JPH0372938A - Granulator for preparing microspherical body - Google Patents

Granulator for preparing microspherical body

Info

Publication number
JPH0372938A
JPH0372938A JP1205588A JP20558889A JPH0372938A JP H0372938 A JPH0372938 A JP H0372938A JP 1205588 A JP1205588 A JP 1205588A JP 20558889 A JP20558889 A JP 20558889A JP H0372938 A JPH0372938 A JP H0372938A
Authority
JP
Japan
Prior art keywords
stirring tank
shape
groove
stirring blade
wall surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1205588A
Other languages
Japanese (ja)
Other versions
JPH0661444B2 (en
Inventor
Hiroyoshi Kawase
川瀬 広嘉
Masayoshi Nakamura
正義 中村
Shiyougo Kodama
児玉 詔吾
Shuya Daimon
大門 修也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Shell Sekiyu KK
Original Assignee
Showa Shell Sekiyu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Shell Sekiyu KK filed Critical Showa Shell Sekiyu KK
Priority to JP1205588A priority Critical patent/JPH0661444B2/en
Publication of JPH0372938A publication Critical patent/JPH0372938A/en
Publication of JPH0661444B2 publication Critical patent/JPH0661444B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Glanulating (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To enhance spheroidicity by forming uneven grooves to the inner wall surface of a cylindrical stirring tank. CONSTITUTION:A fine powder of fine ceramics such as zirconia, alumina or mullite, an org. solvent and water being a binder are received in a cylindrical stirring tank in predetermined amounts and said stirring tank is rotated at about 1000-2500rpm. After the completion of granulation, the obtained granules are baked at about 1200-1450 deg.C in the oxidative atmosphere within an electric furnace to obtain baked balls. Uneven grooves are formed in parallel to the rotary shaft of rotary stirring blades so that the cross-section of each groove when the stirring tank is cut at the surface vertical to the rotary shaft becomes a U-shape, a V-shape or a circular arc shape. By this method, the dispersion of a ceramics raw material can be performed within a short time.

Description

【発明の詳細な説明】 (1)発明の目的 〔産業上の利用分野〕 本発明はファインセラミックスの微粉末から緻密で重質
且つ球形度の高い微小球形体を製造する液中造粒機に関
するものである。
Detailed Description of the Invention (1) Purpose of the Invention [Field of Industrial Application] The present invention relates to a submerged granulator for producing dense, heavy, and highly spherical microspheres from fine ceramic powder. It is something.

〔従来の技術〕[Conventional technology]

近年、硬質微小ボールは各種工業において多くの用途が
見出され注目されている。特にジルコニア等のファイン
セラミックスを原料とした直径500μm以下の高強度
かつ高耐摩耗性の微小球形体は硬質原料、高純度原料の
微粉砕、分散または混合に適しているといわれ、今後需
要が増大すると予測されている。しかし従来の造粒法で
は直径500μm以下の微小球形体を製造することは困
難で、新しい造粒法の開発が望まれている。
In recent years, hard microballs have been attracting attention as they have found many uses in various industries. In particular, high-strength, highly wear-resistant microspheres with a diameter of 500 μm or less made from fine ceramics such as zirconia are said to be suitable for pulverizing, dispersing, or mixing hard raw materials and high-purity raw materials, and demand will increase in the future. It is predicted that this will happen. However, it is difficult to produce microspheres with a diameter of 500 μm or less using conventional granulation methods, and the development of a new granulation method is desired.

これらの硬質微小ボールは原料粉末をボール状に成型し
、それを高温で焼結して製造される。ボール状に成型す
る従来からの方法としては転勤造粒法、流動層造粒法及
び軸プレス法がある。転勤造粒法は原料粉末にバインダ
ーを加え混練した後、押し出し法で、例えば柱状に成型
した顆粒状のものをパン型あるいはドラム型の容器中で
回転させながら徐々に球状に仕上げてゆく方法である。
These hard microballs are manufactured by molding raw material powder into a ball shape and sintering it at high temperature. Conventional methods for forming balls include transfer granulation, fluidized bed granulation, and axial pressing. The transfer granulation method is a method in which a binder is added to the raw material powder, kneaded, and then extruded to form granules into a columnar shape, for example, and then rotated in a pan-shaped or drum-shaped container to gradually form them into a spherical shape. be.

軸プレス法は押し出しで成型する代りに二つ割れの球形
金型に混線物を入れ成型するが上下それぞれの成型金型
の接合部にはみ出し部分ができそれを除去して球状にす
るため転勤工程が必要となる。
In the axial press method, instead of molding by extrusion, a mixed material is placed in a two-split spherical mold and molded, but there is a protruding part at the joint of the upper and lower molds, and a transfer process is required to remove it and make it spherical. Is required.

これらの方法では500μm以下の微小ボールをつくる
ことは高度の熟練技術が必要で収率も悪く商業生産には
不向きとされている。
These methods require highly skilled techniques to produce microscopic balls of 500 μm or less and have poor yields, making them unsuitable for commercial production.

一方流動層造粒法は造粒機内に攪拌翼が設けられており
供給されたセラミックス原料粉末は回転する撹拌翼によ
って機内で流動層を形成し、添加されるバインダーによ
って時間の経過とともに微小球形体を成長させてボール
状にする。この方法では緻密なボールをつくることは困
難である。
On the other hand, in the fluidized bed granulation method, a stirring blade is installed inside the granulator, and the supplied ceramic raw material powder is formed into a fluidized bed inside the machine by the rotating stirring blade. grow into a ball shape. It is difficult to make dense balls using this method.

また、その他の方法として、液中造粒法の一例としてエ
バラPBS型装置を用いる方法は、懸濁固形物を含む排
水などの処理法であって、固体と水との懸濁液に凝集剤
としてポリマーを加えて攪拌し粒状化する方法であるが
、製造した球形体は直径llIn以上で球形度も低く、
緻密性にも欠けるので、ファインセラミックスの微小球
形体の製造には不適当である。
In addition, as another method, a method using an Ebara PBS type device as an example of a submerged granulation method is a method for treating wastewater containing suspended solids, and a flocculant is added to a suspension of solids and water. In this method, a polymer is added and stirred to form granules, but the spherical bodies produced have a diameter of llIn or more and a low degree of sphericity.
It also lacks density, making it unsuitable for manufacturing fine ceramic microspheres.

