JPH0372276B2 - - Google Patents

Info

Publication number
JPH0372276B2
JPH0372276B2 JP15878582A JP15878582A JPH0372276B2 JP H0372276 B2 JPH0372276 B2 JP H0372276B2 JP 15878582 A JP15878582 A JP 15878582A JP 15878582 A JP15878582 A JP 15878582A JP H0372276 B2 JPH0372276 B2 JP H0372276B2
Authority
JP
Japan
Prior art keywords
indole
reaction
tryptophan
organic solvent
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15878582A
Other languages
Japanese (ja)
Other versions
JPS5948093A (en
Inventor
Masaharu Oooka
Yukihiro Yoshikawa
Nobuyuki Kawashima
Nobuhiro Kawashima
Shosuke Nagai
Takao Takano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP15878582A priority Critical patent/JPS5948093A/en
Publication of JPS5948093A publication Critical patent/JPS5948093A/en
Publication of JPH0372276B2 publication Critical patent/JPH0372276B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明はむンドヌルを原料ずしお氎ず混和しな
いがむンドヌルず混和する有機溶媒の存圚䞋、酵
玠反応により−トリプトフアンを補造するに際
し、未反応むンドヌルを効率的に分離回収しお
−トリプトフアンを補造する方法に関するもので
ある。 むンドヌルを原料ずしお酵玠反応たたは醗酵反
応により埗られるトリプトフアンは未反応むンド
ヌルを含有するずむンドヌル特有の臭気を有する
こずなどから、医薬甚たたは飌料添加剀甚ずも補
品䞭に未反応むンドヌルを含たないこずが望たれ
おきた。 埓来、むンドヌルを原料の぀ずし酵玠反応に
より−トリプトフアンを補造するに際し、未反
応のむンドヌルを反応溶液から陀去する方法ずし
おは氎蒞気蒞留による方法が知られおいる特公
昭57−800。 この方法のように未反応のむンドヌルは氎蒞気
蒞留により留去できるが、むンドヌルの蒞気圧は
氎のそれにくらべお䜎いので、その留去には倚量
の氎蒞気を必芁ずする。゚ネルギヌコストが高く
な぀た今日、この方法は工業的な方法ずは蚀え
ず、この問題を解決するこずが埓来から匷く望た
れおいた。 本発明者らは、この問題を解決すべく鋭意怜蚎
した結果、基質であるむンドヌルず混和するが氎
ず混和しない有機溶媒の存圚䞋、酵玠を甚い−
トリプトフアンを補造し、反応終了埌この反応液
を分液するこずにより未反応むンドヌルが陀去で
きるこずを芋出し、本発明の方法を完成するに到
぀た。 すなわち、氎ず混和しないがむンドヌルず混和
する有機溶媒の存圚䞋、埮生物を甚いた反応を実
斜するず、有機溶媒盞はむンドヌルを氎盞ぞ䟛絊
する圹割ず同時にむンドヌルを氎盞から抜出する
圹割も果たしおいる。このため、氎盞ず有機溶媒
盞での反応が盞のたゝ実斜されおいる堎合は、
反応終了埌、反応液をただ分液しお有機溶媒盞を
分離すれば、未反応むンドヌルを含たない−ト
リプトフアン反応溶液を埗るこずができる。 本発明の方法によれば、未反応むンドヌルを確
実に陀去できるばかりでなく、分液回収されたむ
ンドヌルを含む有機溶媒盞はそのたた次の反応に
再䜿甚できるので、その工業的意矩はきわめお倧
きい。 本発明の方法に適甚される−トリプトフアン
の補造法ずしおは、䟋えば゚シ゚リヒダ・コリの
存圚䞋−セリンずむンドヌルより補造する方
法、たた、゚シ゚リヒダ・コリおよびシスヌドモ
ナス・プチヌダの存圚䞋むンドヌルずDL−セリ
ンより補造する方法、゚シ゚リヒダコリおよびシ
ナヌドモナス・プンクタヌタの存圚䞋むンドヌル
ずDL−セリンより補造する方法、ア゚ロバクタ
ヌ・ア゚ロゲネスの存圚䞋むンドヌルずピルビン
酞、アンモニアより補造する方法である。 これ等のトリプトフアンの補造はむンドヌルず
混和するが氎ず混和しない有機溶媒を甚いた氎盞
ずの盞系で実斜する。すなわち、有機溶媒を䜿
甚すれば、反応に甚いられる酵玠がむンドヌルに
より阻害を受けるような堎合氎盞䞭のむンドヌル
濃床を酵玠掻性を阻害する濃床以䞋に保ちながら
反応を実斜するこずができる。 本発明の方法で適甚される有機溶媒ずしおは、
氎ず混和しないでむンドヌルず混和する有機溶媒
であれば䜿甚可胜である。実際䞊はむンドヌルの
抜出溶媒であるず同時にトリプトフアン補造のた
めの反応溶媒でもあるので反応に䜿甚する埮生物
の掻性に圱響を䞎えないこずが重芁である。この
ような有機溶媒ずしおは、䟋えはベンれン、トル
゚ン、クロルベンれンなどの芳銙族炭化氎玠、メ
チルむ゜ブチルケトン、ゞむ゜ブチルケトンなど
のケトン類、ク゚ン酞゚ステル類、−ブチルア
セテヌト、む゜アミルアセテヌト、゚チルブチレ
ヌトなどの゚ステル類、アニ゜ヌルなどの゚ヌテ
ル類などが奜たしい。 本発明の方法では、䞊蚘のようなむンドヌルず
混和し氎ず混和しない有機溶媒を酵玠含有液に添
加するこずにより、酵玠の掻性を䜎䞋させるむン
ドヌルを有機溶媒盞にほずんど溶解させ、有機溶
媒盞ず氎盞間のむンドヌルの分配比より氎盞䞭の
むンドヌル濃床を実質的に阻害濃床以䞋に抑えお
反応を進行させるこずができる。 たた、本発明に甚いられる酵玠類は、必ずしも
玔粋である必芁はなく、通垞、それぞれの酵玠の
生産菌の培逊液から遠心分離などの方法により採
取した生菌䜓、その凍結菌䜓、たたは也燥菌䜓で
もよく、これらの菌䜓を磚砕、自己消化、超音波
凊理などの凊理により埗られた菌䜓凊理物、さら
にはこれらの菌䜓からの抜出物ならびに該抜出物
より埗られる酵玠等の粗補物が甚いられる。 本発明の方法においお反応は反応媒䜓、むンド
ヌルその他の基質、酵玠及びその他必芁な物を混
合しお実斜する。 反応媒䜓ずしおの有機溶媒は前蚘のような、む
ンドヌルず混和し、氎ず混和しないものであれば
良いが、実際䞊は反応に䜿甚する酵玠に応じ、反
応条件䞋で、溶媒自身が酵玠の掻性劣化を起さな
いものを遞ぶ必芁がある。 䜿甚する有機溶媒は酵玠含有液ず有機溶媒ずの
盞間におけるむンドヌルの分配比、あらかじめ
枬定した酵玠含有液䞭でのむンドヌルによる阻害
濃床からその䜿甚量を決めるこずができる。 以䞊の反応に぀いお、むンドヌルずたたは
DL−セリンから−トリプトフアンを補造する
䟋を以䞋に瀺す。 この方法においお、酵玠ずしお゚シ゚リヒア・
コリ倉異株を䜿甚するが、゚シ゚リヒア・コリ倉
異株を含有する液においお、むンドヌルの阻害濃
床はおよび800ppmである。 埓぀お、むンドヌルを氎盞䞭、この濃床以䞋に
分配する有機溶媒、䟋えば、トル゚ン、クロルベ
ンれン、ク゚ン酞゚チル、メチルむ゜ブチルケト
ン、アニ゜ヌルなどを遞択しお䜿甚するこずがで
きる。 䟋えば、トル゚ンを遞択した堎合、20wt濃
床のむンドヌル溶液を䜿甚すれば、むンドヌルは
゚シ゚リヒア・コリ倉異株を含有する液䞭に
720ppm以䞋で溶解し、前蚘の阻害濃床以䞋で反
応を実斜するこずができる。 同様に、他の溶媒では、぀ぎのようなむンドヌ
ル濃床にすれば反応条件䞋酵玠含有液䞭のむンド
ヌル濃床を800ppm以䞋にするこずができる。す
なわち、ク゚ン酞゚チルでは40wt、メチルむ
゜ブチルケトンでは50wt、アニ゜ヌルでは
30wtおよびモノクロベンれンでは20wtであ
る。 䞊蚘の−トリプトフアン芁求性゚シ゚リヒ
ア・コリのトリプトフアナヌれ欠損倉異株を炭玠
および窒玠源ならびに無機塩を含有する培地を甚
いお−トリプトフアンの酵玠的な補造を実斜す
るには、たず奜気性の条件䞋28〜40℃、PH〜
の条件で゚シ゚リヒア・コリ倉気株を培逊し、菌
䜓をその培逊液のたたたたは培地から分離しおピ
リドキザヌルリン酞塩および−セリン、無機物
を溶解した溶液に懞濁させる。PH7.5〜9.5奜たし
くはPH〜の条件䞋氎ず混和しないがむンドヌ
ルず混和する有機溶媒に溶解したむンドヌル溶液
を䞀括、あるいは連続的に加え20〜40℃の範囲で
反応を行い−トリプトフアンを生成せしめる。 この際、有機溶媒の䜿甚量は反応条件䞋での酵
玠含有液盞ず有機溶媒盞ずの間のむンドヌル分配
比ず、むンドヌル䜿甚量により決たるため、各皮
有機溶媒によりその䜿甚量は異なるが、通垞は酵
玠含有液盞䞭のむンドヌル濃床が800ppm以䞋、
工業的に奜たしくは750ppm以䞋になるように決
めれば良い。 この際、反応生成物である−トリプトフアン
は酵玠含有液䞭に結晶ずしお析出しおくるが、こ
の反応条件䞋では、反応の進行に䜕ら圱響を䞎え
ない。 この補造法においお、基質にDL−セリンを甚
いおも䜕ら差し぀かえない。すなわち、この際は
セリンラセマヌれずしおシナヌドモナス・プテむ
ヌダMT−10182、たたはシナヌドモナス・プ
ンクタヌタMT−10243を甚いるこずにより
有機溶媒による掻性劣化を受けるこずなく−ト
リプトフアンを高収率で埗るこずができる。 埗られた反応液は生成した−トリプトフア
ン、未反応原料、有機溶媒および酵玠等を含有す
る反応混合物であり、この反応液を有機溶媒盞ず
氎盞に分液する。 本発明の方法では、通垞、反応混合物をたず
盞に分液し、分液埌、溶媒盞を回収する。氎盞、
すなわち、−トリプトフアンを含有する反応混
合液からは、そこに含たれる酵玠を陀去しお、
−トリプトフアンを取埗する。反応混合物䞭に酵
玠ず有機溶媒ずが共存した状態では氎盞ず有機溶
