JPH0372114B2 - - Google Patents

Info

Publication number
JPH0372114B2
JPH0372114B2 JP58222796A JP22279683A JPH0372114B2 JP H0372114 B2 JPH0372114 B2 JP H0372114B2 JP 58222796 A JP58222796 A JP 58222796A JP 22279683 A JP22279683 A JP 22279683A JP H0372114 B2 JPH0372114 B2 JP H0372114B2
Authority
JP
Japan
Prior art keywords
weight
thermoplastic
mol
resin
ethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58222796A
Other languages
Japanese (ja)
Other versions
JPS60115657A (en
Inventor
Tadayuki Oomae
Mitsuyuki Okada
Hiroshi Nagai
Yutaka Mizumura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Toyobo Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd, Toyobo Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP22279683A priority Critical patent/JPS60115657A/en
Priority to DE8484308158T priority patent/DE3466240D1/en
Priority to EP84308158A priority patent/EP0145391B1/en
Publication of JPS60115657A publication Critical patent/JPS60115657A/en
Priority to US06/902,085 priority patent/US4720524A/en
Priority to US07/098,836 priority patent/US4771106A/en
Publication of JPH0372114B2 publication Critical patent/JPH0372114B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、新規な接着用樹脂組成物に関するも
のである。さらに詳しくは、ポリ塩化ビニル樹
脂、ポリエステル系樹脂などの合成樹脂、および
金属等との接着性らびにその耐水保持性を特徴と
する樹脂組成物に関するものである。 一般に、熱可塑性共重合ポリエステル樹脂は、
優れた可撓性、耐候性及び各種基材に対して優れ
た接着性を有しているために各種塗料、接着剤と
して広く用いられている。とりわけ、ポリエステ
ル系樹脂、軟質および硬質ポリ塩化ビニル樹脂、
ポリカーボネート樹脂、ABS樹脂、ポリウレタ
ン樹脂等の合成樹脂類に対し、優れた接着性を有
していることが知られている。また、アルミニウ
ム、鉛、鉄等の金属に対しても接着性を有する
が、前記合成樹脂類との接着性に比べると、かな
らずしも満足し得るものではない。従つて、熱可
塑性共重合ポリエステル樹脂単独を接着剤として
合成樹脂類と金属との積層体を製造したもので
は、実用上充分満足しうるまでの接着性を有する
ものは得がたく両方に対して、バランスのとれた
高い接着性を有する樹脂の開発が強く望まれてい
る。 また、熱可塑性共重合ポリエステル樹脂は一般
のプラスチツクに用いられている成型・加工法
(インフレーシヨン法、T−ダイ押出法、押出ラ
ミネーシヨン法、共押出法等)によりフイルム、
および金属等の基材面にラミネートする際に、冷
却ロールに粘着して剥離しなくなり成型・加工出
来ないばかりか、たとえば成型・加工出来たにし
ても、フイルムのブロツキングが大きいために、
一旦、コイル状に巻き取つて、オフライン方式で
改めて積層体を製造しようとする場合、フイルム
の巻きほぐしが困難なたせ加工性が悪い。このた
め、成型・加工性に優れ、かつ、フイルムブロツ
キングの少ない樹脂の開発が強く望まれている。 本発明者らは、こうした状況を鑑み、各種の合
成樹脂に対する熱可塑性共重合ポリエステル樹脂
特有の接着性を保持しつつ、金属に対して高い接
着性を有し、成型・加工性に優れ、フイルムブロ
ツキングの少なく、かつ、耐水保持性の良好なる
接着性樹脂について鋭意検討を重ねた結果、本発