(発明が解決しようとする課題) 直径500μm以下のファインセラミックス焼成ボール
を製造するには素体として直径60゛0μm以下のファ
インセラミックス球形体を造粒しなければならない、(
素体、すなわち焼成前のボールは焼成によって収縮し体
積が減少する)しかるに転勤法や軸プレス法では高度の
熟練を要し、低収率且つ経済的に不利な方法であり、流
動層造粒法では緻密なボールができない。また従来の液
中での造粒法でも直径600μm以下の球形体を得るこ
とはできない。
(Problems to be Solved by the Invention) In order to manufacture fine ceramic fired balls with a diameter of 500 μm or less, fine ceramic spherical bodies with a diameter of 600 μm or less must be granulated as an element body.
However, the transfer method and axial press method require a high level of skill, have low yields, and are economically disadvantageous, and fluidized bed granulation You can't play a precise ball with the law. Further, even with conventional granulation methods in liquid, it is not possible to obtain spherical bodies with a diameter of 600 μm or less.

本発明の目的は、ファインセラミックス粉末を原料とし
て液中で造粒し直径が50〜600μmで高真球度且つ
緻密な球形体を製造し得る造粒機を提供せんとするもの
である。
An object of the present invention is to provide a granulator capable of producing fine spherical bodies having a diameter of 50 to 600 μm, high sphericity, and denseness by granulating fine ceramic powder in a liquid as a raw material.

(問題点を解決するための手段) 本発明者らは研究を進めた結果、球型600μm以下で
球形度も高く緻密なセラミックス球形体を液中で造粒す
る造粒機を開発した。この造粒機により得られた造粒物
を通常の方法で高温焼成してできた微小球形体は実用に
供し得るものであることが確認された。
(Means for Solving the Problems) As a result of research, the present inventors have developed a granulator that granulates dense ceramic spherical bodies with a spherical shape of 600 μm or less and a high degree of sphericity in a liquid. It was confirmed that the microspheres obtained by firing the granules obtained by this granulator at a high temperature in a conventional manner can be put to practical use.

すなわち、本発明は、回転攪拌翼を備えた円筒型攪拌槽
内に微粉末、溶媒およびバインダーを入れ、攪拌翼を回
転させて造粒物を製造する液中造粒機において、円筒容
器の内壁面に凹凸状の溝が形成されていることを特徴と
する液中造粒機である。
That is, the present invention provides a submerged granulator in which a fine powder, a solvent, and a binder are placed in a cylindrical stirring tank equipped with a rotating stirring blade, and the stirring blade is rotated to produce a granulated product. This is a submerged granulator characterized by having uneven grooves formed on the wall surface.

さらには、上記造粒機において円筒型攪拌槽の内壁面に
形成されている凹凸状の溝が回転攪拌翼の回転軸と平行
で、かつ、同回転軸に垂直の面で攪拌槽を切断した時の
溝の断面が凹型、■型または円弧型であることが好まし
い。また、上記造粒機において、回転攪拌翼の先端と円
筒型攪拌槽の内壁面の凸部との距離が2〜15mmであ
る液中造粒機であることが好ましい。
Furthermore, in the above granulator, the uneven grooves formed on the inner wall surface of the cylindrical stirring tank are parallel to the rotation axis of the rotary stirring blade, and the stirring tank is cut in a plane perpendicular to the rotation axis. It is preferable that the cross section of the groove is concave, square, or arcuate. Moreover, in the said granulator, it is preferable that it is a submerged granulator in which the distance between the tip of the rotating stirring blade and the convex part on the inner wall surface of the cylindrical stirring tank is 2 to 15 mm.

本発明者はファインセラミックス粉末が有機溶媒と非親
和性であり、−力水とは親和性に富んでいることに着目
し、ファインセラミックス粉末を有機溶媒中に懸濁させ
、バインダーとしての水の存在下で攪拌し造粒物を得た
。さらに、この系において造粒物の大きさ、真球度、緻
密性はいくつかのファクターに支配されるが、造粒機の
円筒型攪拌槽の内壁面の表面の形状および回転攪拌翼先
端と円筒型攪拌槽内壁面(凸部)との距離が造粒物の形
成に深くかかわっていることを見出した。
The present inventor focused on the fact that fine ceramic powder has no affinity with organic solvents and has a high affinity with hydrochloric acid, and suspended fine ceramic powder in an organic solvent, using water as a binder. A granulated product was obtained by stirring in the presence of the solution. Furthermore, in this system, the size, sphericity, and density of the granules are controlled by several factors, including the shape of the inner wall surface of the cylindrical stirring tank of the granulator, and the tip of the rotating stirring blade. It has been found that the distance from the inner wall surface (convex portion) of the cylindrical stirring tank is deeply related to the formation of granules.

本発明の液中造粒機の本体は円筒型撹拌槽で、回転する
攪拌翼を持っており、円筒型撹拌槽の内壁面には回転翼
軸と好ましくは平行な方向に円筒型攪拌槽全長に亘り溝
が形成されている。(第1図参照)回転軸に垂直な平面
で攪拌槽を切断した時の溝の形状はり型、■型あるいは
円弧型等であることが好ましい。(第2図参照)溝の深
さは特に制限はないが直径が50〜1500μmの球形
体を製造する場合は1〜3閣が望ましい。比較的粒径の
大きい(例えば800μm以上)球形体の製造は内壁面
に溝が無くても可能である。溝の中心線と隣接する溝の
中心線との距離(ピーツチ)は特に制限はないが、55
0−1500a径の球形体を製造する場合は1mn+〜
250mmが望ましい。
The main body of the submerged granulator of the present invention is a cylindrical stirring tank, which has rotating stirring blades, and the inner wall of the cylindrical stirring tank has the entire length of the cylindrical stirring tank preferably parallel to the axis of the rotor. A groove is formed throughout. (See FIG. 1) The shape of the groove when the stirring tank is cut along a plane perpendicular to the rotation axis is preferably a beam shape, a square shape, or an arc shape. (See Figure 2) There is no particular limit to the depth of the groove, but when producing a spherical body with a diameter of 50 to 1500 μm, it is preferably 1 to 3 depths. It is possible to manufacture spherical bodies having a relatively large particle size (for example, 800 μm or more) even without grooves on the inner wall surface. There is no particular restriction on the distance (peach) between the center line of a groove and the center line of an adjacent groove, but it is 55
When manufacturing a spherical body with a diameter of 0-1500a, 1mm+~
250mm is desirable.

円筒型撹拌槽の内壁面に溝を形成する方法は、内壁面を
削って形成してもよいし、内壁面に所定の形状の板を貼
りつけて結果的に溝を形成してもよい。
The grooves may be formed on the inner wall surface of the cylindrical stirring tank by cutting the inner wall surface, or by attaching a plate of a predetermined shape to the inner wall surface to form the grooves as a result.

回転翼先端と攪拌槽内壁面(凸部)との距離(クリアラ
ンス)も特に制限はないが緻密度の高い50〜1500
μmの球形体を製造する場合は2〜15mmが望ましい
There is no particular limit to the distance (clearance) between the tip of the rotor blade and the inner wall surface (convex part) of the stirring tank, but it is 50 to 1500 with high density.
In the case of manufacturing a spherical body of μm, the thickness is preferably 2 to 15 mm.