媒盞の盞間の界面が䞍明確になるこずがあり分
液か困難ずなるこずがある。 このようなずきは、公知の方法、䟋えば遠心分
離機にかけるこずにより容易に分液分離するこず
ができる。この際、䜿甚した有機溶媒で再び抜
出・分液を繰り返すずむンドヌルの陀去効果は䞀
段ず向䞊する。 たた、分液するさい、氎溶液䞭の−トリプト
フアンは結晶が析出したたゝでも良いが溶解した
状態であれば未反応むンドヌルの抜出効果は䞀局
良い。 分液する時の枩床は氎あるいは䜿甚した有機溶
媒の沞点以䞋あるいは氎−有機溶媒の共沞する堎
合はその沞点以䞋で実斜する事が望たしい。 なお分液回収されたむンドヌル溶液はその溶液
のたゝ次の反応に䜿甚しおも䜕ら問題ない。 反応液䞭の未反応むンドヌルを抜出含有する有
機溶媒を分液分離した埌、反応混合物䞭から反応
に䜿甚した酵玠を陀去する方法は特に限定される
ものではない。工業的に陀去する有効な方法ずし
おは䟋えば次の方法が奜たしく実斜できる。すな
わち有機溶媒を陀去した埌の反応混合物䞭に鉱酞
を添加し液のPHを〜ずする。しかる埌に必芁
に応じお加熱する。このような方法で酵玠の凝集
を促進させ、酵玠の凝集物を過等の方法により
陀去するこずができる。酵玠を陀去した反応溶液
は濃瞮しお−トリプトフアンを埗るこずができ
る。 以䞊の方法により反応溶液䞭の未反応むンドヌ
ルは有機溶媒䞭に効果的に溶解分液される。未反
応むンドヌルを含有する有機溶媒は必芁により新
しい溶媒を远加したり新むンドヌルを補充远加し
お次の反応に䜿甚する。 本発明の方法がむンドヌルを基質の぀ずしお
酵玠の存圚䞋−トリプトフアンを補造する際、
有効な方法である理由は、回収されたむンドヌル
の再䜿甚が可胜なこずにある。すなわち、䞀般に
酵玠反応で−トリプトフアンを補造する際反応
混合物䞭より反応に䜿甚した酵玠などを䞀般的な
方法で分離し、次いで−トリプトフアンを単離
するが、この際埗られる未反応原料を含む溶液を
そのたゝ再䜿甚するず酵玠掻性を阻害するこずが
倚く、工業化する堎合倧きな問題であ぀た。しか
るに本発明の方法にしたがい有機溶媒により反応
混合物䞭より未反応むンドヌルの抜出を実斜する
ず−トリプトフアン結晶䞭のむンドヌル含有率
を䜎枛できるばかりでなく、有機溶媒で抜出され
たむンドヌルはその溶液状態でそのたた次の反応
に再䜿甚しおも䜕ら酵玠掻性に阻害を䞎えるこず
なく反応が進行する。 本発明の方法は、単に−トリプトフアン補品
䞭のむンドヌルを陀去する目的だけでなく、原料
であるむンドヌルを回収再䜿甚する点で極めお工
業䞊の意矩は倧きい。 以䞋、実斜䟋により本発明の方法を説明する。 実斜䟋  リン酞䞀カリ、リン酞二カリ、硫安および塩化
カルシりム、硫酞鉄などのミネラル、酵母゚キ
ス、ポリペプトンなどの存圚䞋゚シ゚リヒダ・コ
リを含んだ菌䜓をPH7.0で30℃の条件䞋、空気を
吹き蟌みながらグルコヌス、むンドヌルを添加し
ながら培逊を実斜する。たた同様の培地にグルコ
ヌスのみを添加しながらPH7.0、30℃の条件䞋、
空気を吹き蟌みながらシナヌドモナス・プチヌダ
を含んだ菌䜓を培逊する。それぞれの菌䜓は40時
間埌に30〜35の濃床たで培逊され、通垞の
超遠心分離機により含氎率75〜85の湿最塊ず
しお取り出すこずができる。 次にDL−セリン11.3、硫酞アンモニりム6.0
、ピリドキザヌルリン酞10mgおよび蒞留氎66
を入れた300mlフラスコをかきたぜながら35℃で
PHを8.5に29アンモニア氎で調敎する。 次に゚シ゚リヒダ・コリを含んだ菌䜓塊4.0
、シナヌドモナス・プチヌダを含んだ菌䜓塊
2.5を加え35℃で良くかきたぜ分散させる。 さらにむンドヌル11.5ゞむ゜ブチルケトン
26.8に溶解した溶液を加え、35℃で40時間回転
数90rpmでかきたぜ反応させる。 反応終了埌、撹拌を止め静眮し盞に分離した
䞊盞のゞむ゜ブチルケト盞を分液し、曎に同液量
のゞむ゜ブチルケトンを加え、90rpmで30分撹拌
したのち静眮し先きず同様にしおゞむ゜ブチルケ
トン盞を分液回収した。 この結果、反応終了埌反応系に残存しおいた未
反応むンドヌルは、回目のゞむ゜ブチルケトン
分液により85回収され、さらに回目の抜出分
液により99回収されおいた。むンドヌル分析は
ガスクロマトグラフむヌにより実斜した。 この回収ゞむ゜ブチルケトンは、必芁量のむン
ドヌルを補絊し、次の反応に甚いおも䜕ら問題な
か぀た。 実斜䟋  実斜䟋ず同様にしお、トル゚ン45.7を甚い
反応を実斜した。反応では、撹拌回転数640rpm
で実斜した。反応終了埌、反応系は均䞀の゚マル
ゞペン系にな぀おいるため、盞の界面をは぀き
りさせるため遠心分離機にかけた。 䞊盞のトル゚ン盞を分液し、さらに同量のトル
゚ンを加え、未反応むンドヌルの抜出を繰返し
た。 この結果、反応終了埌の反応液䞭の未反応むン
ドヌルに察し、回目の抜出で87、回目の抜
出で99.9が回収された。 なお、このむンドヌルを含んだ回収トル゚ン
は、必芁量のむンドヌルを補絊し、次の反応に甚
いおも䜕ら問題なか぀た。 実斜䟋  実斜䟋ず同様にしお、ク゚ン酞゚チル14.3
を甚い反応を実斜した。反応終了埌、均䞀の゚マ
ルゞペン系にな぀おいる反応生成物を、連続遠心
分離機にかけ氎盞系ずク゚ン酞゚チル系に分液し
た。この氎盞系に反応に䜿甚したク゚ン酞゚チル
ず同量を添加し、再び連続遠心分離機により氎盞
ず有機盞を分離した。 この氎盞の䞀郚をサンプリングし、高速液䜓ク
ロマトグラフむヌにより生成したトリプトフアン
を分析枬定したずころ、収率は99.7察むンドヌ
ルであ぀た。 この反応生成物を、−トリプトフアン濃床が
4.2wtになるように氎で垌釈し、硫酞でPHを3.5
に調敎し、粉末掻性炭を15wt察−トリプト
フアン添加し、98〜100℃で時間加熱した。
−トリプトフアン結晶が完党に溶解したら、同枩
床で熱時吞匕過し、掻性炭ず共に反応に甚いた
菌䜓を陀去する。 この熱過液を、−トリプトフアン濃床が
10wtになるたで濃瞮し、10℃たで冷华した埌、
PHを5.9に調敎埌析出した結晶を別、氎掗、也
燥した。 −トリプトフアンの単離収率74.5mol察む
ンドヌルで、玔床99.4むンドヌル含有量
1.2ppmのリン片状晶が埗られた。 なお、ク゚ン酞゚チル抜出で回収されたむンド
ヌルは、䞍足分を補絊したのち、次の反応に甚い
たが、−トリプトフアンの収率には圱響がな
く、反応は順調に進行した。 実斜䟋  実斜䟋ず同様にしお、゚シ゚リヒダ・コリを
含んだ菌䜓、およびシナヌドモナス・プチヌダを
含んだ菌䜓を培逊し、超遠心分離機により含氎率
75のそれぞれの菌䜓塊を埗た。 次にDL−セリン77.3、硫安10.5、氎486
を入れたフラスコを29アンモニア氎でPH8.5に
調敎したのち、先きに埗た゚シ゚リヒダ・コリ菌
䜓塊51.2、シナヌドモナス・プチヌダ菌䜓
塊23.2を加えた。よくかきたぜ分散させたの
ち、むンドヌル78.4を溶解したトル゚ン溶液
392を加え、35℃で48時間反応させた。 反応終了埌、反応液の䞀郚を採取し、遠心分離
機におトル゚ン盞ず氎盞を分離する。トリプト
フアンの結晶が析出しおいる氎盞を、アルカリ添
加により−トリプトフアンを溶解したのち、メ
ンブランフむルタヌで菌䜓を陀去する。この液
を、高速液䜓クロマトグラフむヌで−トリプト
フアン濃床を分析し、反応液䞭の−トリプトフ
アン収率を求めたずころ99.3mol察むンドヌル
であ぀た。 次に、この反応液を遠心分離機により氎盞ずト
ル゚ン盞を分液し、ガスクロマトグラフむヌでト
ル゚ン䞭に含たれる未反応むンドヌル濃床を枬定
したら2.3ppmであ぀た。 なお、このむンドヌルを含んだトル゚ン溶液に
必芁量のむンドヌルを添加し、次の反応に甚いた
が−トリプトフアン収率に䜕ら圱響を䞎えるこ
ずなく反応は順調に進行した。すなわち、
The present invention aims to efficiently separate and recover unreacted indole when producing L-tryptophan by enzymatic reaction in the presence of an organic solvent that is immiscible with water but miscible with indole using indole as a raw material.
- A method for producing tryptophan. Tryptophan, which is obtained by enzymatic reaction or fermentation reaction using indole as a raw material, has an odor characteristic of indole if it contains unreacted indole, so it is desirable that the product does not contain unreacted indole, whether for pharmaceutical use or feed additive use. It has become rare. Conventionally, when L-tryptophan is produced by enzymatic reaction using indole as one of the raw materials, steam distillation is known as a method for removing unreacted indole from the reaction solution (Japanese Patent Publication No. 57-800). As in this method, unreacted indole can be distilled off by steam distillation, but since the vapor pressure of indole is lower than that of water, a large amount of steam is required for its distillation. In today's world of rising energy costs, this method cannot be called an industrial method, and there has been a strong desire to solve this problem. As a result of intensive studies to solve this problem, the present inventors found that L-
