JPH0372687A - Solid-state laser device - Google Patents

Solid-state laser device

Info

Publication number
JPH0372687A
JPH0372687A JP14699189A JP14699189A JPH0372687A JP H0372687 A JPH0372687 A JP H0372687A JP 14699189 A JP14699189 A JP 14699189A JP 14699189 A JP14699189 A JP 14699189A JP H0372687 A JPH0372687 A JP H0372687A
Authority
JP
Japan
Prior art keywords
laser
laser medium
medium
pair
light shielding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14699189A
Other languages
Japanese (ja)
Other versions
JP2720521B2 (en
Inventor
Takeshi Kasai
葛西 彪
Yoshihiko Shindo
新藤 義彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Publication of JPH0372687A publication Critical patent/JPH0372687A/en
Application granted granted Critical
Publication of JP2720521B2 publication Critical patent/JP2720521B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To protect thermal insulation and seal from burnout caused by reflected laser rays by using a practical structure, by a method wherein a pair of light shielding members for protecting thermal insulator on both surfaces of a laser medium against laser rays reflected from a mirror are fixed between both exposed inclined end surfaces of the laser medium and each mirror, so as to independently adjust the positions in the direction perpendicular to the side surface of the laser medium. CONSTITUTION:On the right end and the left end of a clamping member 3 retaining the end portion of a laser medium 10, two kinds of long and short legs 3c for fixing light shielding members 30 are equipped; fixing holes for the legs 3c of the light shielding members 30 are formed as long holes; positions, of the light shielding member 30, in the direction perpendicular to the side surface 10b of the laser medium 10 can be finely adjusted with screws 4. Since a part of laser rays L reflected by an output mirror 22 collides against the exposed end portion 11a of a thermal insulator 11, and said part happen to be burned out, the position of the light shielding member 30 in the direction of delta is finely adjusted so as to shield the thermal insulator 11 against the reflected laser rays.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はスラブ形と通称される高出力用に適する固体レ
ーザ装置であって、レーザ光を全反射するl対の板面と
レーザ光が出入する1対の斜端面を備えるスラブ状体に
形成されたレーザ媒体と、レーザ媒体を収納しその両斜
端面を外部に露出させるように両端部を保持する収納容
器と、レーザ媒体の斜端面に対向配置されてレーザ光を
反射するl対のミラーとを備えるものに関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is a solid-state laser device commonly referred to as a slab type laser device suitable for high-output use, which has l pairs of plate surfaces that totally reflect laser light and A laser medium formed in a slab-like body having a pair of oblique end surfaces that enter and exit, a storage container that stores the laser medium and holds both ends thereof so that both oblique end surfaces are exposed to the outside, and an oblique end surface of the laser medium. and l pairs of mirrors that are arranged opposite to each other and reflect laser light.

〔従来の技術〕[Conventional technology]

周知のように、固体レーザ装置ではレーザ活性物質を含
むYAG等のレーザ媒体は一般には口・ノド状に形成さ
れるが、その断面形状が例えば円形の場合には、レーザ
発振時にその中心軸にピークをもつ内部温度分布とそれ
に基づく熱歪みが生じるので、レーザ媒体の断面を通る
レーザ光の位相にその半径方向の位置に依存するずれが
発生して全体の発振モードが乱れやすく、この乱れの程
度が著しくなるとレーザ発振作用が停まってしまうので
、高出力レーザ発振用にはあまり適しない欠点がある。
As is well known, in a solid-state laser device, a laser medium such as YAG containing a laser active substance is generally formed in the shape of a mouth or throat, but if the cross-sectional shape is circular, for example, the central axis of the medium during laser oscillation is Since the internal temperature distribution with a peak and the resulting thermal distortion occur, the phase of the laser light passing through the cross section of the laser medium is shifted depending on its radial position, and the overall oscillation mode is likely to be disturbed. If the degree of damage becomes significant, the laser oscillation action will stop, so it has the disadvantage that it is not very suitable for high-power laser oscillation.

前述のスラブ形固体レーザ装置はこの点を解決するもの
で、レーザ媒体としてスラブ状ないしは板状のものを用
い、その内部でレーザ光を1対の板面で全反射させなが
らジグザグ状に進行させるので、媒体内に温度分布があ
ってもレーザ光は温度の異なる場所を通りながら進むこ
とになり、熱歪みがレーザ光の位相に与える影響が平均
化されてレーザの発振モードが温度分布によって影響さ
れる度合いがずっと少なくなる。従って、スラブ形固体
レーザ装置は大出力で発振させることが可能で、かつL
・−ザビームの断面内の位相がよく揃っているので光学
的手段によってごく小さなスポットに収束できる特長を
有する。
The above-mentioned slab-type solid-state laser device solves this problem by using a slab-like or plate-like object as the laser medium, and inside the device, the laser light travels in a zigzag pattern while being totally reflected by a pair of plate surfaces. Therefore, even if there is a temperature distribution in the medium, the laser light will pass through places with different temperatures, and the effect of thermal strain on the phase of the laser light will be averaged out, and the laser oscillation mode will be affected by the temperature distribution. much less frequently. Therefore, the slab-type solid-state laser device can oscillate at high output and L
・The phase of the beam in its cross section is well aligned, so it has the advantage of being able to be focused into a very small spot by optical means.

第9図はこのスラブ形固体レーザ装置の構造を例示する
ものである。レーザ媒体10は偏平な矩形断面をもつN
d等の、レーザ活性物質を含むYAG等の結晶体やガラ
スであって、レーザ光りはその1対の板面10aを全反
射面として媒体10内を図の左右方向に前述のようにジ
グザグ状に進み、例えばブルースター角として知られて
いる所定の角度に形成去れ出画斜端面10cを介して出
入する。これら斜端面10cにそれぞれ対向して、全反
射ミラー21および部分反射ミラーである出力くクー2
2が配置され、レーザ媒体10とともにレーザ共振系を
構成スル。レーザビーム出力Loはもちろん出力ξクー
22側から取り出される。
FIG. 9 illustrates the structure of this slab-type solid-state laser device. The laser medium 10 has a flat rectangular cross section.
A crystal body such as YAG or glass containing a laser active substance such as d, etc., and the laser light travels inside the medium 10 in a zigzag pattern as described above in the horizontal direction in the figure, using the pair of plate surfaces 10a as total reflection surfaces. The image enters and leaves the image at a predetermined angle known as, for example, the Brewster's angle via the beveled end surface 10c. A total reflection mirror 21 and an output mirror 2 which is a partial reflection mirror are respectively opposed to these inclined end surfaces 10c.
2 are arranged to form a laser resonant system together with the laser medium 10. Of course, the laser beam output Lo is taken out from the output ξ 22 side.

レーザ媒体10は光励起する要があるので収納容器1を
設けてレーザ媒体10と1対の励起光源2をそれに収納
し、励起光源2の発生熱を除去しかつ高出力発振のため
にレーザ媒体lOの温度を極力下げるために冷却が必要
なので収納容器1を密閉構造にしてその内部に純水等の
冷却媒体Cを通流させる。この収納容器lは励起光源2
からの励起光ELを反射する鏡面に仕上げられた楕円状
の内面をもつ筒状の本体部1aと、その両端面を閉鎖す
る同しく内面が鏡面仕上げされた1対の蓋部1bとから
なり、この蓋部1bに明けた孔からレーザ媒体10およ
び励起光源2が容器内に装入され、それらの両端部が蓋
部1bによって密封的に支持される。レーザ媒体10は
その両斜端面10cを外部に露出させるように保持され
、この保持部の密閉は蓋部ibと抑え部材3との間に介
装されるふつうはOリングであるシール6によって保た
れる。
Since the laser medium 10 needs to be optically excited, a storage container 1 is provided and the laser medium 10 and a pair of excitation light sources 2 are housed therein to remove the heat generated by the excitation light source 2 and to provide the laser medium lO for high output oscillation. Since cooling is necessary to lower the temperature of the storage container 1 as much as possible, the storage container 1 is made into a closed structure and a cooling medium C such as pure water is passed through the inside of the storage container 1. This storage container l is the excitation light source 2.
It consists of a cylindrical main body part 1a having a mirror-finished elliptical inner surface that reflects excitation light EL from the main body 1a, and a pair of lid parts 1b whose inner surfaces are also mirror-finished and which close both end faces of the main body part 1a. The laser medium 10 and the excitation light source 2 are inserted into the container through the hole formed in the lid 1b, and both ends of the laser medium 10 and the excitation light source 2 are hermetically supported by the lid 1b. The laser medium 10 is held so that both inclined end faces 10c thereof are exposed to the outside, and this holding part is kept airtight by a seal 6, which is usually an O-ring, interposed between the lid part ib and the restraining member 3. dripping

同様に励起光源2はその電極2aを外部に突出させた状
態でその両端部を蓋部1bにより保持され、この保持部
が蓋部1bと別の抑え部材5との間に介装される上と同
様なシール6により密閉される。
Similarly, the excitation light source 2 is held at both ends by the lid part 1b with its electrode 2a protruding outside, and this holding part is interposed between the lid part 1b and another restraining member 5. It is sealed by a seal 6 similar to the above.

なお、収納容器lの内室の上下の半部はレーザ媒体lO
の斜端面10cに応じて図の左右方向に互いにずらされ
る。また、冷却媒体C用の導出人口1cは収納容器1の
本体部1aの頂部と底部にそれぞれ設けられる。
Note that the upper and lower halves of the inner chamber of the storage container l are occupied by the laser medium lO.
are shifted from each other in the left-right direction in the figure according to the inclined end surface 10c. Further, the outlet ports 1c for the cooling medium C are provided at the top and bottom of the main body portion 1a of the storage container 1, respectively.