明に到達したものである。 すなわち、本発明は熱可塑性共重合ポリエステ
ル樹脂(A)と、官能基を含有するエチレン共重合体
(B)、さらに必要に応じて別種の熱可塑性樹脂(C)を
溶融混合してなる接着用樹脂組成物において、熱
可塑性共重合ポリエステル樹脂(A)が40〜80重量
%、(B)と(C)の合計量が60〜20重量%であり、熱可
塑性共重合ポリエステル樹脂(A)が、ジカルボン酸
成分としてテレフタル酸60〜95モル%およびイソ
フタル酸40〜5モル%、および低分子量グリコー
ル成分として1,4−ブタンジール55〜95モル%
およびジエチレングリコール45〜5モル%からな
り、さらに分子量600〜6000のポリテトラメチレ
ングリコールが全ジカルボン酸に対して、0.1〜
4モル%からなり、融点100〜150℃、還元粘度
0.5以上の熱可塑性共重合ポリエステル樹脂であ
り、かつ、官能基を含有するエチレン共重合体(B)
が、メルトインデツクス0.5〜50g/10分(JIS
K6760)で、α,β不飽和グリシジルエステル、
α,β不飽和グリシジルエーテル、α,β不飽和
カルボン酸およびその無水物の中から選ばれた1
種もしくは2種以上の官能基を0.01〜20モル%含
有するエチレン共重合体であることを特徴とする
接着用樹脂組成物に関するものである。 以下に、本発明について詳しく説明する。 本発明において使用される熱可塑性共重合ポリ
エステル樹脂(A)は、ジカルボン酸成分がテルフタ
ル酸60〜95モル%、およびイソフタル酸40〜5モ
ル%から成るものである。テレフタル酸を60モル
%未満にすると生成するポリエステルの融点が
100℃未満となり、本発明による組成物の特徴で
ある耐ブロツキング性、易加工性の点から不都合
である。 一方、低分子量グリコール成分としては、1,
4−ブタンジオール55〜95モル%およびジエチレ
ングリコール、45〜5モル%、からなり、さらに
分子量600〜6000のポリテトラメチレングリコー
ルが全ジカルボン酸成分に対して0.1〜4モル%
からなる。1,4−ブタンジオールを55モル%未
満にすると、やはり生成するポリエステルの結晶
性が低下し融点が100℃未満となつて好ましくな
い。 具体的には生成するポリエステルの融点が100
〜150℃の範囲に入るようにこれらのジカルボン
酸成分やグリコール成分の組み合せを上記範囲内
で自由に選択、設計できる。 上述のごとく、本発明の熱可塑性共重合ポリエ
ステル樹脂(A)としては、、融点が100〜150℃のも
のが用いられる。150℃を超えると本発明による
組成物の特徴である接着性、加工性が悪く、100
℃未満では本発明の組成物でもブロツキングのな
いフイルムが得られない。 また、本発明による組成物に適した熱可塑性共
重合ポリエステル樹脂(A)としては還元粘度が0.5
以上のものが用いられる。還元粘度が0.5未満の
場合には、本発明による組成物の機械的性質が低
下し、充分な装着力が得られないのみならず、耐
ブロツキング性、易加工性の点からも不都合であ
る。 本発明において使用される官能基を含有するエ
チレン共重合体(B)は、高圧ラジカル重合法、溶液
重合法、乳化重合法などの公知の方法でエチレン
と上記官能基を有するエチレンと共重合可能な単
量体、α,β−不飽和グリシジルエステル、α,
β−不飽和グリシジルエーテル、α,β−不飽和
カルボン酸およびその無水物等の不飽和単量体と
を共重合することにより得られる。不飽和単量体
の具体例としては、グリシジルメタクリレート、
グリシジルアクリレート、アリルグリシジルエー
テル、2−メチルアリルグリシジルエーテル、ア
クリル酸、メタクリル酸、マレイン酸、フマル
酸、イタコン酸、無水マレイン酸、無水イタコン
酸、無水ハイミツク酸などが例示される。 これらの不飽和単量体の量は、約0.01〜約20モ
ル%、好ましくは約0.1〜約10モル%である。 さらには、特公昭37−18392号公報、特公昭52
−30546号公報、特開昭58−147792号公報、およ
び特開昭51−66391公報に示されるごとく、エチ
レンの単独重合体または共重合体に前述の官能基
を有する不飽和単量体をグラフトさせることによ
り製造される共重合体も本発明の中で使用するこ
とができる。 なお、本発明に使用されるエチレン共重合体(B)
は上の各成分に加えて、さらに第3成分として不
飽和エステル単量体、たとえば、アクリル酸メチ
ル、アクリル酸エチル、メタクリル酸メチル、ア
クリル酸ブチルなどの不飽和カルボン酸エステル
および、酢酸ビニルプロピオン酸ビニルなどの不
飽和ビニルエステルを共重合もしくはグラフト重
合させた共重合体も使用可能である。 エチレン共重合体(B)のメルトインデツクスは加
工し易い範囲であればよく、0.5〜50g/10分で
ある。 本発明において使用される別種の熱可塑性樹脂
(C)として、特に好ましいものはビニル芳香族炭化