回転翼先端と攪拌槽内壁面(凸部)との距離が1.5m
mを超えると造粒物が大きくなり、また2閣以下である
と工作精度が高くなり経済的でない。
The distance between the tip of the rotor blade and the inner wall surface (convex part) of the stirring tank is 1.5 m.
If it exceeds m, the granules will become large, and if it is less than 2 m, the machining accuracy will be high and it is not economical.

回転翼の形状と個数についても制限はない。回転翼の形
状は横型又はS型でどちらか一方のみでもよくあるいは
横型S型の湿滑した組合わせの何れでもよい。組合わせ
の場合それぞれの個数については特に制限はない。
There are also no restrictions on the shape and number of rotor blades. The shape of the rotor blade may be either horizontal or S-shaped, or a combination of the horizontal S-shape and the horizontal S-shape. In the case of a combination, there is no particular restriction on the number of each.

本発明の液中造粒機により微小球形体を製造できるファ
インセラミックスは、ジルコニア、アルミナ、ムライト
、窒化珪素、チタン酸バリウム、酸化マグネシウム、フ
ェライト等である。
Fine ceramics that can be made into microspheres by the submerged granulator of the present invention include zirconia, alumina, mullite, silicon nitride, barium titanate, magnesium oxide, and ferrite.

有機溶媒としては水との親和性の少ない有機溶媒が使用
でき、パラフィン系炭化水素、ナフテン系炭化水素、芳
香族炭化水素またはこれらの混合物が好ましい。
As the organic solvent, an organic solvent having low affinity with water can be used, and paraffinic hydrocarbons, naphthenic hydrocarbons, aromatic hydrocarbons, or mixtures thereof are preferred.

本願の造粒機は次のように使用する。The granulator of the present application is used as follows.

円、筒型攪拌槽内に、ファインセラ鴫ツクスの微粉末、
有機溶媒およびバインダーとしての水のそれぞれの所定
量を入れ、回転攪拌翼を1000〜2500回転/分で
回転させて造粒を行なう。攪拌槽内部の温度は次第に上
昇するが、通常は温度調節は行なわない、30〜120
分で造粒が終了するので、次にこの造粒物を、通常の電
気炉中で酸化雰囲気中で1200〜1450°Cで焼成
して焼成ボールを得る。
In a circular or cylindrical stirring tank, fine powder of Fine Ceramics,
Predetermined amounts of an organic solvent and water as a binder are added, and a rotating stirring blade is rotated at 1,000 to 2,500 rpm to perform granulation. The temperature inside the stirring tank gradually rises, but usually no temperature adjustment is performed, from 30 to 120
The granulation is completed in minutes, and the granulated product is then fired at 1200 to 1450°C in an oxidizing atmosphere in an ordinary electric furnace to obtain fired balls.

実施例 以下に実施例を掲げて本発明を説明するが、これに限定
されるものではない。
EXAMPLES The present invention will be explained below with reference to Examples, but the present invention is not limited thereto.

使用粉末: 市販のジルコニア粉末(部分安定化剤入り)で主たる性
状はつぎのとおりであった。
Powder used: A commercially available zirconia powder (containing a partial stabilizer) whose main properties were as follows.

比表面積−・・−・−7,4ボ/g(測定法はBET法
で測定機はMICROMERITICS社製220型) 真比重−・−・−・・・−・−5,699(測定法は液
相置換法で測定機はセイシン企業社製 AUTOTRUE DEUCERMAT−5000) 平均粒子直径(50%重量)−・・〜 0.47μm(測定法は沈降法で測 定機はM ICROMERIT IC3社製SED I
 C,RAPH5000D)成分分析’−’−”−’z
ro2    94.81  (重量%)Y、0.  
  4.61 Ca0     0.03 Na20    0.02 焙焼ロス  0.24 造粒条件: ジルコニア粉末の量・・−57,6g 有機溶媒とその量・−一一−−・〜パラフィン系炭化水
素、290 (1 バインダーとその量−・・・水道水、6.5 d攪拌翼
回転速度・−−−−−−−−−−−2000rpm造粒
時間・−=−−一一一−−−−−−−−−−・−一−−
−攪拌翼の回転開始からジルコニア粉末全量が 造粒完結し、攪拌質問 転が停止するまでの時 間 造粒機: 撹拌槽と回転攪拌翼から戒っており、撹拌槽は横型で実
効内容積は3001!である。回転軸は電動機で駆動し
て回転させ、回転速度を変えることができるようになっ
ている。
Specific surface area: -7,4 bo/g (Measurement method: BET method, measuring machine: MICROMERITICS model 220) True specific gravity: -5,699 (Measurement method: Liquid phase displacement method is used and the measuring device is AUTOTRUE DEUCERMAT-5000 manufactured by Seishin Enterprise Co., Ltd. Average particle diameter (50% weight) - ~ 0.47 μm (Measuring method is sedimentation method and the measuring device is SED I manufactured by M ICROMERIT IC3)
C, RAPH5000D) Component analysis'-'-'-'z
ro2 94.81 (wt%) Y, 0.
4.61 Ca0 0.03 Na20 0.02 Roasting loss 0.24 Granulation conditions: Amount of zirconia powder...-57.6g Organic solvent and its amount...-11---Paraffin hydrocarbon, 290 (1. Binder and its amount - Tap water, 6.5 d Stirring blade rotation speed - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - −−−−−・−1−−
- The time from the start of rotation of the stirring blade until the entire amount of zirconia powder is granulated and the stirring interpolation stops. Granulator: The stirring tank and rotating stirring blade are important. The stirring tank is horizontal and has an effective internal volume. 3001! It is. The rotating shaft is driven by an electric motor to rotate it, and the rotation speed can be changed.

・造粒物寸法の測定: ■ニレコ製のLUZEX500による画像分析法を用い
た。これを用いて微小球形体のフェレー径を測定し、球
形体の径とした。真球度はL/W(Lは最大径、WはL
に直交する径で最大のもの)を以て表わすことにした。
- Measurement of granule size: ■ An image analysis method using LUZEX500 manufactured by Nireco was used. Using this, the Feret diameter of the microsphere was measured, and was defined as the diameter of the spherical body. Sphericity is L/W (L is the maximum diameter, W is L
(the largest diameter perpendicular to the diameter).

なお、フェレー径は平面に投影した球形体の像を2本の
平行線ではさんだ時の平行線間の距離で複数の球形体に
ついての上記距離の平均値は統計的平均値とみなされて
いる。
The Feret diameter is the distance between two parallel lines when the image of a spherical object projected onto a plane is sandwiched between two parallel lines, and the average value of the above distances for multiple spherical objects is considered to be a statistical average value. .