レーザ媒体10は、その1対の板面10aを介して励起
光源2から励起光ELを受けてレーザ発振作用を行なう
が、励起光ELから受けるエネルギの大部分が最終的に
はその中で熱に変換されるので、これによる熱歪みを減
少させるためレーザ媒体lOは冷却媒体Cによって強力
に冷却される。この冷却作用はレーザ媒体10の面積の
広い1対の板面10aを介して主になされるので、図の
上下方向である厚み方向の温度勾配は僅少になるが、さ
らにその幅方向の温度勾配を減少させるため、第10図
に示すようにその1対の側面10bに熱絶縁11が設け
られる。この熱絶縁11としては、例えば熱絶縁性の良
好なシリコーンラバー系等の接着剤を図のような半円筒
形のガラスや金属の保持体12と側面10bとの間に充
填した上で硬化させ、あるいは樹脂等の熱絶縁材と金属
の保持具とを側面10b上に順次接着する。これにより
、レーザ媒体10内の熱流は第10図の上下方向にのみ
生じて左右方向にはほとんど生じなくなり、レーザ媒体
10内の幅方向の温度勾配従って熱歪みが実質上なくな
る。
The laser medium 10 receives the excitation light EL from the excitation light source 2 through its pair of plate surfaces 10a and performs a laser oscillation action, but most of the energy received from the excitation light EL is ultimately converted into heat therein. Therefore, the laser medium IO is strongly cooled by the cooling medium C to reduce the thermal distortion caused by this. Since this cooling effect is mainly performed through the pair of large plate surfaces 10a of the laser medium 10, the temperature gradient in the thickness direction, which is the vertical direction in the figure, is small, but the temperature gradient in the width direction is also small. In order to reduce this, a thermal insulation 11 is provided on the pair of side surfaces 10b as shown in FIG. The thermal insulation 11 is made by filling a silicone rubber adhesive with good thermal insulation properties between the semi-cylindrical glass or metal holder 12 and the side surface 10b as shown in the figure, and then hardening the adhesive. Alternatively, a heat insulating material such as resin and a metal holder are sequentially bonded onto the side surface 10b. As a result, the heat flow within the laser medium 10 occurs only in the vertical direction in FIG. 10, and hardly occurs in the horizontal direction, and the temperature gradient in the width direction within the laser medium 10, and therefore the thermal distortion, are substantially eliminated.

以上説明した従来のスラブ形固体レーザ装置では、高出
力のレーザ発振時にもレーザ媒体内の熱歪みが僅少なの
で、断面内で位相がよく揃った良質のレーザビームを取
り出すことができる。
In the conventional slab-type solid-state laser device described above, thermal distortion within the laser medium is slight even during high-output laser oscillation, so a high-quality laser beam with well-aligned phases within the cross section can be extracted.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、上述の従来のスラブ形固体レーザ装置では、
収納容器から外部に向けて露出するレーザ媒体の斜端面
付近にある熱絶縁やシールがレーザ光に照射されて焼損
しやすい問題がある。以下これを第11図と第12図を
参照して説明する。
However, in the conventional slab-type solid-state laser device mentioned above,
There is a problem in that thermal insulation and seals near the oblique end surface of the laser medium exposed to the outside from the storage container are easily irradiated with laser light and burnt out. This will be explained below with reference to FIGS. 11 and 12.

第11図は熱絶縁がレーザ光で照射される様子を示すた
めに、第9図からレーザ媒体10とそれとともにレーザ
共振系を構成するミラー21および22を抽出して図の
上側から見た状態を示す。レーザ媒体10の斜端面10
cから出射するレーザ光りは本来は完全な平行光である
べきはずであるが、実際には図のように若干の広がり角
をもつので、旦う−21または22から反射されたレー
ザ光りの一部が斜端面10cの両側方に露出する熱絶縁
11の端面11aに当たってそれを加熱する。かかる問
題を起こす散乱レーザ光の全光束に対する割合はもちろ
ん僅かなのであるが、スラブ形固体レーザ装置ではレー
ザ光りのエネルギ密度が5W/l111と非常に高いの
で、レーザ媒体10とミラー21または22との光軸合
わせに狂いがあったり、運転中の温度変化等によって狂
いが出ると熱絶縁11が短時間内に焼損してしまう。
FIG. 11 shows a state in which the laser medium 10 and the mirrors 21 and 22 that constitute the laser resonant system are extracted from FIG. 9 and viewed from the upper side of the figure in order to show how the thermal insulation is irradiated with laser light. shows. Beveled end surface 10 of laser medium 10
The laser light emitted from c should originally be perfectly parallel light, but in reality it has a slight divergence angle as shown in the figure, so part of the laser light reflected from -21 or 22 The portion hits the end surface 11a of the thermal insulation 11 exposed on both sides of the inclined end surface 10c and heats it. Of course, the proportion of the scattered laser light that causes this problem to the total luminous flux is small, but in a slab-type solid-state laser device, the energy density of the laser light is extremely high, 5 W/l111, so the interaction between the laser medium 10 and the mirror 21 or 22 is If the optical axis alignment is misaligned or misalignment occurs due to temperature changes during operation, the thermal insulation 11 will burn out within a short time.

熱絶縁11の焼損はそれ自体の損失に留まらず、焼損時
の揮発物ないし蒸発物がそれと直接に接するレーザ媒体
10の斜端面10cに蒸着してレーザ光を吸収するので
、この斜端面までが損傷してレーザ媒体が使えなくなっ
てしまう。斜端面10cに金属酸化膜等の反射防止膜が
設けられている場合、それが蒸着によりとくに汚染され
やすくその損傷が急激に起こりやすい。
The burnout of the thermal insulation 11 is not only a loss of itself, but also the volatile matter or evaporated matter at the time of burnout is deposited on the oblique end face 10c of the laser medium 10 that is in direct contact with it and absorbs the laser light, so that even this oblique end face is lost. The laser medium becomes unusable due to damage. If an antireflection film such as a metal oxide film is provided on the inclined end surface 10c, it is particularly susceptible to contamination by vapor deposition, and is likely to be damaged rapidly.

一 第12図はシールがレーザ光で照射される様子を示すた
め、第9図からレーザ媒体10と、旦う−21および2
2と、収納容器の蓋部1bと、それとレーザ媒体との間
に介装されるシール6とを抜き出して示すものである。
1. In order to show how the seal is irradiated with laser light, FIG. 12 shows the laser medium 10, U-21 and 2 from FIG.
2, the lid part 1b of the storage container, and the seal 6 interposed between it and the laser medium are extracted and shown.

上述のようにレーザ光束には若干の散乱光があるので、
ミラー21または22からの反射光の一部によってレー
ザ媒体10の斜端面10c付近を取り囲むシール6が加
熱されやすく、この場合にもレーザ媒体と箋う−との光
軸合わせに狂いがあり、あるいは使用中に狂いが発生す
ると、シール6が短時間内に焼損する。
As mentioned above, there is some scattered light in the laser beam, so
The seal 6 surrounding the vicinity of the oblique end surface 10c of the laser medium 10 is likely to be heated by a portion of the reflected light from the mirror 21 or 22, and in this case, the optical axis alignment between the laser medium and the paper may be misaligned, or If a misalignment occurs during use, the seal 6 will burn out within a short time.

さらに、反射光以外に、通常ならばレーザ媒体10内部
で全反射されるべきレーザ光が、レーザ媒体lOとシー
ル6との接触部において両者の屈折率の関係から全反射
されずにシール6内にもれ光として侵入し、シール6を
焼損することがある。
Furthermore, in addition to the reflected light, laser light that would normally be totally reflected inside the laser medium 10 is not totally reflected at the contact portion between the laser medium 1O and the seal 6 due to the relationship between the refractive indexes of both, and is not reflected inside the seal 6. The light may enter as leakage light and burn out the seal 6.

シール6が焼損すると、それに接するレーザ媒体10が
局部加熱されてそこを通過するレーザ光の波面を乱して
レーザ光束の質を低下させるほか、シールから冷却媒体
が漏れて蒸発するのでその際0− の潜熱によりレーザ媒体熱歪みにより破損し、あるいは
レーザ媒体の表面に水滴が付着してそのレンズ作用によ
りレーザ光が媒体内部に集光され、その局部加熱作用に
よりレーザ媒体が部分破壊することがある。さらには、
シールを漏れた水分によりレーザ媒体の斜端面10cの
反射防止膜が劣化してレーザ共振条件が悪影響を蒙りや
すい。
If the seal 6 burns out, the laser medium 10 in contact with it will be locally heated and the wavefront of the laser beam passing through it will be disturbed, reducing the quality of the laser beam.In addition, the cooling medium will leak from the seal and evaporate. - The laser medium may be damaged due to thermal distortion due to the latent heat of the laser medium, or water droplets may adhere to the surface of the laser medium and the laser beam may be focused inside the medium by its lens action, resulting in partial destruction of the laser medium due to its local heating effect. be. Furthermore,
Moisture leaking through the seal deteriorates the antireflection coating on the oblique end surface 10c of the laser medium, which tends to adversely affect laser resonance conditions.

かかる問題の解決策として、ミラー21および22の面
積をレーザ媒体10の断面積より小さくして、光軸合わ
せに多少の狂いがあっても熱絶縁11やシール6に散乱
光が当たらないようにすることはできるが、これにはミ
ラーの面積をかなり小さくする要があるので、レーザ媒
体から出たレーザ光束のかなりの部分がミラーに当たら
ずに散逸してレーザ光出力が著しく低下してしまう。
As a solution to this problem, the area of the mirrors 21 and 22 is made smaller than the cross-sectional area of the laser medium 10 to prevent scattered light from hitting the thermal insulation 11 and the seal 6 even if there is some deviation in optical axis alignment. Although it is possible to do this, it is necessary to make the area of the mirror considerably smaller, so a considerable portion of the laser beam emitted from the laser medium does not hit the mirror and is dissipated, resulting in a significant decrease in laser light output. .

また、従来からレーザ媒体10の板面10aの両端部に
小さなプリズムを設け、レーザ光をこのプリズムの端面
から出入させる構造が知られており、この手段ではレー
ザ光がレーザ媒体の斜端面から出入しないので熱絶縁や
シールの焼損を防止できるが、構造が複雑になるばか第
9図からも容易にわかるようにレーザ媒体の収納容器へ
の装入や取り付けが非常に厄介になる。
Furthermore, a structure is conventionally known in which small prisms are provided at both ends of the plate surface 10a of the laser medium 10, and the laser beam enters and exits from the end face of the prism. Although this prevents thermal insulation and seals from burning out, it does complicate the structure, and as can be easily seen from FIG. 9, it becomes extremely troublesome to insert and attach the laser medium to the storage container.

本発明はかかる問題を解決して、スラブ形レーザ媒体の
側面に設けられる熱絶縁やレーザ媒体と収納容器の間に
介装されるシールの焼損を有効に防止できる実用性の高
い固体レーザ装置を得ることを目的とする。
The present invention solves this problem and provides a highly practical solid-state laser device that can effectively prevent burnout of the thermal insulation provided on the side surface of the slab-type laser medium and the seal interposed between the laser medium and the storage container. The purpose is to obtain.