The inventors have discovered that unreacted indole can be removed by producing tryptophan and separating the reaction solution after the reaction is completed, and have completed the method of the present invention. That is, when a reaction using microorganisms is carried out in the presence of an organic solvent that is immiscible with water but miscible with indole, the organic solvent phase plays the role of supplying indole to the aqueous phase and also the role of extracting indole from the aqueous phase. There is. Therefore, if the reaction between the aqueous phase and the organic solvent phase is carried out as two phases,
After the reaction is completed, by simply separating the reaction solution to separate the organic solvent phase, an L-tryptophan reaction solution containing no unreacted indole can be obtained. According to the method of the present invention, not only can unreacted indole be reliably removed, but also the organic solvent phase containing separated and collected indole can be reused as it is for the next reaction, and therefore has extremely great industrial significance. Examples of methods for producing L-tryptophan that can be applied to the method of the present invention include a method for producing L-serine and indole in the presence of Escherichia coli, and a method for producing L-tryptophan using L-serine and indole in the presence of Escherichia coli and Cisdomonas putida. A method of manufacturing from serine, a method of manufacturing from indole and DL-serine in the presence of Escherihyacori and Pseudomonas punctata, and a method of manufacturing from indole, pyruvic acid, and ammonia in the presence of Aerobacter aerogenes. The production of these tryptophans is carried out in a two-phase system with an aqueous phase using an organic solvent that is miscible with indole but immiscible with water. That is, by using an organic solvent, if the enzyme used in the reaction is inhibited by indole, the reaction can be carried out while keeping the indole concentration in the aqueous phase below the concentration that inhibits enzyme activity. Organic solvents applied in the method of the present invention include:
Any organic solvent that is not miscible with water but miscible with indole can be used. In reality, it is an extraction solvent for indole and at the same time a reaction solvent for tryptophan production, so it is important that it does not affect the activity of the microorganisms used in the reaction. Examples of such organic solvents include aromatic hydrocarbons such as benzene, toluene, and chlorobenzene, ketones such as methyl isobutyl ketone and diisobutyl ketone, citric acid esters, n-butyl acetate, isoamyl acetate, and ethyl butyrate. Preferred are esters such as, ethers such as anisole, and the like. In the method of the present invention, by adding an organic solvent that is miscible with indole and immiscible with water to the enzyme-containing solution, most of the indole that reduces enzyme activity is dissolved in the organic solvent phase, and the organic solvent phase is mixed with the organic solvent phase. The reaction can proceed while keeping the indole concentration in the aqueous phase substantially below the inhibitory concentration based on the distribution ratio of indole between the aqueous phases. Furthermore, the enzymes used in the present invention do not necessarily have to be pure, and are usually obtained from live bacterial cells collected from the culture solution of the respective enzyme-producing bacteria by methods such as centrifugation, frozen bacterial cells, or dried bacterial cells. Bacterial cells may be used, and processed bacterial cells obtained by processing these bacterial cells by grinding, autolysis, ultrasonication, etc., as well as extracts from these bacterial cells and enzymes obtained from the extracts, etc. The crude product is used. In the method of the present invention, the reaction is carried out by mixing the reaction medium, indole and other substrates, enzymes and other necessary materials. The organic solvent used as the reaction medium may be one that is miscible with indole and immiscible with water, as mentioned above, but in practice, depending on the enzyme used in the reaction, the solvent itself will increase the activity of the enzyme under the reaction conditions. It is necessary to choose one that does not cause deterioration. The amount of the organic solvent to be used can be determined based on the distribution ratio of indole between the two phases of the enzyme-containing solution and the organic solvent, and the inhibitory concentration of indole in the enzyme-containing solution measured in advance. For the above reaction, indole and L or