焼成ボール: 上記造粒機で得られた球形体を通常の電気炉中で酸化雰
囲気で高温(最高1450”C)焼成してできた焼成ボ
ールも■ニレコ製LUZEX500の画像分析装置で測
定した。また密度についてはアルキメデス法によった。
Fired balls: Fired balls made by firing the spherical bodies obtained by the above granulator in an oxidizing atmosphere at high temperatures (maximum 1450''C) in an ordinary electric furnace were also measured using an image analyzer LUZEX500 manufactured by Nireco. The density was determined using the Archimedes method.

実施例1 攪拌槽内壁面の溝形状     用型 〃   溝深さ     0.5 ws〃   溝中 
     0.5鵬 〃   溝ピッチ    1.0mm 〃   山中      0.5恥 攪拌翼先端と内壁面(凸部)との距離 IIIIl 攪拌翼形状と個数等 〔種型、4枚で1組〕が3組。1組は回転軸の中央に、
他の2組は回転軸の中央01組に対して左右対称位置に
装着されている。
Example 1 Groove shape on the inner wall of the stirring tank Mold: Groove depth: 0.5 ws: Inside the groove
0.5 〃 Groove pitch 1.0 mm 〃 Yamanaka 0.5 Distance between the tip of the stirring blade and the inner wall surface (convex part) IIIl 3 sets of stirring blade shape and number [type, 1 set of 4 blades]. One set is in the center of the rotation axis,
The other two sets are mounted at symmetrical positions with respect to the center set 01 of the rotation axis.

造粒時間           40分得られた微小球
形体の粒子直径  305μm〃      真球度 
  1.04 上記微小球形体の焼結後の焼成ポールの粒子直径  2
47μm 〃      真球度   1.04 〃      密度    6.001g/cI11実
施例2 攪拌槽内壁面の溝形状 〃   溝深さ 〃   溝巾 〃   溝ピッチ 〃   山中 攪拌翼先端と内壁面(凸部) U型 l卿 ll1m mm mm との距離 15印 攪拌翼形状と個数等 〔種型、4枚で1組〕が3組。1組は回転軸の中央に、
他の2組は中央の1組に対して左右対称位置に装着され
ている。
Granulation time: 40 minutes Particle diameter of obtained microspheres: 305 μm Sphericity
1.04 Particle diameter of fired pole after sintering of the above microspherical bodies 2
47μm Sphericity 1.04 Density 6.001g/cI11 Example 2 Groove shape on the inner wall of the stirring tank Groove depth Groove width Groove pitch Yamanaka stirring blade tip and inner wall (convex) U-shaped l 3 sets of 15-mark stirring blade shape and number [specimen type, 1 set of 4 blades]. One set is in the center of the rotation axis,
The other two sets are mounted at symmetrical positions with respect to the central one.

造粒時間           90分得られた微小球
形体の粒子直径  615μm真球度   1.07 上記微小球形体の焼結後の焼成ボールの。
Granulation time: 90 minutes Particle diameter of the obtained microspheres: 615 μm Sphericity: 1.07 Fired balls after sintering the above microspheres.

粒子直径  492μm 〃      真球度   1.07 〃      密度    5,881g/all実施
例3 攪拌槽内壁面の溝形状 〃   溝深さ 〃   溝巾 〃   溝ピッチ 〃   山中 攪拌翼先端と内壁面(凸部) U型 1、 w llll1 6ff[ln rIm との距離 W 攪拌翼形状と個数等 〔種型、4枚で1&Il)が3組。imは回転軸の中央
に、他の2組は中央の1組に対して左右対称位置に装着
されている。
Particle diameter 492 μm Sphericity 1.07 Density 5,881 g/all Example 3 Groove shape on the inner wall of the stirring tank Groove depth Groove width Groove pitch Yamanaka stirring blade tip and inner wall surface (convex portion) U Mold 1, w llll1 6ff [distance W from ln rIm, stirring blade shape and number, etc. [separate mold, 4 pieces 1&Il], 3 sets. im is mounted at the center of the rotating shaft, and the other two sets are mounted at symmetrical positions with respect to the central set.

造粒時間           40分得られた微小球
形体の粒子直径  328μm〃      真球度 
  1.03 上記微小球形体の焼結後の焼成ボールの粒子直径  2
62μm 〃      真球度   1.03 〃      密度    6.004g/cIIl実
施例4 攪拌槽内壁面の溝形状 〃   溝深さ 〃   溝巾 〃   溝ピッチ 〃   山中 攪拌翼先端と内壁面(凸部) 山型 IIIIIll 3閣  mm 3flll11 との距離 5IllINl 攪拌翼形状と個数等 〔S型、4枚で1組〕が3組。1組は回転軸中央に、他
の2組は中央の1組に対して左右対称位置に装着されて
いる。
Granulation time: 40 minutes Particle diameter of obtained microspheres: 328 μm Sphericity
1.03 Particle diameter of fired balls after sintering the above microspherical bodies 2
62μm〃Sphericity 1.03〃Density 6.004g/cIIlExample 4 Groove shape on the inner wall of the stirring tank〃Groove depth〃Groove width〃Groove pitch〃Yamanaka stirring blade tip and inner wall surface (convex part) Mountain shape IIIll Distance from 3 cabinets mm 3flll11 5IllINl Stirring blade shape and number, etc. [S type, 1 set of 4 blades] are 3 sets. One set is mounted at the center of the rotation axis, and the other two sets are mounted at symmetrical positions with respect to the central set.

造粒時間           45分得られた微小球
形体の粒子直径  315μm真球度   1.03 上記微小球形体の焼結後の焼成ボールの粒子直径  2
65μm 〃      真球度   1.03 〃      密度    6.001g/d実施例5 攪拌槽内壁面の溝形状 〃   溝深さ 〃   溝巾 溝ピッチ 〃   山中 攪拌翼先端と内壁面(凸部) し型 mm 3閤 6IllII1  mm との距離 l1lal 攪拌翼形状と個数等 〔種型、4枚で1組〕が2組と、〔S型、4枚1組〕が
1組、合計3組の組合わせ、両側が種型で中心にS型を
配置し種型はS型に対して左右対称位置に装着されてい
る。
Granulation time: 45 minutes Particle diameter of obtained microspheres: 315 μm Sphericity: 1.03 Particle diameter of fired balls after sintering the above microspheres: 2
65 μm Sphericity 1.03 Density 6.001 g/d Example 5 Groove shape on the inner wall of the stirring tank Groove depth Groove width Groove pitch Yamanaka stirring blade tip and inner wall surface (convex portion) Shape mm 3 Distance from 6IllII1 mm l1lal Stirring blade shape and number, etc. Two sets of [seed type, 1 set of 4 blades] and 1 set of [S type, 1 set of 4 blades], a total of 3 sets, both sides are The S type is placed in the center of the seed mold, and the seed mold is attached at a symmetrical position to the S type.

