備えたマノメータ水位検出装置と、 (g) 該水路の各部の圧力測定孔と、該マノメータ
水位検出装置を切換えて連通させる電磁弁と、 (h) 各電磁弁を切換えて開閉する電磁弁開閉信号
を出力する手段と、 (i) 該マノメータ水位検知装置が各圧力測定孔の
圧力を測定して出力する各部の圧力の測定値
と、前記流量の測定値を演算して、水理実験結
果を算出する手段と、 (j) 算出された水理実験結果を表示し又は印字す
る手段、 とを備え有することを特徴とする水理実験用自動
計測システム。
[Claims] 1. (a) An electric valve for opening and closing a waterway for a hydraulic experiment; (b) A weir provided in the waterway; (c) A stylus for detecting the water level of the weir; a means for detecting water contact and outputting a water contact signal; and a means for driving a motor to raise and lower a meter reading according to the water contact signal;
(d) A weir water level detection device equipped with a means for tracking the water surface and a means for automatically reading the vertical position of the meter reading and outputting a position signal; (d) calculating the position signal from the weir water level detection device to determine the flow rate of the waterway; (e) means for outputting a driving signal for opening and closing an electric valve so that the flow rate of the waterway matches a preset flow rate; (f) a manometer made of a transparent tube; A float floating on the water surface; a float position detector that detects the float using an optical sensor and outputs a detection signal;
means for driving a motor in response to the detection signal to move the float position detector up and down along the manometer to track the float; and a means for automatically reading the vertical position of the float position detector and measuring pressure. (g) a solenoid valve that switches and connects the manometer water level detector with pressure measurement holes in each part of the waterway; (h) switches each solenoid valve to open and close; means for outputting a solenoid valve opening/closing signal; (j) means for displaying or printing the calculated hydraulic experiment results.
JP58183950A 1983-09-30 1983-09-30 Automatic measurement system for hydraulic experiment Granted JPS6073419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58183950A JPS6073419A (en) 1983-09-30 1983-09-30 Automatic measurement system for hydraulic experiment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58183950A JPS6073419A (en) 1983-09-30 1983-09-30 Automatic measurement system for hydraulic experiment

Publications (2)

Publication Number Publication Date
JPS6073419A JPS6073419A (en) 1985-04-25
JPH0372941B2 true JPH0372941B2 (en) 1991-11-20

Family

ID=16144651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58183950A Granted JPS6073419A (en) 1983-09-30 1983-09-30 Automatic measurement system for hydraulic experiment

Country Status (1)

Country Link
JP (1) JPS6073419A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103512723B (en) * 2013-09-30 2016-05-04 哈尔滨工程大学 A kind of experiment and measuring system of twisting visual research of turning for Pulsating Flow fluidised form

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54151269U (en) * 1978-04-12 1979-10-20

Also Published As

Publication number Publication date
JPS6073419A (en) 1985-04-25

Similar Documents

Publication Publication Date Title
US6928862B1 (en) Method of monitoring dual-phase liquid and interface levels
CN205940713U (en) Magnetic reversing column liquid level gauge
CN106544983B (en) A kind of hydraulic model test water surface curve and flow rate measuring device and method
CN210487017U (en) Circulating tank mud liquid level monitoring device
CN105730647A (en) Ship navigational speed control method, ship inclination angle detection device and ship
CN204064252U (en) Wheel hub measurement mechanism
KR100405867B1 (en) A water-collecting equipment using pipe
JPH0372941B2 (en)
CN210487015U (en) Circulating tank mud liquid level monitoring direct reading appearance
JPS63111424A (en) Method and device for monitoring level
US5447063A (en) Liquid density monitoring apparatus
CN205642560U (en) Float -type fluviograph
JPS60168974A (en) Flow-rate control valve
CN207396284U (en) A kind of double-ring infiltration instrument
US8356515B2 (en) Method and system for measuring a rheological transition level
CN113819982B (en) Continuous calibration and calibration device for high-precision intelligent liquid level meter
CN111141343B (en) Portable ultrasonic automatic flow measurement method for open channel water level tracking
CN210198959U (en) Portable water transparency measuring instrument
CN107741216A (en) A kind of electromagnetic type solum settlement measurement apparatus
US4467644A (en) Flow meter
SU800635A1 (en) Hydrodynamic level
JP4805431B2 (en) Sand level detector for fluidized bed equipment
CN206684576U (en) A kind of adjusting means of the new underwater drift angles of adjustment ADCP
CN106768075B (en) A kind of thermal measurement system and method for pool device
JPS59119220A (en) Automatic water level measuring instrument