〔課題を解決するための手段〕[Means to solve the problem]

本発明によれば上述の熱絶縁の焼損防止の目的は、レー
ザ光を全反射するl対の板面と熱絶縁された1対の側面
とレーザ光が出入する1対の斜端面をもつスラブ状体に
形成されたレーザ媒体と、レーザ媒体を収納しその両斜
端面を外部に露出させるように両端部を保持する収納容
器と、レーザ媒体の斜端面に対向配置されてレーザ光を
反射する1対のミラーとを備えるレーザ装置に対して、
レーザ媒体の両側面上の熱絶縁物をミラーにより反射さ
れるレーザ光からそれぞれ保護する1対の遮光部材をレ
ーザ媒体の露出された両斜端面と各〔ラーとの間にレー
ザ媒体の側面に直交する方向の位置を独立に調整可能に
収納容器側に取り付けることによって遠戚される。
According to the present invention, the purpose of preventing the burnout of the thermal insulation described above is to create a slab having l pairs of plate surfaces that totally reflect the laser beam, a pair of thermally insulated side surfaces, and a pair of oblique end surfaces through which the laser beam enters and exits. A laser medium formed in a shape, a storage container that stores the laser medium and holds both ends thereof so that both oblique end faces are exposed to the outside, and a container that is disposed opposite to the oblique end faces of the laser medium to reflect laser light. For a laser device comprising a pair of mirrors,
A pair of light shielding members for protecting the thermal insulators on both sides of the laser medium from the laser light reflected by the mirrors are installed on the sides of the laser medium between both exposed oblique end faces of the laser medium and each mirror. This is achieved by attaching it to the storage container so that its position in the orthogonal direction can be adjusted independently.

上記構成中の遮光部材は例えば金属板としてその一辺を
いわば遮光カーテンの端として用い、ミラーからの反射
光に対してレーザ媒体の斜端面はすべて露出されるが側
面上の熱絶縁はカーテンの蔭に隠れるようにするのが好
適である。この遮光部材のカーテンの端のレーザ媒体の
側面と直角な方向の位置を調整する手段としては、後述
の実施例のように種々な機構を適宜利用できる。
The light shielding member in the above configuration is made of a metal plate, for example, and one side thereof is used as the edge of a light shielding curtain, so that the entire oblique end surface of the laser medium is exposed to the reflected light from the mirror, but the thermal insulation on the side surface is hidden behind the curtain. It is preferable to hide it behind. As a means for adjusting the position of the end of the curtain of the light shielding member in the direction perpendicular to the side surface of the laser medium, various mechanisms can be used as appropriate, as in the embodiments described below.

また、前述のシールの焼損防止の目的は、前記基本構造
の固体レーザ装置に対し、レーザ媒体と収納容器との間
に介装されるシールをミラーにより反射されるレーザ光
から保護する遮光部材をレーザ媒体の露出された両斜端
面と各ミラーとの間の収納容器の外部に配設しかつレー
ザ媒体に担持させることによって遠戚される。
Furthermore, the purpose of preventing burnout of the seal described above is to provide a solid-state laser device with the above-mentioned basic structure with a light shielding member that protects the seal interposed between the laser medium and the storage container from the laser light reflected by the mirror. It is distantly related by being disposed outside the storage container between both exposed oblique end surfaces of the laser medium and each mirror, and carried by the laser medium.

上記構成中の遮光部材の配設構造としては、レーザ媒体
の両端面に熱絶縁を抱持する保持体が設けられているの
を利用して、この保持体をレーザ媒体の斜端面より突出
するように延在させ、この延在部に遮光部材を取り付け
るのが好適である。
The arrangement structure of the light shielding member in the above configuration utilizes the fact that a holder that holds thermal insulation is provided on both end faces of the laser medium, and this holder protrudes from the oblique end face of the laser medium. It is preferable to extend the light shielding member in this way and attach a light shielding member to this extended portion.

さらには、この保持体の延在部の形状をミラーからの反
射光に対して熱絶縁を保護するように形成して置くのが
非常に有利である。かかる構造によれば、遮光部材のシ
ールに対する保護効果に加えて、熱絶縁に対する保護効
果をも同時に得ることができる。
Furthermore, it is very advantageous to shape the extension of this holder in such a way that it protects the thermal insulation against light reflected from the mirror. According to this structure, in addition to the protective effect for the seal of the light shielding member, the protective effect for thermal insulation can be obtained at the same time.

しかし、このシールの焼損防止用遮光部材を実際に使用
した結果、今度は遮光部材が散乱レーザ光により加熱さ
れてその表面に酸化膜が発生し、使用中に酸化膜が剥が
れてレーザ媒体の斜端面に付着するおそれが出てきた。
However, as a result of actually using the light-shielding member to prevent burnout of this seal, the light-shielding member was heated by the scattered laser light and an oxide film was formed on its surface, and during use, the oxide film peeled off and the laser medium was tilted. There is a risk that it may stick to the end surface.

この酸化膜による汚染は熱絶縁の焼損時はど深刻ではな
いが、レーザ発振効率を低下させ長期の使用中にはレー
ザ媒体を破損させるおそれなしとしないので、シールの
焼損防止に加えて遮光部材の過熱による酸化をも防止す
る要がある。
Contamination by this oxide film is not serious when the thermal insulation burns out, but it reduces laser oscillation efficiency and may damage the laser medium during long-term use. Therefore, in addition to preventing seal burnout, light shielding materials It is also necessary to prevent oxidation due to overheating.

本発明によればこの目的は、前記基本構造の固4 体レーザ装置に対し、レーザ媒体と収納容器との間に介
装されるシールをくラーにより反射されるレーザ光から
保護する遮光部材をレーザ媒体の露出された両斜端面と
各ミラーとの間の収納容器の外部に配設しかつ内部に冷
却媒体が通流される収納容器と熱伝導的に結合すること
によって達成される。
According to the present invention, this object is to provide a solid-state laser device having the above-mentioned basic structure with a light-shielding member that protects a seal interposed between the laser medium and the storage container from the laser light reflected by the cooler. This is achieved by thermally conductive coupling with a storage container that is disposed outside of the storage container between both exposed oblique end surfaces of the laser medium and each mirror, and into which a cooling medium flows.

この構成においても、レーザ媒体の両側面の熱絶縁を抱
持する保持体をレーザ媒体の斜端面から突出するように
延在させ、この保持体の延在部により遮光部材が案内な
いしは位置決めされた状態で遮光部材を収納容器と熱伝
導的に結合するのが有利であり、さらには保持体の延在
部の形状を果う−からの反射光に対して熱絶縁を保護す
るように形成して置くのが非常に有利である。
In this configuration as well, the holder that holds the thermal insulation on both sides of the laser medium extends so as to protrude from the oblique end surface of the laser medium, and the light shielding member is guided or positioned by the extending portion of the holder. It is advantageous to connect the light-shielding element with the storage container in a thermally conductive manner, and furthermore to form the extension of the holding body in such a way as to protect the thermal insulation against reflected light from the holder. It is very advantageous to keep it there.

さらに、上記のシールの焼損防止の目的は、本発明によ
れば、レーザ媒体表面のうち、少なくともシールとの接
触部近傍に、高反射率コーティングを施すことによって
、より一層確実に達成される。
Further, according to the present invention, the above-mentioned objective of preventing burnout of the seal is more reliably achieved by applying a high reflectance coating to at least the vicinity of the contact portion of the laser medium surface with the seal.

〔作用〕[Effect]

熱絶縁やシールの焼損保護は、レーザ発振効率を上げる
ためのレーザ光束の有効利用と相反関係にあって、とく
に運転中に生じ得るレーザ共振系内の光軸のずれに対し
て保護の安全率を見ると発振効率が犠牲になりやすいの
で、保護手段は随時調整可能にして置くのが望ましい。
Protecting heat insulation and seals from burnout is inversely related to the effective use of laser beam to increase laser oscillation efficiency, and the safety factor of protection is especially important against misalignment of the optical axis within the laser resonant system that may occur during operation. Since the oscillation efficiency is likely to be sacrificed, it is desirable to have a protective means that can be adjusted at any time.

また、問題の解決手段を従来のプリズムのようにレーザ
媒体側に設けたのでは、構造が複雑になってレーザ媒体
の収納容器への取り付けが厄介になる。
Furthermore, if a means to solve the problem is provided on the laser medium side like a conventional prism, the structure will be complicated and it will be difficult to attach the laser medium to the storage container.

本発明ではかかる点に着目して、熱絶縁やシールの保護
手段としての上記構成にいう遮光部材をいずれもレーザ
媒体の斜端面とミラーとの間の収納容器外に配設して、
構造を複雑化することなくその取り付は位置を調整自在
にする。
In the present invention, paying attention to this point, the light shielding member of the above configuration as a heat insulation and seal protection means is arranged outside the storage container between the inclined end surface of the laser medium and the mirror,
The mounting position can be adjusted freely without complicating the structure.

この遮光部材で熱絶縁を保護する場合は、熱絶縁が設け
られているレーザ媒体の側面と直交するその取付は位置
を簡単に調整可能にして置くことにより、レーザビーム
の全断面を最大限有効利用しながら熱絶縁を安全に保護
できるようにする。
When protecting the thermal insulation with this light shield, its mounting perpendicular to the side of the laser medium on which the thermal insulation is provided can be easily adjusted to maximize the utilization of the entire laser beam cross section. To be able to safely protect thermal insulation while using it.

さらに本発明では、この熱絶縁保護用遮光部材を1対設
け、かつそれらを互いに独立に調整可能とする。遮光部
材を1対とするのは、もちろんレーザ媒体の各側面に設
けられている熱絶縁をそれぞれ保護するためであるが、
それらをさらに独立調整可能とするのは、単に調整を容
易にするため遮光部材を例えば絞り機構としたのでは、
固体レーザ装置の運転中に生じ得る複雑な光軸のずれに
対応した調整が充分にできないからである。
Further, in the present invention, a pair of light shielding members for heat insulation protection are provided, and they can be adjusted independently of each other. Of course, the purpose of providing a pair of light shielding members is to protect the thermal insulation provided on each side of the laser medium, but
The reason why they can be adjusted independently is that the light shielding member is made into a diaphragm mechanism, for example, simply to make the adjustment easier.
This is because it is not possible to make sufficient adjustments to accommodate complicated optical axis deviations that may occur during operation of the solid-state laser device.