造粒時間           45分得られた微小球
形体の粒子直径  322μm〃      真球度 
  1.04 上記微小球形体の焼結後の焼成ボールの粒子直径  2
58μm 〃      真球度   1.o4 〃      密度    6.002g八這実へ例6 攪拌槽内壁面の溝形状 〃   溝深さ 〃   溝巾 〃   溝ピッチ 〃   山中 攪拌翼先端と内壁面(凸部) 臼型 1問 mm mm  mm との距離 5m 攪拌翼形状と個数等 〔種型、4枚で1組〕が2組、回転軸長さの3等分点の
位置に装着されている。
Granulation time: 45 minutes Particle diameter of obtained microspheres: 322 μm Sphericity
1.04 Particle diameter of fired balls after sintering the above microspherical bodies 2
58μm 〃 Sphericity 1. o4 〃 Density 6.002g Yagomi Example 6 Groove shape on the inner wall of the stirring tank〃 Groove depth〃 Groove width〃 Groove pitch〃 Yamanaka stirring blade tip and inner wall surface (convex part) Mortar type 1 mm mm mm mm Distance: 5 m Two sets of stirring blades (type, 4 blades in 1 set) are installed at the three equal points of the length of the rotating shaft.

造粒時間           50分(但し回転速度
220 Orpm) 得られた微小球形体の粒子直径  330μm〃   
   真球度   1.04 上記微小球形体の焼結後の焼成ポールの粒子直径  2
68μm 〃      真球度   1.04 密度    5.980g/cd 実施例7 攪拌槽内壁面の溝形状 〃   溝深さ 〃   溝巾 溝ピッチ 〃   山中 攪拌翼先端と内壁面(凸部) 臼型 2[1III1 llll1 6闘 mm との距離 4鴫 攪拌翼形状と個数等 〔種型、4枚で1組〕が3組。1組は回転軸の中央に、
他の2組は中央の1組に対して左右対称位置に装着され
ている。
Granulation time: 50 minutes (rotation speed: 220 Orpm) Particle diameter of obtained microspheres: 330 μm
Sphericity 1.04 Particle diameter of fired pole after sintering the above microspherical body 2
68 μm Sphericity 1.04 Density 5.980 g/cd Example 7 Groove shape on the inner wall of the stirring tank Groove depth Groove width Groove pitch Yamanaka stirring blade tip and inner wall surface (convex part) Mortar type 2 [1III1 llll1 6 mm Distance 4 3 sets of stirring blade shape and number [specimen type, 1 set of 4 blades]. One set is in the center of the rotation axis,
The other two sets are mounted at symmetrical positions with respect to the central one.

造粒時間           50分得られた微小球
形体の粒子直径  314μm〃      真球度 
  1.03 上記微小球形体の焼結後の焼成ボールの粒子直径  2
511Jm 〃      真球度   1.03 〃      密度    6.024g/cnY実施
例8 攪拌槽内壁面の溝形状 〃   溝深さ 〃   溝巾 〃   溝ピッチ 〃   山中 攪拌翼先端と内壁面(凸部) 目型 rIn 311111 6 +nm 3IW+ との距離 lff1 攪拌翼形状と個数等 〔種型、4枚で1組〕が3組、1組は回転軸の中央に、
残り2組は中央の1組に対して左右対称位置に装着され
ている。
Granulation time: 50 minutes Particle diameter of obtained microspheres: 314 μm Sphericity
1.03 Particle diameter of fired balls after sintering the above microspherical bodies 2
511Jm 〃 Sphericity 1.03 〃 Density 6.024g/cnY Example 8 Groove shape on the inner wall of the stirring tank〃 Groove depth〃 Groove width〃 Groove pitch〃 Yamanaka stirring blade tip and inner wall surface (convex part) Eye shape rIn 311111 6 +nm Distance from 3IW+ lff1 There are 3 sets of stirring blade shapes and numbers [specimen type, 1 set of 4 blades], 1 set is in the center of the rotation axis,
The remaining two sets are installed in symmetrical positions with respect to the central one.

造粒時間           55分得られた微小球
形体の粒子直径  252μm〃      真球度 
  1.035上記微小球形体の焼結後の焼成ボールの
粒子直径  210μm 〃      真球度   1.03 〃      密度    6.040g/d実施例9 攪拌槽内壁面の溝形状 〃   溝深さ 〃   溝巾 〃   溝ピッチ 〃   山中 攪拌翼先端と内壁面(凸部) 凹型 1閤  mm 1.2m+n m111 との距離 5閣 攪拌翼形状と個数等 〔横型、4枚で1組〕が3組。1組は回転軸の中央に、
残り2組は中央の1組に対して左右対称位置に装着され
ている。
Granulation time: 55 minutes Particle diameter of obtained microspheres: 252 μm Sphericity
1.035 Particle diameter of fired balls after sintering the above micro-spherical bodies 〃 Sphericity 1.03 〃 Density 6.040 g/d Example 9 Groove shape on inner wall of stirring tank〃 Groove depth〃 Groove width〃 Groove pitch: Distance between tip of Yamanaka stirring blade and inner wall surface (convex part) Concave 1 mm 1.2 m + nm 111 5 Cabinet Shape and number of stirring blades [horizontal type, 1 set of 4 blades] 3 sets. One set is in the center of the rotation axis,
The remaining two sets are installed in symmetrical positions with respect to the central one.

造粒時間           55分得られた微小球
形体の粒子直径  580μm〃      真球度 
  1,04 上記微小球形体の焼結後の焼成ボールの粒子直径  4
64μm 真球度   1.04 密度    5.993g/cd 実施例10 攪拌槽内壁面の溝形状 〃   溝深さ 〃   溝巾 〃   溝ピッチ 〃   山中 攪拌翼先端と内壁面(凸部) 山型  mm mm 4mm 21馴 との距離 5鵬 攪拌翼形状と個数等 〔横型、4枚で1組〕が3組。luは回転軸の中央に、
残り2組は中央の1組に対して左右対称位置に装着され
ている。
Granulation time: 55 minutes Particle diameter of obtained microspheres: 580 μm Sphericity
1,04 Particle diameter of fired balls after sintering the above microspherical bodies 4
64 μm Sphericity 1.04 Density 5.993 g/cd Example 10 Groove shape on the inner wall of the stirring tank Groove depth Groove width Groove pitch Yamanaka stirring blade tip and inner wall surface (convex) Mountain shape mm mm 4 mm Distance from the 21-meter 5-inch stirrer blade shape and number of blades [horizontal type, 1 set of 4 blades] are 3 sets. lu is at the center of the rotation axis,
The remaining two sets are installed in symmetrical positions with respect to the central one.