An example of producing L-tryptophan from DL-serine is shown below. In this method, the enzyme Escherichia
In the solution containing the E. coli mutant, the inhibitory concentration of indole is 800 ppm. Therefore, it is possible to select and use an organic solvent that distributes indole in the aqueous phase below this concentration, such as toluene, chlorobenzene, ethyl citrate, methyl isobutyl ketone, anisole, and the like. For example, if toluene is selected and an indole solution with a concentration of 20 wt% is used, indole will be added to the solution containing the E. coli mutant strain.
It dissolves below 720 ppm and the reaction can be carried out below the above-mentioned inhibitory concentration. Similarly, in other solvents, the indole concentration in the enzyme-containing solution can be reduced to 800 ppm or less under the reaction conditions if the indole concentration is set as follows. i.e. 40wt% for ethyl citrate, 50wt% for methyl isobutyl ketone, and 50wt% for anisole.
30wt% and 20wt% for monochlorobenzene. In order to carry out the enzymatic production of L-tryptophan using the above-mentioned L-tryptophan auxotrophic tryptophanase-deficient mutant strain of Escherichia coli in a medium containing carbon and nitrogen sources and inorganic salts, it is necessary to Conditions: 28-40℃, PH6-8
A mutant strain of Escherichia coli is cultured under the following conditions, and the bacterial cells are suspended in the culture medium or separated from the medium and suspended in a solution containing pyridoxal phosphate, L-serine, and an inorganic substance. Under conditions of PH 7.5 to 9.5, preferably PH 8 to 9, an indole solution dissolved in an organic solvent that is immiscible with water but miscible with indole is added all at once or continuously, and the reaction is carried out in the range of 20 to 40°C to produce L-tryptophan. Generate. At this time, the amount of organic solvent used is determined by the indole distribution ratio between the enzyme-containing liquid phase and the organic solvent phase under the reaction conditions and the amount of indole used, so the amount used varies depending on the type of organic solvent, but it is usually The indole concentration in the enzyme-containing liquid phase is 800 ppm or less,
Industrially, it is preferable to set the content to 750 ppm or less. At this time, L-tryptophan, which is a reaction product, precipitates as crystals in the enzyme-containing solution, but under these reaction conditions, it does not affect the progress of the reaction in any way. In this production method, there is no problem in using DL-serine as the substrate. That is, in this case, by using Pseudomonas puteida (MT-10182) or Pseudomonas punctata (MT-10243) as the serine racemase, L-tryptophan can be obtained in high yield without being affected by activity deterioration due to organic solvents. can. The obtained reaction solution is a reaction mixture containing the produced L-tryptophan, unreacted raw materials, organic solvent, enzyme, etc., and this reaction solution is separated into an organic solvent phase and an aqueous phase. In the process of the invention, the reaction mixture is typically first treated with 2
Separate into phases and collect the solvent phase after separation. water phase,
That is, from the reaction mixture containing L-tryptophan, the enzyme contained therein is removed and L-tryptophan is extracted.