遮光部材でシールを保護する場合は、これをレーザ媒体
の収納容器外に露出された斜端面とミラーとの間の収納
容器外においてレーザ媒体に担持させる。これにより、
固体レーザ装置の運転中に遮光部材と斜端面との関係位
置が変化したり光軸のずれが生じたりすることがなくな
り、レーザビームを有効利用して発振効率を良好に保ち
ながら確実なシール保護効果を得ることができる。
When protecting the seal with a light shielding member, the seal is supported on the laser medium outside the storage container between the mirror and the inclined end surface exposed outside the laser medium storage container. This results in
During operation of the solid-state laser device, the relative position between the light-shielding member and the oblique end face will not change, and the optical axis will not shift, making effective use of the laser beam and ensuring good seal protection while maintaining good oscillation efficiency. effect can be obtained.

このシール保護効果とともに熱絶縁保護効果をも得るに
は、レーザ媒体の両側面の熱絶縁を抱持する保持体を斜
端面から延在させ、そこに遮光部=17 材を取り付けるとともに、この延在部の形状をミラーか
らの反射レーザ光に対して保護するように形成するのが
非常に有利である。
In order to obtain a heat insulation protection effect as well as this seal protection effect, a holder that holds the heat insulation on both sides of the laser medium is extended from the oblique end face, and a light shielding member = 17 is attached thereto. It is very advantageous to form the projection in such a way that it is protected against reflected laser light from the mirror.

シール保護用遮光部材自体を散乱レーザ光による過熱か
ら保護するには、上記構成にいうようにそれを内部に冷
却媒体が通流されて低温度に保たれている収納容器に対
して熱伝導的に結合することにより、この遮光部材が収
納容器を介して冷却媒体により有効に冷却されるように
する。また、この遮光部材を上述の熱絶縁保持体の延在
部により案内された状態で収納容器と熱伝導的に結合す
ることにより、運転中のその斜端面との関係位置の変化
や光軸のずれの発生をなくし、レーザ発振効率を良好に
保ちつつ確実なシール保護効果を得ることができる。
In order to protect the seal protection light shielding member itself from overheating due to scattered laser light, it must be thermally conductive to the storage container in which a cooling medium is passed through and kept at a low temperature, as described in the above configuration. By coupling the light shielding member to the cooling medium, the light shielding member is effectively cooled by the cooling medium through the storage container. In addition, by thermally conductively connecting this light shielding member to the storage container while being guided by the extension of the heat insulating holder described above, it is possible to prevent changes in the relative position of the light shielding member to the inclined end surface during operation, and to change the optical axis. It is possible to eliminate the occurrence of misalignment, maintain good laser oscillation efficiency, and obtain a reliable seal protection effect.

一方、ミラーからの反射光とは別の、レーザ媒・体内部
からシール内にレーザ光がもれ光として侵入してくるこ
とによるシールの焼損も、シールとの接触部近傍のレー
ザ媒体表面に高反射率コーティングを施せば、レーザ媒
体外部のシールに侵入18 しようとするレーザ光はコーテイング膜によってレーザ
媒体内部に反射されるので、確実に防止することができ
る。
On the other hand, burnout of the seal due to laser light leaking into the seal from inside the laser medium/body, separate from the reflected light from the mirror, can also occur on the surface of the laser medium near the contact area with the seal. If a high reflectance coating is applied, the laser light that attempts to enter the seal outside the laser medium will be reflected into the inside of the laser medium by the coating film, so that it can be reliably prevented.

〔実施例〕〔Example〕

以下、図を参照しながら本発明の実施例を詳しく説明す
る。第1図は熱絶縁保護用に遮光部材30を設ける本発
明による固体レーザ装置の要部を第9図に適合する形で
示す斜視図である。
Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a perspective view showing a main part of a solid-state laser device according to the present invention, which is provided with a light shielding member 30 for thermal insulation protection, in a form compatible with FIG. 9.

この図にはレーザ媒体10の出力くクー22側の斜端面
10cを含む端部が示されており、このスラブ形のレー
ザ媒体10はレーザ光りに対する全反射面と励起光を受
ける励起面と冷却媒体による冷却面とを兼ねる1対の板
面10aをもち、その1対の側面10bには半円筒状の
保持体12との間に熱絶縁11が設けられていて、その
端面11aが斜端面10cの側方に露出されている。レ
ーザ媒体10は第8図に示すように収納容器の蓋1bの
孔から装入され、斜端面10cを外部に露出させるよう
に端部が収納容器1に取り付けられる。
This figure shows the end portion of the laser medium 10 including the oblique end surface 10c on the output coupe 22 side. It has a pair of plate surfaces 10a that also serve as cooling surfaces by a medium, and a thermal insulation 11 is provided between the pair of side surfaces 10b and a semi-cylindrical holder 12, and the end surface 11a is an inclined end surface. It is exposed on the side of 10c. As shown in FIG. 8, the laser medium 10 is inserted through a hole in the lid 1b of the storage container, and its end portion is attached to the storage container 1 so that the oblique end surface 10c is exposed to the outside.

図には上述の蓋1bとともレーザ媒体10の端部を支持
する抑え部材3が示されており、この抑え部材3は蓋1
bの段違い部に沿うように屈曲された金属板から形成さ
れ、その中央部にレーザ媒体の斜端面10cを露出させ
る窓3aを有し、複数個の取付孔3bの個所で蓋にねし
止めされる。この抑え部材3の左右の端部には、遮光部
材30を取り付けるための長短2種の脚3Cが設けられ
、それらの先端に平らな板状の遮光部材30をそれぞれ
ねじ止めできるようになっている。あるいは、脚3Cの
長さをすべて同じにかつ先端を斜面にして置き、遮光部
材30をレーザ媒体10の斜端面10cと平行な姿勢で
取り付けてもよい。抑え部材3の窓3aから僅かに突出
して露出される斜端面10cとこの遮光部材との間隔は
小さいほど熱絶縁11の保護に有利なので、脚3cの長
さは数−を越えない程度とされる。
The figure shows a restraining member 3 that supports the end of the laser medium 10 together with the lid 1b described above.
It is formed from a metal plate bent along the uneven part of b, has a window 3a in the center that exposes the oblique end surface 10c of the laser medium, and is screwed onto the lid at a plurality of mounting holes 3b. be done. The left and right ends of the holding member 3 are provided with legs 3C of two types, long and short, for attaching the light shielding member 30, and the flat plate-shaped light shielding member 30 can be screwed to the tip of each leg 3C. There is. Alternatively, the legs 3C may all have the same length and their tips are inclined, and the light shielding member 30 may be attached in a position parallel to the inclined end surface 10c of the laser medium 10. The smaller the distance between the slanted end surface 10c, which is slightly exposed from the window 3a of the restraining member 3, and the light shielding member, the more advantageous it is to protecting the thermal insulation 11. Therefore, the length of the leg 3c is set not to exceed several -. Ru.

遮光部材30の脚3Cへの取付孔30aは図示のように
左右方向に偏平ないわゆる長孔に形成され、図でδで示
された方向および調整代で、遮光部材30のレーザ媒体
10の側面10bに直交する方向の位置を、この例では
ねじ4による取り付は時に微調整できるようになってい
る。出力もクー22により反射されたレーザ光りの一部
が熱絶縁llの露出された端部11aに当たってそれを
前述のように焼損させることがあるので、この反射レー
ザ光から熱絶縁11を遮蔽するように遮光部材30の図
のδの方向の位置が微調整される。この調整は0.1〜
0.211II11の精度ですることが必要である。
The attachment hole 30a of the light shielding member 30 to the leg 3C is formed into a so-called long hole that is flat in the left-right direction as shown in the figure, and the side surface of the laser medium 10 of the light shielding member 30 is formed in the direction indicated by δ in the figure and with an adjustment allowance. The position in the direction perpendicular to 10b can sometimes be finely adjusted using screws 4 in this example. As for the output, a part of the laser light reflected by the laser beam 22 may hit the exposed end 11a of the thermal insulation 11 and burn it out as described above, so it is necessary to shield the thermal insulation 11 from this reflected laser beam. The position of the light shielding member 30 in the direction of δ in the figure is finely adjusted. This adjustment is from 0.1 to
It is necessary to do this with an accuracy of 0.211II11.

第2図および第3図はこの遮光部材30の位置の微調整
精度を上げるための構造をその一方について示すもので
ある。第2図の例では、取付板31と山形に形成された
金属の板ばね32と調整ねじ33とが設けられ、ねじ4
により前述の脚3Cに取り付けると同時に板ばね32の
端を固定できるようになっている。同図(a)はその平
面図で、そのX−X矢視断面である同図(ロ)に示すよ
うに、板ばね32のやや大きいめの孔32aを介して取
付板31にねし合わされるねじ33により板ばね33を
押し広げる程度を調整して、図の左側の遮光辺32aの
位置をδで示す方向に高精度で微調整できる。
FIGS. 2 and 3 show one structure for increasing the accuracy of fine adjustment of the position of the light shielding member 30. FIG. In the example shown in FIG. 2, a mounting plate 31, a metal plate spring 32 formed in a chevron shape, and an adjusting screw 33 are provided, and a screw 4 is provided.
This allows the end of the leaf spring 32 to be fixed at the same time as being attached to the aforementioned leg 3C. Figure (a) is a plan view of the same, and as shown in figure (b), which is a cross section taken along the line X-X, the plate spring 32 is screwed onto the mounting plate 31 through the slightly larger hole 32a. By adjusting the extent to which the leaf spring 33 is pushed out using the screw 33, the position of the light-shielding side 32a on the left side of the figure can be finely adjusted in the direction indicated by δ.

第3図の例では、U字形の案内部材34とその両=21 脚の内側に切られた溝34aにより案内される金属のス
ライド板35と板ばね36と細目ねし37が設けられ、
案内部材34の取付孔34bの個所で前述の脚3Cにね
じ止めされる。ねじ37は板ばね36と案内部材34の
孔34cを通ってスライド板35にねじ合わされており
、このねじ込み深さを加減することによりスライド板3
5の遮光辺35aの位置をδで示す方向に高精度で微調
整できる。
In the example shown in FIG. 3, a U-shaped guide member 34 and both of them = 21, a metal slide plate 35 guided by a groove 34a cut inside the leg, a leaf spring 36, and a fine screw 37 are provided.
The guide member 34 is screwed to the aforementioned leg 3C at the mounting hole 34b. The screw 37 is screwed into the slide plate 35 through the leaf spring 36 and the hole 34c of the guide member 34, and by adjusting the screwing depth, the slide plate 3
The position of the light shielding side 35a of No. 5 can be finely adjusted in the direction indicated by δ with high precision.