造粒時間           50分得られた微小球
形体の粒子直径  792μm〃      真球度 
  1.04 上記微小球形体の焼結後の焼成ボールの粒子直径  6
34μm 真球度 密度 1.04 5.957g/C這 実施例11 攪拌槽内壁面の溝形状 〃   溝深さ 〃   溝巾 〃   溝ピッチ 〃   山中 攪拌翼先端と内壁面(凸部) し型 1[11111 3閣 48mm 5mm との距離 nm 攪拌翼形状と個数等 〔横型、4枚で1組〕が3組。回転軸の中央に1組が、
残り2組は中央の1組に対し左右対称位置に装着されて
いる。
Granulation time: 50 minutes Particle diameter of obtained microspheres: 792 μm Sphericity
1.04 Particle diameter of fired balls after sintering the above microspherical bodies 6
34 μm Sphericity density 1.04 5.957 g/C Example 11 Groove shape on the inner wall of the stirring tank Groove depth Groove width Groove pitch Yamanaka stirring blade tip and inner wall surface (convex) Mold 1 [ 11111 3 cabinets 48 mm 5 mm Distance to nm Three sets of stirring blade shape and number [horizontal type, 1 set of 4 blades]. One set is located in the center of the rotation axis,
The remaining two sets are mounted at symmetrical positions with respect to the central one.

造粒時間           50分得られた微小球
形体の粒子直径  876μm〃      真球度 
  1.04 上記微小球形体の焼結後の焼成ボールの粒子直径  7
01μm 〃      真球度   1.04 〃      密度 実施例12 攪拌槽内壁面の溝形状 〃   溝深さ 〃   溝巾 〃   溝ピッチ 〃   山中 攪拌翼先端と内壁面(凸部) 5.950g/c艷 凹型 Nr1 mm 243+11[11 240mm との距離 5+nm 攪拌翼形状と個数等 〔横型、4枚で1組〕が3組。回転軸の中央に1組が、
残り2&llは中央の1組に対し左右対称位置に装着さ
れている。
Granulation time: 50 minutes Particle diameter of obtained microspheres: 876 μm Sphericity
1.04 Particle diameter of fired balls after sintering the above microspherical bodies 7
01 μm Sphericity 1.04 Density Example 12 Groove shape on the inner wall of the stirring tank Groove depth Groove width Groove pitch Yamanaka stirring blade tip and inner wall surface (convex) 5.950 g/c concave Nr1 mm 243+11 [11 Distance from 240mm 5+nm Three sets of stirring blade shape and number [horizontal type, 1 set of 4 blades]. One set is located in the center of the rotation axis,
The remaining 2&ll are mounted at symmetrical positions with respect to the central pair.

造粒時間          105分得られた微小球
形体の粒子直径  1323μm〃      真球度
   1.04 上記微小球形体の焼結後の焼成ボールの粒子直径  1
058μm 〃      真球度   1.o4 〃      密度    5.913 g/cd実施
例13 攪拌槽内壁面の溝形状 溝深さ 〃   溝巾 〃   溝ピッチ 〃   山中 攪拌翼先端と内壁面(凸部) 円弧型 M 3fllII1 M mm との距離 1ml1 攪拌翼形状と個数等 〔種型、4枚で1組〕が3組。1組は回転軸中央に、他
の2組は中央の1紹に対して左右対称位置に装着されて
いる。
Granulation time: 105 minutes Particle diameter of obtained microspheres: 1323 μm Sphericity: 1.04 Particle diameter of fired balls after sintering the above microspheres: 1
058μm 〃 Sphericity 1. o4 〃 Density 5.913 g/cd Example 13 Groove shape on the inner wall surface of the stirring tank Groove depth Groove width Groove pitch Distance between Yamanaka stirring blade tip and inner wall surface (convex part) Arc type M 3flII1 M mm 1ml1 There are 3 sets of stirring blade shape and number (1 set of 4 blades). One set is mounted at the center of the rotation axis, and the other two sets are mounted at symmetrical positions with respect to the central one.

造粒時間           65分得られた微小球
形体の粒子直径  330μm〃      真球度 
  1.04 上記微小球形体の焼結後の焼成ボールの粒子直径  2
64μm 〃      真球度   1.04 〃      密度    5.990g/d実施例1
4 攪拌槽内壁面の溝形状      ■型〃   溝深さ
      ll1lffl〃   溝巾      
  3IIl!Il〃   溝ビフチ     6肋 〃   山中       3mm 攪拌翼先端と内壁面(凸部)との距離 mm 攪拌翼形状と個数等 〔種型、4枚で1組〕が3&li、1組は回転軸中央に
、他の2組は中央の1組に対して左右対称位置に装着さ
れている。
Granulation time: 65 minutes Particle diameter of obtained microspheres: 330 μm Sphericity
1.04 Particle diameter of fired balls after sintering the above microspherical bodies 2
64μm 〃 Sphericity 1.04 〃 Density 5.990g/d Example 1
4 Groove shape on the inner wall of the stirring tank ■Type Groove depth ll1lffl Groove width
3IIl! Il〃 Groove bift 6 ribs〃 Yamanaka 3mm Distance between the tip of the stirring blade and the inner wall surface (convex part) mm Shape and number of stirring blades [type, 4 blades in 1 set] are 3 & li, 1 set is in the center of the rotating shaft, The other two sets are mounted at symmetrical positions with respect to the central one.

造粒時間           70分得られた微小球
形体の粒子直径  345μm〃      真球度 
  1.05 上記微小球形体の焼結後の焼成ボールの粒子直径  2
76μm 〃      真球度   1.04 〃      密度    5.987g/c111実
施例15 攪拌槽内壁面の溝形状 U型 〃   溝深さ        1閤 溝巾         3圓 〃   溝ピッチ       6ma+〃   山中
         3mm攪拌翼先端と内壁面(凸部)
との距離 5閣撹拌翼形状と個数等 〔種型、4枚で1組〕が3組。1組は回転軸中央に、他
の2組は中央の1組に対して左右対称位置に装着されて
いる。
Granulation time: 70 minutes Particle diameter of obtained microspheres: 345 μm Sphericity
1.05 Particle diameter of fired balls after sintering the above microspherical bodies 2
76μm 〃 Sphericity 1.04 〃 Density 5.987g/c111 Example 15 Groove shape U-shaped on the inner wall of the stirring tank〃 Groove depth 1 groove width 3㎓〃 Groove pitch 6ma +〃 Yamanaka 3mm stirring blade tip and inner wall surface (Protrusion)
Distance from 5 cabinets 3 sets of stirring blades shape and number [specimen type, 1 set of 4 blades]. One set is mounted at the center of the rotation axis, and the other two sets are mounted at symmetrical positions with respect to the central set.