- Obtain tryptophan. When an enzyme and an organic solvent coexist in the reaction mixture, the interface between the two phases, the aqueous phase and the organic solvent phase, may become unclear and separation may become difficult. In such a case, the liquid can be easily separated by a known method, for example, by using a centrifuge. At this time, if the extraction and separation are repeated again using the used organic solvent, the indole removal effect will be further improved. Further, during liquid separation, the L-tryptophan in the aqueous solution may remain as a precipitated crystal, but the effect of extracting unreacted indole is better if it is in a dissolved state. The temperature during liquid separation is preferably below the boiling point of water or the organic solvent used, or below the boiling point in the case of water-organic solvent azeotropy. Note that there is no problem in using the separated and recovered indole solution in the next reaction as it is. The method for removing the enzyme used in the reaction from the reaction mixture after extracting and separating the organic solvent containing unreacted indole from the reaction mixture is not particularly limited. As an effective method for industrially removing it, for example, the following method can be preferably carried out. That is, a mineral acid is added to the reaction mixture after removing the organic solvent to adjust the pH of the liquid to 2 to 5. After that, heat as necessary. Enzyme aggregation can be promoted by such a method, and enzyme aggregates can be removed by an appropriate method. The reaction solution from which the enzyme has been removed can be concentrated to obtain L-tryptophan. By the above method, unreacted indole in the reaction solution is effectively dissolved and separated into an organic solvent. The organic solvent containing unreacted indole is used for the next reaction by adding new solvent or supplementing new indole as necessary. When the method of the present invention produces L-tryptophan in the presence of an enzyme using indole as one of the substrates,
The reason why it is an effective method is that the recovered indole can be reused. That is, when L-tryptophan is produced by an enzymatic reaction, the enzyme used in the reaction is generally separated from the reaction mixture using a general method, and then L-tryptophan is isolated. Reusing the containing solution as it is often inhibits enzyme activity, which has been a major problem when industrialized. However, by extracting unreacted indole from the reaction mixture with an organic solvent according to the method of the present invention, not only can the indole content in the L-tryptophan crystals be reduced, but also the indole extracted with the organic solvent can be extracted in its solution state. Even if it is reused as it is for the next reaction, the reaction will proceed without any inhibition on the enzyme activity. The method of the present invention is of great industrial significance not only for the purpose of simply removing indole from L-tryptophan products, but also for recovering and reusing the raw material indole. The method of the present invention will be explained below by way of examples. Example 1 Bacterial cells containing Escherichia coli were incubated at pH 7.0 and 30°C in the presence of monopotassium phosphate, dipotassium phosphate, minerals such as ammonium sulfate and calcium chloride, iron sulfate, yeast extract, polypeptone, etc. Culture is carried out while adding glucose and indole while blowing air. In addition, while adding only glucose to the same medium, PH7.0, 30℃ conditions,
Culture cells containing Pseudomonas putida while blowing air. After 40 hours, each bacterial cell is cultured to a concentration of 30 to 35 g/ml, and can be taken out as a wet mass with a water content of 75 to 85% using a conventional ultracentrifuge. Next, DL-serine 11.3g, ammonium sulfate 6.0
g, pyridoxal phosphate 10 mg and distilled water 66 g
While stirring the 300ml flask containing
Adjust the pH to 8.5 with 29% ammonia water. Next, bacterial mass 4.0 containing Escherichia coli
g, bacterial mass containing Pseudomonas putida
Add 2.5g and stir well at 35℃ to disperse. Plus indole 11.5g diisobutyl ketone