これら第2図の板ばね32や第3図のスライド板35は
いずれも遮光部材の役目を果たすもので、第1図の遮光
部材30と同様にステンレス鋼等のレーザ光に対して高
い反射率をもつ金属で構成するのが好適である。いずれ
の構造でも、ねじ等の手段で簡単に遮光部材の位置を高
精度で調整することができ、この調整を必要に応じて随
時行なうことにより、熱絶縁をξラーからの反射レーザ
光から遮蔽して安全に保護するとともに、レーザ光が遮
光部材により遮られる程度を最低にできる。レーザ媒体
の幅が通常のように20mm程度で、遮光部材を0.2
+o+の精度で調整した場合、反射レーザ光の2− 損失は2%程度に過ぎない。
The leaf spring 32 in FIG. 2 and the slide plate 35 in FIG. 3 both serve as light shielding members, and like the light shielding member 30 in FIG. It is preferable that the structure is made of a metal with a In either structure, the position of the light shielding member can be easily adjusted with high precision using screws or other means, and by making this adjustment as needed, the thermal insulation can be shielded from the reflected laser light from the ξ. In addition to providing safe protection, the extent to which the laser beam is blocked by the light blocking member can be minimized. The width of the laser medium is usually about 20 mm, and the light shielding member is 0.2 mm wide.
When adjusted with an accuracy of +o+, the 2- loss of the reflected laser beam is only about 2%.

第4図はシール6の保護用に遮光部材4oを設ける本発
明による固体レーザ装置の実施例の要部を第9図に適合
する形で示す斜視図である。
FIG. 4 is a perspective view showing a main part of an embodiment of the solid-state laser device according to the present invention, in which a light shielding member 4o is provided for protecting the seal 6, in a form compatible with FIG.

この第4図にもレーザ媒体10の斜端面10cを含む端
部が示されており、このレーザ媒体10のl対の側面に
は前と同様に保持体12との間に熱絶縁11が設けられ
るが、この例では1対の保持体12の各端部がレーザ媒
体10の斜端面10cを越えて外方に突出するように延
在され、かっこの延在部12aの形状が図示のように熱
絶縁11を外側から隠すように形成される。これにより
、出力くシー22から反射されるレーザ光り中の斜端面
10cの幅よりも広がる部分が熱絶縁11に入射しない
ようにすべて遮られる。またこの例では、かかる1対の
延在部12aの一方の先端の外側部には、遮光部材4o
を取り付ける都合上申さな切り火き12bが図のように
設けられる。
FIG. 4 also shows the end portion of the laser medium 10 including the oblique end surface 10c, and the thermal insulation 11 is provided between the l pair of side surfaces of the laser medium 10 and the holder 12 as before. However, in this example, each end of the pair of holders 12 extends so as to protrude outward beyond the oblique end surface 10c of the laser medium 10, and the shape of the extending portion 12a of the bracket is as shown in the figure. It is formed so as to hide the thermal insulation 11 from the outside. As a result, the portion of the laser beam reflected from the output beam 22 that is wider than the width of the inclined end face 10c is completely blocked from entering the thermal insulation 11. Further, in this example, a light shielding member 4o is provided on the outer side of one tip of the pair of extension portions 12a.
For the sake of convenience, a small opening 12b is provided as shown in the figure.

レーザ媒体10を収納容器に取り付ける際には、通例の
ようにまず第9図の収納容器lの蓋1bの孔からレーザ
媒体10を装入し、次にその各端部の保持体12を含む
周囲にOリング等のシールを嵌め、ついでレーザ媒体1
0の端部に第4図の抑え部材3の窓3aを嵌め合わせた
上で、抑え部材3をその取付孔3bの個所で1ilbに
ねし止めする。これによって、レーザ媒体lOは斜端面
10cを外部に露出させた状態で収納容器1に取り付け
られ、かつその各端部において蓋1bとの間に介装され
たシール6により弾性的にかつ冷却媒体Cに対して密封
的に支承される。この実施例でも、抑え部材3は蓋1b
の外形に適合するように屈曲した板状に形成されるが、
遮光部材40用の取付脚は設けられない。
When attaching the laser medium 10 to a storage container, as usual, the laser medium 10 is first inserted through the hole in the lid 1b of the storage container l shown in FIG. Fit a seal such as an O-ring around the periphery, and then insert the laser medium 1.
After fitting the window 3a of the holding member 3 shown in FIG. As a result, the laser medium IO is attached to the storage container 1 with the oblique end surface 10c exposed to the outside, and is elastically and cooled by the seal 6 interposed between the lid 1b and the cooling medium at each end. C is supported in a sealed manner. Also in this embodiment, the holding member 3 is the lid 1b.
It is formed into a bent plate shape to fit the external shape of the
A mounting leg for the light shielding member 40 is not provided.

第4図の遮光部材40は、その遮光部41に明けられた
窓41aを1対の保持体12の延在部12aに嵌め込ん
だ状態でそれに取り付けることにより、レーザ媒体10
従ってその斜端面10cに対して位置決めされる。なお
、この例では遮光部材40は抑え部材3と同様に屈曲し
た形状に形成されているが、平坦な板状であっても差し
支えない。この遮光部材40の若干例が第5図に示され
ているので、以下これ壱参照しながら説明する。
The light shielding member 40 shown in FIG. 4 is attached to the extending portions 12a of a pair of holders 12 with the windows 41a formed in the light shielding portion 41 being fitted into the extension portions 12a of the pair of holders 12.
Therefore, it is positioned relative to the inclined end surface 10c. Note that in this example, the light shielding member 40 is formed in a bent shape like the restraining member 3, but it may also be in a flat plate shape. Some examples of this light shielding member 40 are shown in FIG. 5, and will be explained below with reference to this one.

遮光部材40は、保持体12を含めたレーザ媒体10の
断面に対応する細長い窓41aをもち、その上下の2辺
が遮光辺であって、その両端部41bおよび41cの個
所で1対の保持体12の延在部12aに嵌め込まれる。
The light shielding member 40 has an elongated window 41a corresponding to the cross section of the laser medium 10 including the holder 12, the upper and lower two sides of the window 41a are light shielding sides, and a pair of holders are provided at both ends 41b and 41c. It is fitted into the extending portion 12a of the body 12.

窓41aの左側の端部41bは第4図の左側の延在部に
応じて半円形に、右側の端部41cは右側の延在部の切
り欠き12bに適合した形状にそれぞれ形成され、いず
れも遮光部材40を正確に位置決めできるよう精密に仕
上げられる。
The left end 41b of the window 41a is formed in a semicircular shape according to the left extension in FIG. 4, and the right end 41c is formed in a shape that matches the notch 12b of the right extension. The light shielding member 40 is also precisely finished so that the light shielding member 40 can be accurately positioned.

第5図(a)とその側面である第5図(ハ)に示すよう
に、遮光部材40の左右の端部の裏側にはその位置決め
を正確にできるよう突起部42および43が設けられ、
それらの内側が窓の端部41bおよび41cと同形状に
仕上げられる。この内の右側の突起部43にはねし孔4
3aが切られ、これに第4図のねじ44をねし合わせて
前述の切り欠き12bに軽く押し付けるだけで、遮光部
材40を保持体12の延在部12a従ってレーザ媒体1
0にしっかり固定できる。
As shown in FIG. 5(a) and its side surface, FIG. 5(c), protrusions 42 and 43 are provided on the back side of the left and right ends of the light shielding member 40 to enable accurate positioning.
Their inner sides are finished in the same shape as the window edges 41b and 41c. The right protrusion 43 has a punch hole 4.
3a is cut, and by simply tightening the screw 44 shown in FIG.
It can be firmly fixed at 0.

第5図(a)の例では、遮光部材4oの窓41aの上下
5 の遮光辺はそれらの間隔がレーザ媒体10の上下の板面
10aの間隔つまり斜端面10cの高さより僅かに小さ
いめになるよう正確に仕上げられ、遮光部材40をレー
ザ媒体10に取り付けた状態で出力もシー22からの反
射レーザ光が斜端面10cには入射するが板面10aに
接するシール6には当たらないようにされる。この条件
を満たすには、この窓41aの仕上げをいかに正確にし
ても、遮光部材4oの取り付けが正確でないと意味がな
いが、脆いレーザ媒体10のクラック防止用に斜端面1
0cの周縁等の稜に0.2mm程度の面取りがされてい
るので、この程度の取り付は誤差内に収まるようにする
ことができる。
In the example of FIG. 5(a), the distance between the upper and lower light shielding sides 5 of the window 41a of the light shielding member 4o is slightly smaller than the distance between the upper and lower plate surfaces 10a of the laser medium 10, that is, the height of the oblique end surface 10c. It is finished accurately so that the light shielding member 40 is attached to the laser medium 10, and the output is so that the reflected laser light from the sheet 22 enters the inclined end face 10c but does not hit the seal 6 in contact with the plate face 10a. be done. In order to satisfy this condition, no matter how accurate the finish of the window 41a is, it is meaningless unless the light shielding member 4o is installed accurately.
Since the edges such as the periphery of 0c are chamfered by about 0.2 mm, installation of this degree can be done within the error range.

第5図(C)の例では、遮光部材4oの窓41aの上下
辺にに1対の遮光突起41dが設けられ、それらの対向
辺が遮光辺として用いられる。これら遮光突起41dの
突出高さは例えば0.2mm程度とされ、対向遮光辺の
間隔を同図(a)の場合よりもやや小さめにすることに
より、シール6に対する保護効果をより完全にすること
ができる。
In the example of FIG. 5(C), a pair of light-shielding protrusions 41d are provided on the upper and lower sides of the window 41a of the light-shielding member 4o, and their opposing sides are used as light-shielding sides. The protrusion height of these light-shielding protrusions 41d is, for example, about 0.2 mm, and by making the interval between the opposing light-shielding sides slightly smaller than in the case of FIG. I can do it.

26− 第5図(d)の例では、遮光突起41eが窓41aの一
方の辺側にのみ設けられ、その突出高さは同図(C)の
場合よりもさらに大きいめにされる。かかる遮光突起4
1eは、便宜上第12図を利用してM線で示したように
ごクー21および22がレーザ媒体IOの軸線から傾い
た位置に置かれる場合に好適である。
26- In the example of FIG. 5(d), the light shielding protrusion 41e is provided only on one side of the window 41a, and its protrusion height is made larger than that of the case of FIG. 5(C). Such a light shielding protrusion 4
1e is suitable when the rollers 21 and 22 are placed at a position inclined from the axis of the laser medium IO, as shown by line M in FIG. 12 for convenience.