回転翼回転速度      1450rpm造粒時間 
         125分得られた微小球形体の粒子
直径   71μm〃      真球度   1.0
3 上記微小球形体の焼結後の焼成ポールの粒子直径   
57μm 〃      真球度   1.03 〃      密度    6.002 g/c1!註
:実施例15で使用したジルコニア粉末の比表面積は2
8.5rd/gでその他の性状は実施例1〜14のもの
と略同−であった。
Rotary blade rotation speed 1450 rpm Granulation time
Particle diameter of microspheres obtained in 125 minutes: 71 μm Sphericity: 1.0
3 Particle diameter of fired pole after sintering of the above microspheres
57μm 〃 Sphericity 1.03 〃 Density 6.002 g/c1! Note: The specific surface area of the zirconia powder used in Example 15 is 2
The other properties were approximately the same as those of Examples 1 to 14.

実施例16 使用粉末は市販アル累すでその主たる性状はっぎのとう
りであった。
Example 16 The powder used had the same main properties as commercially available aluminum powder.

比表面積・−・−・・・−4,Oryf/ g (測定
はBET法)真比重・−−−−−−−−3,94(測定
はJIS H1902法)平均粒子直径(50%重量)
−曲−0,5μm(SEDIGRAPH5000D) 成分分析−−−−−−=1203 99.8(重量%)
Nato    0.01以下 MgOO,O4 造粒条件 アルミナ粉末の量−・−−−−一曲・・而−曲80g有
機溶媒とその量−−−−−・−−−−−・−−−−−・
−聞パラフイン系炭化水素、280o成 バインダーとその量−−−−−一曲−・−開−水道水、
15mf造粒機撹拌槽内壁面の溝形状      臼型
〃     溝深さ      1[l1II〃   
     溝  巾          1m1Il〃
          溝ビフチ           
  2皿〃        山  巾        
  1鵬撹拌翼先端と内壁面(凸部)との距離 10肋
撹拌翼形状と個数等 〔種型、4枚1組〕が3組、1組は回転軸中央に、他の
2組は中央の1組に対して左右対称位置に装着されてい
る。
Specific surface area: ---4, Oryf/g (measured using BET method) True specific gravity: ---3,94 (measured using JIS H1902 method) Average particle diameter (50% weight)
-Track-0.5μm (SEDIGRAPH5000D) Component analysis---=1203 99.8 (wt%)
Nato 0.01 or less MgOO, O4 Granulation conditions Amount of alumina powder --- One song --- Song 80g Organic solvent and its amount -------・-------・-- −・
- Paraffinic hydrocarbon, 280o binder and its amount - One song - Open - Tap water,
Groove shape on the inner wall of the 15mf granulator stirring tank Mortar type Groove depth 1 [l1II]
Groove width 1m1Il
Mizo Bifuchi
2 dishes〃 Mountain width
1. Distance between the tip of the stirring blade and the inner wall surface (convex part) 3 sets of 10-rib stirring blade shape and number [type, 1 set of 4 blades], one set at the center of the rotation axis, and the other two sets at the center It is installed in a symmetrical position with respect to one set of.

回転翼回転速度−−−−−・・・・・−・−−−−−−
−一一−−−・・−2200rpm造粒時間−・−一一
−−−−−−−−−−・−・・−・−・−90分得られ
た微小球形体の粒子直径−340μm〃    真球度
−・−・−1,05 上記微小球形体の焼結後(最高温度1500’Cで2時
間)の焼成ボールの 粒子直径−−−一一一一−−・−・・−272μm〃 
 真球度−・−・−−−一一−−4.05〃  密 度
−−−−−−−−−−3,96g /d実施例17 使用粉末は市販窒化珪素で主たる性状はつぎのとうりで
あった。
Rotary blade rotation speed-----------
-11------2200 rpm granulation time--90 minutes Particle diameter of the obtained microspheres-340 μm 〃 Sphericity - 1,05 Particle diameter of the fired ball after sintering the above microspheres (at a maximum temperature of 1500'C for 2 hours) - 1111 - - - - - - 272μm〃
Sphericity - 11 - 4.05 Density - 3,96 g / d Example 17 The powder used was commercially available silicon nitride, and its main properties were as follows. It was uri.

比表面積−−−−−−一一一一−・−・・−・−−−−
−一−−−−・−11,1ボ/g平均粒子径(50%重
量)−・−・0.2μm戊分分析−−−−−−−−−−
−・・・−・−−−−−−−−N   > 38 (重
量%)Si   〉59   〃 0   1.29    〃 C1<100100 pp    <lQQ  〃 Ca   <5Q  // 1  <50  ” 結晶化度(重量%)      > 99.5造粒条件 窒化珪素粉末の量−・・−−一−−−−−−−−−−−
−−・80g有機溶媒とその量−・−一−−−−−−−
−−−−−−−−−−パラフィン系炭化水素、2800
磁 バインダーとその量−−−−−−−一−−−−−−−水
道水、15.5ml造粒機撹拌槽内壁面の溝形状   
   U型〃   溝深さ      1和 溝  巾          3陶 〃       溝ピッチ             
 6 T閣〃     山  巾          
3M撹拌翼先端と内壁面(凸部)との距離  5mm撹
拌翼形状と個数等 〔種型、4枚1組]が3組、1組は回転軸中央に、他の
2組は中央の1組に対して左右対称位置に装着されてい
る。
Specific surface area---1111---・−・・−・−−−−
-1-------11.1 bo/g average particle diameter (50% weight)--0.2 μm fractional analysis-----
-・・・-・----------N > 38 (wt%) Si > 59 〃 0 1.29 〃 C1 < 100100 pp <lQQ 〃 Ca < 5Q // 1 < 50 ” Crystallinity ( Weight %) > 99.5 Granulation conditions Amount of silicon nitride powder - - - - - - - - - - - - - - - - - - -
--・80g organic solvent and its amount----
-------- Paraffinic hydrocarbon, 2800
Magnetic binder and its amount ------- Tap water, 15.5 ml Groove shape on the inner wall of the granulator stirring tank
U type〃 Groove depth 1 Japanese groove width 3 Ceramic〃 Groove pitch
6 T-kaku〃 Mountain width
Distance between the tip of the 3M stirring blade and the inner wall surface (convex part): 5mm There are 3 sets of stirring blade shape and number [specimen type, 1 set of 4], one set is located at the center of the rotation axis, and the other two sets are located at the center of the rotating shaft. It is installed in a symmetrical position with respect to the pair.

回転翼回転速度−−−−一・・・・−・−・−−−一−
・−・−・−2150rpm造粒時間−・・・−・・−
−−−一−−−−−−−−・・・−115分得られた微
小球形体の粒子直径−−−−−−374μm真球度−・
−4,02 実施例1〜17の概略を第1表〜第2表に示した。
Rotating blade rotation speed----1・・・・・−・−・−−−1−
・−・−・−2150rpm granulation time−・・・−・・−
---Particle diameter of microspheres obtained in 115 minutes ---374 μm Sphericity ---
-4,02 A summary of Examples 1 to 17 is shown in Tables 1 to 2.