Add the solution dissolved in 26.8 g and stir at 90 rpm for 40 hours at 35°C to react. After the reaction is complete, stop stirring, let stand, separate into two phases, separate the upper diisobutyl keto phase, add the same amount of diisobutyl ketone, stir at 90 rpm for 30 minutes, let stand, and do the same as before. The diisobutyl ketone phase was separated and collected. As a result, 85% of the unreacted indole remaining in the reaction system after the completion of the reaction was recovered in the first diisobutyl ketone separation, and further 99% was recovered in the second extraction and separation. Indole analysis was performed by gas chromatography. This recovered diisobutyl ketone supplied the necessary amount of indole and could be used in the next reaction without any problem. Example 2 A reaction was carried out in the same manner as in Example 1 using 45.7 g of toluene. In the reaction, the stirring speed was 640 rpm.
It was carried out in After the reaction was completed, the reaction system had become a homogeneous emulsion system, so it was centrifuged to separate the interface between the two phases. The upper toluene phase was separated, and the same amount of toluene was added to repeat the extraction of unreacted indole. As a result, 87% of the unreacted indole in the reaction solution after the completion of the reaction was recovered in the first extraction and 99.9% in the second extraction. It should be noted that this recovered toluene containing indole could be used in the next reaction without any problem even if the necessary amount of indole was replenished. Example 3 In the same manner as in Example 1, 14.3 g of ethyl citrate
The reaction was carried out using After the reaction was completed, the reaction product, which had become a homogeneous emulsion, was separated into an aqueous phase and an ethyl citrate phase using a continuous centrifuge. The same amount of ethyl citrate used in the reaction was added to this aqueous phase system, and the aqueous phase and organic phase were separated again using a continuous centrifuge. When a portion of this aqueous phase was sampled and the tryptophan produced was analyzed and measured using high performance liquid chromatography, the yield was 99.7% versus indole. This reaction product is mixed with L-tryptophan concentration
Dilute with water to 4.2wt% and adjust pH to 3.5 with sulfuric acid.
15 wt % of powdered activated carbon to L-tryptophan was added, and the mixture was heated at 98 to 100°C for 1 hour. L
- When the tryptophan crystals are completely dissolved, the microbial cells used in the reaction are removed together with activated carbon by vacuum filtration while hot at the same temperature. The L-tryptophan concentration of this heated liquid is
After concentrating to 10wt% and cooling to 10℃,
After adjusting the pH to 5.9, the precipitated crystals were separated, washed with water, and dried. Isolated yield of L-tryptophan 74.5 mol% vs. indole, purity 99.4% indole content
1.2 ppm flake crystals were obtained. Incidentally, the indole recovered by the ethyl citrate extraction was used in the next reaction after replenishing the insufficiency, but the yield of L-tryptophan was not affected and the reaction proceeded smoothly. Example 4 In the same manner as in Example 1, bacterial cells containing Escherichia coli and bacterial cells containing Pseudomonas putida were cultured, and the water content was determined using an ultracentrifuge.
75% of each bacterial mass was obtained. Next, DL-serine 77.3g, ammonium sulfate 10.5g, water 486g
After adjusting the pH to 8.5 with 29% ammonia water, 51.2 g of E. coli and 23.2 g of Pseudomonas putida were added. After stirring well and dispersing, a toluene solution in which 78.4 g of indole was dissolved.
392g was added and reacted at 35°C for 48 hours. After the reaction is completed, a portion of the reaction solution is collected and separated into a toluene phase and an aqueous phase using a centrifuge. After the L-tryptophan is dissolved in the aqueous phase in which the crystals of L-tryptophan are precipitated by adding an alkali, the bacterial cells are removed using a membrane filter. This solution was analyzed for L-tryptophan concentration by high-performance liquid chromatography, and the yield of L-tryptophan in the reaction solution was determined to be 99.3 mol% to indole. Next, this reaction solution was separated into an aqueous phase and a toluene phase using a centrifuge, and the concentration of unreacted indole contained in the toluene was measured using gas chromatography and found to be 2.3 ppm. A necessary amount of indole was added to this indole-containing toluene solution and used in the next reaction, but the reaction proceeded smoothly without any influence on the L-tryptophan yield. That is,