かかる傾いた果う−配置は、スラブ形固体レーザ装置に
特有なレーザビームの矩形断面を正方形断面に近付けて
、その利用面でのいわゆるアスペクト比を改善する上で
有用である。図かられかるように、この場合にはレーザ
媒体10の一方の板面に接するシール6が反射レーザ光
をとくに受けやすいので、遮光突起41eを一方側にの
み設けたものであって、第5図(d)の遮光部材40が
出力ミラー22側であるとすると、反対側の全反射ξク
ー2↓側には遮光突起41eが窓41aの上側に設けた
遮光部材が用いられる。
Such a tilted arrangement is useful in bringing the rectangular cross-section of the laser beam, which is characteristic of slab-type solid-state laser devices, closer to a square cross-section and improving the so-called aspect ratio in its use. As can be seen from the figure, in this case, since the seal 6 in contact with one plate surface of the laser medium 10 is particularly susceptible to reflected laser light, the light-shielding protrusion 41e is provided only on one side, and the fifth Assuming that the light shielding member 40 in Figure (d) is on the output mirror 22 side, a light shielding member in which a light shielding protrusion 41e is provided above the window 41a is used on the opposite total reflection ξ 2↓ side.

第6図はシールの保護用の遮光部材50自身をレーザ光
の照射による過熱から保護するようにした本発明の実施
例の要部を第9図に適合する形で示す斜視図である。
FIG. 6 is a perspective view showing, in a form compatible with FIG. 9, a main part of an embodiment of the present invention in which the light shielding member 50 itself for protecting the seal is protected from overheating due to laser beam irradiation.

この実施例におけるレーザ媒体10.シール6および抑
え部材3は前の第4図と大きく変わる所はなくそれらの
取り付は要領も同じである。また、遮光部材50がシー
ル6を出力ξジー22からの反射レーザ光がそれに当た
らないように保護するのも同じであるが、その結果この
遮光部材50自身がかなりの反射レーザ光により、ある
いは時としてレーザ媒体IOの斜端面10cからの出射
レーザ光の一部によっても照射されて過熱状態になり、
著しい酸化を受ける場合があるため、それを有効に冷却
するようにしたのがこの実施例である。
Laser medium 10 in this example. The seal 6 and the restraining member 3 are not significantly different from those shown in FIG. 4, and their installation is the same. Also, the light shielding member 50 protects the seal 6 from being hit by the reflected laser light from the output As a result, it is also irradiated with a part of the laser beam emitted from the oblique end surface 10c of the laser medium IO and becomes overheated.
This embodiment is designed to effectively cool the oxidation since it may be subject to significant oxidation.

この遮光部材50は、酸化防止の点からステンレス鋼等
の酸化されにくい金属材料で構成することができるが、
実際には熱伝導率のよい銅やアルミで構成する方がむし
ろ成績がよく、この実施例では遮光部51とそれと連続
した結合部52とから構成されている。
The light shielding member 50 can be made of a metal material that is difficult to oxidize, such as stainless steel, from the viewpoint of preventing oxidation.
In reality, it is better to use copper or aluminum, which has good thermal conductivity, to achieve better results, and in this embodiment, it is made up of a light shielding part 51 and a connecting part 52 that is continuous with the light shielding part 51.

遮光部51は反射レーザ光等を受けて過熱されやすい部
分なので、熱容量を増すため前の実施例よりかなり厚肉
2例えば10wmの厚みに形成され、図示の例ではその
細長な窓51aの上下辺に1対の遮光突起51dを備え
、窓51aの両端部をレーザ媒体10の斜端面10cか
ら突出された保持体12の延在部12aに嵌め込むこと
により、遮光部材50の斜端面10c従ってシール6に
対する関係位置を正確に決め得るようになっている。こ
の嵌め込み面は高精度を要するが、延在部12aをこの
面に沿って滑動し得るようにして置くのが運転時のレー
ザ媒体10の熱膨張を吸収する上で望ましい。
The light shielding part 51 is a part that is easily overheated by receiving reflected laser light, etc., so in order to increase the heat capacity, it is formed much thicker than the previous embodiment, for example, 10 wm, and in the illustrated example, the upper and lower sides of the elongated window 51a are is provided with a pair of light shielding protrusions 51d, and by fitting both ends of the window 51a into the extending portion 12a of the holder 12 protruding from the oblique end surface 10c of the laser medium 10, the oblique end surface 10c of the light shielding member 50 is sealed. The position relative to 6 can be determined accurately. Although this fitting surface requires high precision, it is desirable to place the extension portion 12a so that it can slide along this surface in order to absorb thermal expansion of the laser medium 10 during operation.

結合部52は図のように平坦な板状に形成されて取り付
は孔52aを備え、この孔を介して第8図の収納容器l
の蓋1bの例えば励起光源2を支承する突起部の周面1
dにねじ止め等の手段で取り付けることにより、遮光部
材50がその結合部52の下面全体で収納容器1と熱伝
導的に結合される。この取り付けないし結合に当たって
は、取り付は孔52aの径を取り付けねじに対してやや
大きいめにして置き、遮光部51の窓51aの保持体1
2の延在部との嵌め合わせ個所に無理が掛からないよう
にするのQ−− が望ましい。
The connecting portion 52 is formed into a flat plate shape as shown in the figure, and has a hole 52a for attachment, through which the storage container l shown in FIG.
For example, the peripheral surface 1 of the protrusion that supports the excitation light source 2 of the lid 1b.
By attaching the light shielding member 50 to the storage container 1 by means of screws or the like, the light shielding member 50 is thermally conductively coupled to the storage container 1 over the entire lower surface of the coupling portion 52 thereof. In this installation or connection, the diameter of the hole 52a is set slightly larger than the installation screw, and the holder 1 of the window 51a of the light shielding part 51 is
It is desirable that no force be applied to the fitting part with the extension part 2.

第7図は前の第5図に対応して遮光部材50の若干例を
示すものである。同図(a)の例では、遮光部51の窓
51aは平坦な上下辺を備え、これらの辺が遮光辺とさ
れる。図の窓51aの両端部51bおよび51cが保持
具12の延在部12aに嵌め込まれる個所である。この
側面図である同図(ハ)には、結合部52の取り付は孔
52aの個所で上述の収納容器1の蓋1bの突起部の周
面1dに取り付ける要領が簡単に示されている。同図(
C)の例では、遮光部51の窓51aの上下辺に第6図
と同様に遮光突起51dが設けられる。同図(イ)の例
では遮光突起51eが窓51aの一方の辺側にのみ設け
られる。これら遮光突起51dおよび51eのもつ機能
は第5図の場合と同様なので説明を省略する。
FIG. 7 shows some examples of the light shielding member 50 corresponding to the previous FIG. 5. In the example shown in FIG. 5A, the window 51a of the light shielding portion 51 has flat upper and lower sides, and these sides are the light shielding sides. Both ends 51b and 51c of the window 51a shown in the figure are the portions that are fitted into the extending portion 12a of the holder 12. This side view (c) simply shows how to attach the coupling part 52 to the circumferential surface 1d of the projection of the lid 1b of the storage container 1 at the hole 52a. . Same figure (
In the example C), light-shielding protrusions 51d are provided on the upper and lower sides of the window 51a of the light-shielding portion 51, as in FIG. In the example shown in FIG. 5A, the light shielding protrusion 51e is provided only on one side of the window 51a. The functions of these light-shielding protrusions 51d and 51e are the same as in the case of FIG. 5, so the explanation will be omitted.

この実施例における遮光部材50は、第9図に示すよう
に冷却媒体Cが内部に通流される収納容器1に熱伝導的
に結合されるので、反射レーザ光等から受ける熱量が収
納容器lを介して冷却媒体Cに速やかに放熱され、従来
のように過熱されるお30− それをなくすことができる。
The light shielding member 50 in this embodiment is thermally conductively coupled to the storage container 1 through which the cooling medium C flows, as shown in FIG. 9, so that the amount of heat received from the reflected laser beam etc. The heat is quickly radiated to the cooling medium C through the cooling medium C, thereby eliminating the problem of overheating as in the conventional case.

第8図に、シール6の近傍のレーザ媒体10表面に高反
射率コーティングを施した本発明の実施例を示す。図に
はレーザ媒体10とシール6およびコーテイング膜60
のみを示し、他の部材は省略しである。第8図(a)は
シール6がレーザ媒体10の縁端に取り付けられ、この
シール6とレーザ媒体10との接触部近傍のレーザ媒体
10の表面に高反射率コーティングを施した例である。
FIG. 8 shows an embodiment of the present invention in which the surface of the laser medium 10 near the seal 6 is coated with a high reflectance coating. The figure shows a laser medium 10, a seal 6, and a coating film 60.
1, and other members are omitted. FIG. 8(a) shows an example in which a seal 6 is attached to the edge of the laser medium 10, and a high reflectance coating is applied to the surface of the laser medium 10 near the contact area between the seal 6 and the laser medium 10.

第8図0))および(C)は、シール6をレーザ媒体l
Oの鈍角側に合わせて配置した場合の例である。第8図
中)ではシール6の近傍のみ、第8図(C)ではシール
6から外側のレーザ媒体10表面金体に高反射率コーテ
ィングを施しである。高反射率コーティングであるコー
ティング膜60の材料としては、誘電体や金属が適当で
あるが、コーテイング膜60へのレーザ光の入射角依存
性を考慮すると、金属がより有利である。
Figure 8 0)) and (C) show that the seal 6 is attached to the laser medium l.
This is an example of the case where it is arranged along the obtuse angle side of O. In FIG. 8(C), a high reflectance coating is applied only to the surface of the laser medium 10 near the seal 6, and in FIG. 8(C), the metal body on the surface of the laser medium 10 outside the seal 6 is coated. Although dielectrics and metals are suitable as materials for the coating film 60, which is a high-reflectance coating, metals are more advantageous when considering the dependence of the laser beam on the coating film 60 on the incident angle.

なお、シール6は第6図に示すように励起光源2からの
光が直接到達しない位置Gζ配されているので、コーテ
イング膜50が励起光源2からの光により劣化すること
はない。よって、レーザ媒体10表面に対するコーティ
ングの最も内側は収納容器1の内側壁面までとすること
ができるので、コーテイング膜60の幅の制約はゆるい
Note that, as shown in FIG. 6, the seal 6 is located at a position Gζ where the light from the excitation light source 2 does not directly reach, so that the coating film 50 is not deteriorated by the light from the excitation light source 2. Therefore, since the innermost part of the coating on the surface of the laser medium 10 can extend up to the inner wall surface of the storage container 1, restrictions on the width of the coating film 60 are relaxed.