た直径50〜500μmで真球度が高く、高密度のファ
インセラミックス微小球形体を製造するこ形体を焼結し
て製造した焼成ボールは高硬度で、真球度も高く、耐摩
耗性にも秀れているので、この焼成ボールをメディアと
したミルでファインセラミックス製造原料の粉砕、分散
、混合、あるいは顔料の粉砕、分散を短時間で効率よく
、摩耗粉等の異物が混入することもなく行なうことがで
きる。
The fired balls produced by sintering the cylindrical bodies have a diameter of 50 to 500 μm, high sphericity, and high density, and have high hardness, high sphericity, and excellent wear resistance. Because of its excellent properties, a mill using this fired ball as a media can crush, disperse, and mix raw materials for fine ceramics production, or crush and disperse pigments in a short time and efficiently, without contaminating foreign substances such as abrasion particles. can be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本願の円筒型攪拌槽の回転軸方向の断面図であ
る。 尚、第1図中、 l・・・円筒型攪拌槽 2・・・回転攪拌翼 3・・・回転軸 4・・・溝 5・・・軸受。 第2−1〜2−3図は本願の円筒型攪拌槽を回転軸に直
角な平面で切断した特製の断面を示す断面図であって、
第2−1図は溝の断面がU型の場合の断面図、第2−2
図は溝の断面がV型の場合の断面図、第2−3図は溝の
断面が円弧型の場合の断面図である。 尚、第2図中、 11・・・溝の深さ    12・・・溝巾13・・・
溝ピッチ    14・・・山中15・・・凸部。
FIG. 1 is a cross-sectional view of the cylindrical stirring tank of the present application in the direction of the rotation axis. In FIG. 1, l...Cylindrical stirring tank 2...Rotating stirring blade 3...Rotating shaft 4...Groove 5...Bearing. 2-1 to 2-3 are cross-sectional views showing special cross sections of the cylindrical stirring tank of the present application taken along a plane perpendicular to the rotation axis,
Figure 2-1 is a sectional view when the groove has a U-shaped cross section, Figure 2-2
The figure is a cross-sectional view when the groove has a V-shaped cross section, and FIGS. 2-3 are cross-sectional views when the groove has an arc-shaped cross section. In addition, in Fig. 2, 11... Groove depth 12... Groove width 13...
Groove pitch 14...Yamanaka 15...Protrusion.

Claims (1)

【特許請求の範囲】 1、回転攪拌翼を備えた円筒型攪拌槽内に微粉末、溶媒
およびバインダーを入れ、攪拌翼を回転させて造粒物を
製造する液中造粒機において、円筒型攪拌槽の内壁面に
凹凸状の溝が形成されていることを特徴とする液中造粒
機。 2、円筒型撹拌槽の内壁面に形成されている凹凸状の溝
が、回転攪拌翼の回転軸と平行で、かつ、同回転軸に垂
直の面で攪拌槽を切断した時の溝の断面が■型、V型ま
たは円弧型である請求項第1項の液中造粒機。 3、回転攪拌翼の先端と円筒型撹拌槽の内壁表面の凸部
との距離が2〜15mmである請求項第1項または第2
項の液中造粒機。
[Claims] 1. In a submerged granulator that produces a granulated product by placing fine powder, a solvent, and a binder in a cylindrical stirring tank equipped with a rotating stirring blade and rotating the stirring blade, the cylindrical type A submerged granulator characterized in that uneven grooves are formed on the inner wall surface of a stirring tank. 2. The uneven groove formed on the inner wall surface of the cylindrical stirring tank is a cross section of the groove when the stirring tank is cut along a plane parallel to and perpendicular to the rotation axis of the rotating stirring blade. 2. The submerged granulator according to claim 1, wherein the submerged granulator has a ■ shape, a V shape, or an arc shape. 3. The distance between the tip of the rotary stirring blade and the convex portion on the inner wall surface of the cylindrical stirring tank is 2 to 15 mm.
Submerged granulation machine.
JP1205588A 1989-08-10 1989-08-10 Granulator for producing microspheres Expired - Lifetime JPH0661444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1205588A JPH0661444B2 (en) 1989-08-10 1989-08-10 Granulator for producing microspheres

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1205588A JPH0661444B2 (en) 1989-08-10 1989-08-10 Granulator for producing microspheres

Publications (2)

Publication Number Publication Date
JPH0372938A true JPH0372938A (en) 1991-03-28
JPH0661444B2 JPH0661444B2 (en) 1994-08-17

Family

ID=16509368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1205588A Expired - Lifetime JPH0661444B2 (en) 1989-08-10 1989-08-10 Granulator for producing microspheres

Country Status (1)

Country Link
JP (1) JPH0661444B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5614449A (en) * 1979-07-13 1981-02-12 Hoya Corp Binder glass composition for coating phosphor
JPS6135836A (en) * 1984-07-30 1986-02-20 Hitachi Ltd Stirring tank for underwater granulation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5614449A (en) * 1979-07-13 1981-02-12 Hoya Corp Binder glass composition for coating phosphor
JPS6135836A (en) * 1984-07-30 1986-02-20 Hitachi Ltd Stirring tank for underwater granulation

Also Published As

Publication number Publication date
JPH0661444B2 (en) 1994-08-17

Similar Documents

Publication Publication Date Title
KR930004556B1 (en) Process for durable sol-gel produced alumina-based ceramics abrasive grain and abrasive products
JP2812928B2 (en) Ceramic molded body and method for producing the same
US5065946A (en) Media agitating mill and method for milling ceramic powder
JP2542014B2 (en) Aluminum Nitride Ceramic Composite
US20080245912A1 (en) Grinding Balls And Their Manufacturing Method
JP2506852B2 (en) Ceramic abrasive product, manufacturing method thereof, and surface grinding method
JPH0372938A (en) Granulator for preparing microspherical body
KR20200031631A (en) Sintered zircon beads
JPH044103B2 (en)
US5213702A (en) Media agitating mill and method for milling ceramic powder
JPH0492818A (en) Fine zirconia spherule
JPH0268151A (en) Medium stirring type pulverizer
JPH02239145A (en) Production of fine spherical body by granulation in liquid
JPH05178620A (en) Fine zirconia sphere
JP2614510B2 (en) Manufacturing method of microspheres in water by adding cross-linking liquid
JPH077740U (en) Wear-resistant structure of sand mill
JPH07257925A (en) Zirconia minute particle
JPS60248224A (en) Process and device for granulating powder body by wet process
JPH07206514A (en) Abrasion-resistant alumina ceramic
JPH0231844A (en) Grinding machine and method for grinding ceramic powder
JPH05309252A (en) Production of spherical granule having high sphericity
JP2557290B2 (en) Abrasion resistant zirconia sintered body
JPH0825798B2 (en) Abrasion resistant zirconia sintered body
KR920007018B1 (en) Abrasive material and method for preparing the same
JPH08155420A (en) Microbeads and production thereof