【衚】 䞀方、遠心分離で回収された氎盞は、−トリプ
トフアン濃床が4.2wtになるように氎で垌釈し、
98硫酞でPH4.0に調敎した。粉末掻性炭を27
を加え、98℃に昇枩埌、98〜100℃で時間保枩
し析出しおいる−トリプトフアンの結晶を溶解
した。 熱過により掻性炭ず共に菌䜓を別し、この
液を−トリプトフアン濃床が15wtになる
ように濃瞮晶析した。析出したリン片状の−ト
リプトフアン結晶を10℃で別し、氎掗埌也燥す
るず、玔床99.2の淡黄色リン片状晶の−トリ
プトフアンが収率81.3mol察むンドヌルで埗ら
れた。比旋光床−31.8、重金属含有量20ppm以
䞋、匷熱残分0.02wt、アンモニりム含有量
0.01wtであ぀た。
[Table] On the other hand, the aqueous phase recovered by centrifugation was diluted with water so that the L-tryptophan concentration was 4.2wt%.
The pH was adjusted to 4.0 with 98% sulfuric acid. 27g powdered activated carbon
was added, the temperature was raised to 98°C, and the temperature was kept at 98 to 100°C for 1 hour to dissolve the precipitated L-tryptophan crystals. The bacterial cells were separated along with activated carbon by heating, and the liquid was concentrated and crystallized to an L-tryptophan concentration of 15 wt%. The precipitated scale-like L-tryptophan crystals were separated at 10°C, washed with water, and then dried to obtain pale yellow scale-like L-tryptophan with a purity of 99.2% and a yield of 81.3 mol% versus indole. Specific optical rotation -31.8, heavy metal content 20ppm or less, ignition residue 0.02wt%, ammonium content
It was 0.01wt%.