以上述べたように1本発明では熱絶縁11を保護する遮
光部材30やシール6を保護する遮光部材40または5
0.およびコーテイング膜60が設けられるが、その応
用として本発明をかかる保護手段を組み合わせた形でも
実施をすることができる。また、実施例の説明からもわ
かるように、本発明はこれらの例示に限らず種々の態様
ないしは具体構造で実施して効果を上げることができる
As described above, in the present invention, the light shielding member 30 that protects the thermal insulation 11 and the light shielding member 40 or 5 that protects the seal 6
0. and a coating film 60, but as an application thereof, the present invention can be practiced in combination with such protection means. In addition, as can be seen from the description of the embodiments, the present invention is not limited to these examples, and can be implemented in various embodiments or specific structures to achieve greater effects.

〔発明の効果〕〔Effect of the invention〕

以上の記載のとおり本発明では、レーザ光を全反射する
1対の板面と熱絶縁された1対の側面とレーザ光が出入
する1対の斜端面をもつスラブ状体に形成されたレーザ
媒体と、レーザ媒体を収納しその内科端面を外部に露出
させるように両端部を保持する収納容器と、レーザ媒体
の斜端面に対向配置されてレーザ光を反射する1対の5
ラーとを備えるレーザ装置において、レーザ媒体の両側
面上の熱絶縁物をミラーにより反射されるレーザ光から
それぞれ保護する1対の遮光部材をレーザ媒体の露出さ
れた内科端面と各ミラーとの間にレーザ媒体の側面に直
交する方向の位置を独立に調整可能に収納容器側に取り
付けることにより、あるいはレーザ媒体と収納容器との
間に介装されるシールをミラーにより反射されるレーザ
光から保護する遮光部材をレーザ媒体の露出された内科
端面と各ミラーとの間の収納容器の外部に配設しかつレ
ーザ媒体に担持させることにより、固体レーザ装置の構
造を複雑化させることなく実用的な構造で熱絶縁やシー
ルを反射レーザ光による焼損から有効に保護して、固体
レーザ装置の運転信頼性を向上することができる。
As described above, in the present invention, the laser beam is formed in a slab-like body having a pair of plate surfaces that totally reflect the laser beam, a pair of thermally insulated side surfaces, and a pair of oblique end surfaces through which the laser beam enters and exits. A medium, a storage container that stores the laser medium and holds both ends of the medium so as to expose the internal medical end surface to the outside, and a pair of 5's that are disposed opposite to the oblique end surface of the laser medium and reflect the laser beam.
In a laser device equipped with a mirror, a pair of light shielding members each protecting thermal insulators on both sides of the laser medium from laser light reflected by the mirrors is provided between the exposed end face of the laser medium and each mirror. By attaching it to the storage container so that its position perpendicular to the side surface of the laser medium can be adjusted independently, or by protecting the seal interposed between the laser medium and the storage container from the laser light reflected by the mirror. By disposing a light-shielding member outside the storage container between the exposed end face of the laser medium and each mirror and carrying it on the laser medium, it is possible to achieve a practical structure without complicating the structure of the solid-state laser device. The structure can effectively protect thermal insulation and seals from burnout caused by reflected laser light, thereby improving the operational reliability of solid-state laser devices.

さらには、レーザ媒体と収納容器との間に介装されるシ
ールをミラーにより反射されるレーザ光から保護する遮
光部材をレーザ媒体の露出された内科端面と各ミラーと
の間の収納容器の外部に配設しかつ収納容器と熱伝導的
に結合することによ3 す、遮光部材自身が反射レーザ光等により過熱される危
険を防止して、固体レーザ装置の運転信頼性を一層向上
させることができる。
Furthermore, a light shielding member that protects a seal interposed between the laser medium and the storage container from laser light reflected by the mirror is installed on the outside of the storage container between the exposed end face of the laser medium and each mirror. 3. To further improve the operational reliability of a solid-state laser device by preventing the risk of the light-shielding member itself being overheated by reflected laser light, etc. by disposing the light-shielding member and thermally conductively coupling it with the storage container. I can do it.

またシールに対しては、1ラーにより反射されるレーザ
光による焼損を防止できるだけでなく、レーザ媒体表面
のうち、シールとの接触部近傍に高反射率コーティング
を施すことにより、レーザ媒体内部からのもれ光による
焼損をも防止することができる。
In addition, not only can the seal be prevented from being burnt out by the laser beam reflected by the laser, but it can also be coated with a high reflectance coating on the surface of the laser medium near the area where it comes in contact with the seal. Burnout caused by leakage light can also be prevented.

このように、本発明によって熱絶縁やシール、さらには
遮光部材自身も安全に保護できるだけでなく、レーザ共
振系内のレーザ光の損失を最低に抑えて、スラブ形固体
レーザ装置を高効率かつ高出力運転することができる。
As described above, the present invention not only makes it possible to safely protect thermal insulation, seals, and even the light shielding member itself, but also minimizes the loss of laser light within the laser resonant system, making it possible to operate slab-type solid-state laser devices with high efficiency and high performance. Capable of output operation.

なお、本発明による熱絶縁保護用遮光部材は、レーザ媒
体を収納する容器の外側に設けられるので、固体レーザ
装置の運転中に種々の要因でレーザ共振系内の光軸合わ
セに狂いやずれが発生しても、遮光部材の位置の修正な
いし微調整を必要に応じて随時に行なって固体レーザ装
置を常に最良34 の条件で運転できる。遮光部材は1対設けられるので、
上述の光軸の狂いないしずれがどのような形で起きても
、両速光部材の位置を固体レーザ装置の運転条件を最良
にするように精密に微調整できるからである。
Note that, since the light shielding member for thermal insulation protection according to the present invention is provided outside the container housing the laser medium, there is a possibility that the optical axis alignment within the laser resonant system may be misaligned or misaligned due to various factors during operation of the solid-state laser device. Even if this occurs, the solid-state laser device can always be operated under the best 34 conditions by correcting or fine-tuning the position of the light shielding member as needed. Since one pair of light shielding members is provided,
This is because, regardless of the manner in which the above-mentioned deviation or deviation of the optical axis occurs, the position of the dual-speed optical member can be precisely and finely adjusted to optimize the operating conditions of the solid-state laser device.

また、本発明によるシール保護用遮光部材はレーザ媒体
により担持ないし案内されるので、運転中にその位置の
狂いやずれが発生するおそれはほとんどなく、万一その
位置の調整が必要になっても、遮光部材が収納容器の外
部に配設されているので容易にその位置の調整ないし修
正できる。
In addition, since the light shielding member for seal protection according to the present invention is supported or guided by a laser medium, there is almost no possibility that its position will be distorted or shifted during operation, and even if its position needs to be adjusted, Since the light shielding member is disposed outside the storage container, its position can be easily adjusted or corrected.

このように、本発明はスラブ形固体レーザ装置について
従来からの課題であった熱絶縁やシールの焼損防止とレ
ーザ共振系内のレーザ光の損失防止とを同時に解決し、
さらにはかかる防止手段としての遮光部材の過熱をも防
止できる実用的な手段を提供しうるものである。
In this way, the present invention simultaneously solves the conventional problems of slab-type solid-state laser devices: preventing burnout of thermal insulation and seals, and preventing loss of laser light within the laser resonant system.
Furthermore, it is possible to provide a practical means for preventing overheating of the light shielding member as such a prevention means.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第1θ図までが本発明に関し、第1図は熱絶
縁保護用遮光部材を組み込んだ本発明による固体レーザ
装置の実施例の要部の斜視図、第2図はその遮光部材の
構造例を示す平面図および断面図、第3図はその遮光部
材の異なる構造例を示す平面図、第4図はシール保護用
遮光部材を組み込んだ本発明による固体レーザ装置の実
施例の要部の斜視図、第5図はその遮光部材の若干例を
示す平面図と側面図、第6図はシール保護用遮光部材の
過熱防止手段を組み込んだ本発明による固体レーザ装置
の要部の斜視図、第7図はその遮光部材の若干例を示す
平面図と側面図、第8図はレーザ媒体に高反射率コーテ
ィングを施した状態を示す断面図、第9図は本発明の対
象としての固体レーザ装置の構造例を示す断面図、第1
O図はレーザ媒体の構造を示す断面図である。第1I図
以降は従来技術に関し、第11図は従来技術による固体
レーザ装置のレーザ共振系の平面図、第12図はその側
面図である。これらの図において、 1:収納容器、3c:遮光部材取付用脚、6:シールな
いしはOリング、10:レーザ媒体、10a:板面、1
0b:側面、lOc:斜端面、ll:熱絶縁、21:全
反射ミラー、22:出力ミラー、30:遮光部材、30
a:遮光部材取付孔、31:取付板、32:遮光用板ば
ね、32a:遮光部、33:調整ねじ、34:案内部材
、34a:案内溝、35:遮光スライド板、35a:遮
光部、36:板ばね、40:遮光部材、41:遮光部材
の遮光部、50:遮光部材、51:遮光部材の遮光部、
52:遮光部材の結合部、60:コーテイング膜、C:
冷却媒体、δ:遮光部材の調整方向ないしは調整代、E
L:励起光、L:レーザ光、LO:q)
Figures 1 to 1θ relate to the present invention; Figure 1 is a perspective view of the main parts of an embodiment of a solid-state laser device according to the present invention incorporating a light shielding member for heat insulation protection, and Figure 2 is a perspective view of the light shielding member. A plan view and a sectional view showing a structural example, FIG. 3 is a plan view showing a different structural example of the light shielding member, and FIG. 4 is a main part of an embodiment of a solid-state laser device according to the present invention incorporating a light shielding member for seal protection. 5 is a plan view and a side view showing some examples of the light shielding member, and FIG. 6 is a perspective view of the main part of the solid-state laser device according to the present invention incorporating means for preventing overheating of the light shielding member for seal protection. , FIG. 7 is a plan view and a side view showing some examples of the light shielding member, FIG. 8 is a cross-sectional view showing a state in which a high reflectance coating is applied to a laser medium, and FIG. 9 is a solid state as an object of the present invention. Cross-sectional view showing a structural example of a laser device, 1st
Figure O is a cross-sectional view showing the structure of the laser medium. FIG. 1I and subsequent figures relate to the prior art; FIG. 11 is a plan view of a laser resonant system of a solid-state laser device according to the prior art, and FIG. 12 is a side view thereof. In these figures, 1: storage container, 3c: leg for attaching light shielding member, 6: seal or O-ring, 10: laser medium, 10a: plate surface, 1
0b: side surface, lOc: oblique end surface, ll: thermal insulation, 21: total reflection mirror, 22: output mirror, 30: light shielding member, 30
a: light shielding member mounting hole, 31: mounting plate, 32: light shielding plate spring, 32a: light shielding part, 33: adjustment screw, 34: guide member, 34a: guide groove, 35: light shielding slide plate, 35a: light shielding part, 36: leaf spring, 40: light shielding member, 41: light shielding part of light shielding member, 50: light shielding member, 51: light shielding part of light shielding member,
52: Joint portion of light shielding member, 60: Coating film, C:
Cooling medium, δ: Adjustment direction or adjustment amount of light shielding member, E
L: excitation light, L: laser light, LO: q)

Claims (1)

【特許請求の範囲】 1)レーザ光を全反射する1対の板面と熱絶縁された1
対の側面とレーザ光が出入する1対の斜端面とをもつス
ラブ状体に形成されたレーザ媒体と、レーザ媒体を収納
しその両斜端面を外部に露出させるように両端部を保持
する収納容器と、レーザ媒体の斜端面に対向配置されて
レーザ光を反射する1対のミラーとを備えるレーザ装置
において、レーザ媒体の両側面上の熱絶縁物をミラーに
より反射されるレーザ光からそれぞれ保護する1対の遮
光部材をレーザ媒体の露出された両斜端面と各ミラーと
の間にレーザ媒体の側面に直交する方向の位置を独立に
調整可能に収納容器側に取り付けてなることを特徴とす
る固体レーザ装置。 2)レーザ光を全反射する1対の板面とレーザ光が出入
する1対の斜端面とをもつスラブ状体に形成されたレー
ザ媒体と、レーザ媒体を収納しその両斜端面を外部に露
出させるように両端部を保持する収納容器と、レーザ媒
体の斜端面に対向配置されてレーザ光を反射する1対の
ミラーとを備えるレーザ装置において、レーザ媒体と収
納容器との間に介装されるシールをミラーにより反射さ
れるレーザ光から保護する遮光部材をレーザ媒体の露出
された両斜端面と各ミラーとの間の収納容器の外部に配
設しかつレーザ媒体に担持させてなることを特徴とする
固体レーザ装置。 3)レーザ光を全反射する1対の板面とレーザ光が出入
する1対の斜端面とをもつスラブ状体に形成されたレー
ザ媒体と、レーザ媒体を収納しその両斜端面を外部に露
出させるように両端部を保持しかつ内部に冷却媒体が通
流される収納容器と、レーザ媒体の斜端面に対向配置さ
れてレーザ光を反射する1対のミラーとを備えるレーザ
装置において、レーザ媒体と収納容器との間に介装され
るシールをミラーにより反射されるレーザ光から保護す
る遮光部材をレーザ媒体の露出された両斜端面と各ミラ
ーとの間の収納容器の外部に配設しかつ収納容器と熱伝
導的に結合してなることを特徴とする固体レーザ装置。 4)レーザ光を全反射する1対の板面とレーザ光が出入
する1対の斜端面とをもつスラブ状体に形成されたレー
ザ媒体と、レーザ媒体を収納しその両斜端面を外部に露
出させるように両端部を保持する収納容器と、レーザ媒
体の斜端面に対向配置されてレーザ光を反射する1対の
ミラーとを備えるレーザ装置において、レーザ媒体表面
のうち、少なくともレーザ媒体と収納容器との間に介装
されるシールとの接触部近傍に、高反射率コーティング
を施してなることを特徴とする固体レーザ装置。
[Claims] 1) A pair of plate surfaces that totally reflect laser light and a thermally insulated substrate 1
A laser medium formed in a slab-like body having a pair of side surfaces and a pair of oblique end surfaces through which laser light enters and exits, and a storage that stores the laser medium and holds both ends so that both oblique end surfaces are exposed to the outside. In a laser device that includes a container and a pair of mirrors that are arranged opposite to each other on an inclined end surface of a laser medium and reflect laser light, the thermal insulators on both sides of the laser medium are each protected from the laser light reflected by the mirrors. A pair of light shielding members are attached to the storage container between both exposed oblique end surfaces of the laser medium and each mirror so that the position in a direction perpendicular to the side surface of the laser medium can be independently adjusted. solid-state laser device. 2) A laser medium formed in a slab-like body having a pair of plate surfaces that totally reflect the laser beam and a pair of oblique end surfaces through which the laser beam enters and exits, and a laser medium that houses the laser medium and exposes both oblique end surfaces to the outside. In a laser device that includes a storage container that holds both ends so as to be exposed, and a pair of mirrors that are arranged opposite to the oblique end surface of the laser medium and reflect the laser beam, an intervening device is provided between the laser medium and the storage container. A light-shielding member for protecting a seal to be displayed from laser light reflected by the mirror is disposed outside the storage container between both exposed oblique end surfaces of the laser medium and each mirror, and is carried by the laser medium. A solid-state laser device featuring: 3) A laser medium formed in a slab-like body having a pair of plate surfaces that totally reflect the laser beam and a pair of oblique end surfaces through which the laser beam enters and exits, and a device that houses the laser medium and exposes both oblique end surfaces to the outside. A laser device comprising: a storage container that holds both ends of the laser medium so as to be exposed and allows a cooling medium to flow therein; and a pair of mirrors that are placed oppositely on the oblique end surface of the laser medium and reflect the laser beam. A light shielding member for protecting a seal interposed between the storage container and the storage container from laser light reflected by the mirror is disposed outside the storage container between both exposed inclined end surfaces of the laser medium and each mirror. A solid-state laser device characterized in that the laser device is thermally conductively coupled to a storage container. 4) A laser medium formed in a slab-like body having a pair of plate surfaces that totally reflect the laser beam and a pair of oblique end surfaces through which the laser beam enters and exits, and a laser medium that houses the laser medium and exposes both oblique end surfaces to the outside. In a laser device including a storage container that holds both ends so as to be exposed, and a pair of mirrors that are arranged opposite to the oblique end surface of the laser medium and reflect the laser beam, at least the portion of the laser medium surface that is connected to the storage container is A solid-state laser device characterized in that a high reflectance coating is applied near the contact portion with a seal interposed between the container and the container.
JP1146991A 1988-06-22 1989-06-09 Solid-state laser device Expired - Lifetime JP2720521B2 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP8260088 1988-06-22
JP63-82600 1988-06-22
JP1-48055 1989-02-28
JP4805589 1989-02-28
JP1-123597 1989-05-17
JP12359789 1989-05-17

Publications (2)

Publication Number Publication Date
JPH0372687A true JPH0372687A (en) 1991-03-27
JP2720521B2 JP2720521B2 (en) 1998-03-04

Family

ID=27293175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1146991A Expired - Lifetime JP2720521B2 (en) 1988-06-22 1989-06-09 Solid-state laser device

Country Status (1)

Country Link
JP (1) JP2720521B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7605345B2 (en) * 2002-03-14 2009-10-20 Hitachi Zosen Corporation Method and device for prevention of adhesion of dirt and contamination on optical parts in laser beam machine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58168374A (en) * 1982-03-12 1983-10-04 ウエスターン・エレクトリック・カムパニー・インコーポレーテッド Hvconference telephone circuit
JPS6078155U (en) * 1983-11-01 1985-05-31 ウシオ電機株式会社 Laser oscillation device for position indication
JPS6147299A (en) * 1984-08-11 1986-03-07 株式会社パイロット Pen point for pipe pen
JPS61212078A (en) * 1985-03-18 1986-09-20 Toshiba Corp Slab-type laser device
JPS61158851U (en) * 1985-03-25 1986-10-02
JPS63114184A (en) * 1986-10-31 1988-05-19 Hoya Corp Slab type laser to which reflecting film is formed
JPS63188980A (en) * 1987-01-31 1988-08-04 Toshiba Corp Slab-shaped solid-state laser device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58168374A (en) * 1982-03-12 1983-10-04 ウエスターン・エレクトリック・カムパニー・インコーポレーテッド Hvconference telephone circuit
JPS6078155U (en) * 1983-11-01 1985-05-31 ウシオ電機株式会社 Laser oscillation device for position indication
JPS6147299A (en) * 1984-08-11 1986-03-07 株式会社パイロット Pen point for pipe pen
JPS61212078A (en) * 1985-03-18 1986-09-20 Toshiba Corp Slab-type laser device
JPS61158851U (en) * 1985-03-25 1986-10-02
JPS63114184A (en) * 1986-10-31 1988-05-19 Hoya Corp Slab type laser to which reflecting film is formed
JPS63188980A (en) * 1987-01-31 1988-08-04 Toshiba Corp Slab-shaped solid-state laser device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7605345B2 (en) * 2002-03-14 2009-10-20 Hitachi Zosen Corporation Method and device for prevention of adhesion of dirt and contamination on optical parts in laser beam machine

Also Published As

Publication number Publication date
JP2720521B2 (en) 1998-03-04

Similar Documents

Publication Publication Date Title
US5751750A (en) Laser system and method with thermally compensated optics
JPH01105586A (en) Solid laser apparatus
EP0652614B1 (en) Solid-state laser device
EP0422122B1 (en) Improved unitary solid-state laser
JPH04259271A (en) Slab or strip waveguide laser
CN105493359B (en) Hot lock
JPH0372687A (en) Solid-state laser device
JP2664392B2 (en) Laser device
KR100322691B1 (en) Second harmonic generator
KR970063520A (en) Dual Wall Microwave Plasma Foundation Applicator
US4653061A (en) Slab geometry laser device
US4024466A (en) Laser containing a laser resonator
US5625638A (en) Sealed crystalline windows for hollow laser fibers
EP0853357B1 (en) Face-cooled optic cell for high-power laser
US4170763A (en) Conductively cooled laser pumping assembly
JP3323313B2 (en) Semiconductor laser module
US6709118B2 (en) Device for the beam guiding of a laser beam
US4181900A (en) Laser pumping assembly
US6282227B1 (en) Diode-pumped double frequency solid-state laser
JP2588931B2 (en) Solid state laser
JPH0322579A (en) Slab type solid-state laser
JP4325036B2 (en) aperture
EP3467971B1 (en) Solid-state laser device
JP3146660B2 (en) Slab type solid-state laser device
JPH0661550A (en) Solid-state laser device