Claims (1)

【特蚱請求の範囲】[Claims]  むンドヌルを基質の぀ずしお、氎ず混和し
ないがむンドヌルず混和する有機溶媒を甚いお氎
盞䞭のむンドヌル濃床を酵玠掻性を阻害しない濃
床に保ちながら酵玠反応により−トリプトフア
ンを補造するに際し、反応混合液䞭の未反応むン
ドヌルを有機溶媒盞ずしお分液陀去するこずを特
城ずする−トリプトフアンの補造方法。
1. When producing L-tryptophan by an enzymatic reaction using indole as one of the substrates and using an organic solvent that is immiscible with water but miscible with indole while maintaining the indole concentration in the aqueous phase at a concentration that does not inhibit enzyme activity, A method for producing L-tryptophan, which comprises separating and removing unreacted indole in a reaction mixture as an organic solvent phase.
JP15878582A 1982-09-14 1982-09-14 Preparation of l-tryptophan Granted JPS5948093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15878582A JPS5948093A (en) 1982-09-14 1982-09-14 Preparation of l-tryptophan

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15878582A JPS5948093A (en) 1982-09-14 1982-09-14 Preparation of l-tryptophan

Publications (2)

Publication Number Publication Date
JPS5948093A JPS5948093A (en) 1984-03-19
JPH0372276B2 true JPH0372276B2 (en) 1991-11-18

Family

ID=15679278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15878582A Granted JPS5948093A (en) 1982-09-14 1982-09-14 Preparation of l-tryptophan

Country Status (1)

Country Link
JP (1) JPS5948093A (en)

Also Published As

Publication number Publication date
JPS5948093A (en) 1984-03-19

Similar Documents

Publication Publication Date Title
CN107043330B (en) Method for extracting 1, 5-pentamethylene diamine from solution system containing 1, 5-pentamethylene diamine salt
JPH0833491A (en) Production of l-aspartic acid
WO2023015712A1 (en) Method for preparing s-nicotine
JPH0372276B2 (en)
AU613057B2 (en) Process for preparing L-tryprophan and process for preparing a stable aqueous enzyme solution
CA1207689A (en) Enzyme reaction
KR870001150B1 (en) Improving method of enzyme reaction
JPH0372275B2 (en)
JPH05328981A (en) Production of para hydroxybenzoic acid
JP2014083019A (en) Method for producing gallic acid-containing composition with low iron content by using microorganism
JP2575403B2 (en) Method for producing L-tryptophan
JPS6144474B2 (en)
KR920008598B1 (en) Process for preparing purified aqueous indole solution
WO1992012251A1 (en) Process for producing (r)-malic acid, microbial maleate hydratase, and process for producing said hydratase
JPH0344759B2 (en)
JP7350174B2 (en) A method for crystallizing branched chain amino acids that allows sustainable circulation of ammonia
JPS6128672B2 (en)
JPS6332492A (en) Production of levorotatory optically active isomer of mandelic acid by enzymatic process
JPS61247395A (en) Production of l-phenulalanine
JPS6225353B2 (en)
CA1335970C (en) Process for preparing purified aqueous indole solution
JPH0435156B2 (en)
JPH02291285A (en) Preparation of l-tryptophan
JPS63283591A (en) Production of l-alpha-amino-epsilon-caprolactam
JP2716477B2 (en) Method for producing S-carboxymethyl-L-cysteine