水素重合体または共重合体、(メタ)アクリル酸
エステル重合体または共重合体、エチレン系重合
体もしくはポリオレフイン系エラストマーの中か
ら選ばれた1種もしくは2種以上の樹脂である。 熱可塑性樹脂(C)の1つであるビニル芳香族炭化
水素重合体としては、炭素数8〜20特に8〜12の
ビニル芳香族炭化水素の単独あるいは共重合体で
ある。具体的には、ポリスチレン、ポリ−α−メ
チルスチレン、ポリビニルトリエン、ポリ−β−
メチレンスチレン、スチレン−アクリルニトリル
共重合体、スチレン−アクリルニトリルブタジエ
ン共重合体等である。好ましいビニル芳香族炭化
水素重合体としては、ポリスチレンである。 熱可塑性樹脂(C)の1つである(メタ)アクリル
酸エステル系重合体としては、一般式 (但し、式中R1は水素またはメチル基、R2
炭素数1〜4のアルキル基を示す。) で示される単独重合体あるいは共重合体である。
具体的には、アクリル酸メチル重合体、メタクリ
ル酸メチル重合体、アクリル酸エチル重合体、ア
クリル酸ブチル重合体、メタクリル酸メチル−ア
クリル酸ブチル共重合体等である。本発明におい
て、最も好ましい(メタ)アクリル酸エステル系
重合体は、メタクリル酸メチル重合体およびメタ
クリル酸メチルを主体とする共重合体である。
(メタ)アクリル酸エステル系重合体は、他の不
飽和単量体、たとえば、スチレン、アクリロニト
リルなどをさらに共重合したものでもよい。 熱可塑性樹脂(C)の1つであるエチレン系重合体
としては、ポリエチレンおよびエチレン−不飽和
エステル共重合体から選ばれた少なくとも1種の
重合体である。これらの重合体の製法には、特に
限定はなく高圧ラジカル重合法、溶媒重合法、溶
液重合法など公知方法が適用出来る。エチレン−
不飽和エステル共重合体としては、エチレン−酢
酸ビニル共重合体、エチレン−プロピオン酸ビニ
ル共重合体などのエチレン−ビニルエステル共重
合体およびエチレン−メタクリル酸メチル共重合
体、エチレン−アクリル酸メチル共重合体、エチ
レン−アクリル酸エチル共重合体、エチレン−ア
クリル酸ブチル共重合体等のエチレン−不飽和カ
ルボン酸エステル共重合体を挙げることが出来
る。このエチレン系重合体が共重合体の場合、そ
のエチレン含有量は50モル%以上、好ましくは70
〜99モル%である。エチレン系重合体のメルトイ
ンデツクスは0.01〜300g/10分、好ましくは0.1
〜80g/10分である。 熱可塑性樹脂(C)の1つであるポリオレフイン系
エラストマーとしては、エチレン−プロピレン共
重合体ゴム、エチレン−プロピレン−非共役ジエ
ン共重合体ゴム、エチレンブテン共重合体ゴム、
エチレン−イソブチレン共重合体ゴム、アタツク
チツクポリプロピレン等である。中でもエチレン
−プロピレン共重合体ゴム、エチレン−プロピレ
ン−非共役ジエン共重合体ゴム、エチレン−ブデ
ン共重合体ゴムが特に好ましい。 本発明の接着用樹脂組成物の各成分の割合は、
熱可塑性共重合ポリエステル樹脂(A)成分が40〜80
重量%、エチレン共重合体(B)成分と熱可塑性樹脂
(C)成分の合計量が60〜20重量%であり、かつエチ
レン共重合体(B)成分と熱可塑性樹脂(C)成分の合計
量中のエチレン共重合体(B)成分の割合が5〜100
重量%である。熱可塑性共重合ポリエステル樹脂
(A)成分が40重量未満及びエチレン共重合体(B)成分
と熱可塑性樹脂(C)成分の合計量が60重量%を超え
ると熱可塑性共重合ポリエステル樹脂(A)特有の各
種合成樹脂、特に軟質ポリ塩化ビニル樹脂に対す
る接着性が大巾に低下する。また、エチレン共重
合体(B)成分と熱可塑性樹脂(C)成分の合計量が20重
量%未満および熱可塑性共重合ポリエステル樹脂
(A)成分が80重量%を超えると金属との接着性改良
効果が認められないばかりか、熱可塑性共重合ポ
リエステル樹脂(A)の押出加工性およびフイルムの
ブロツキング性を改良出来ない。さらに、エチレ
ン共重合体(B)成分を添加しない熱可塑性共重合ポ
リエステル樹脂(A)成分と熱可塑性樹脂(C)成分の組
成物では、各種基材との接着性が低下する。 本発明の接着用樹脂組成物は、熱可塑性共重合
ポリエステル樹脂(A)とエチレン共重合体(B)との組
成物でも改良効果が認められるが、熱可塑性共重
合ポリエステル樹脂(A)とエチレン共重合体(B)と熱
可塑性樹脂(C)の1種または2種以上とからなる組
成物を用いる方が改良効果は大きい。すなわち、
熱可塑性樹脂(C)の1種または2種以上を添加する
ことにより、押出加工性、フイルムのブロツキン
グ性および金属との接着性を改良する効果が顕著
である。なかでも特に、ビニル芳香族炭化水素重
合体、(メタ)アクリル酸エステル系重合体もし
くはポリオレフイン系エラストマーから選ばれた
少なくとも1種とエチレン系重合体から選ばれた
少なくとも1種とを組み合せて用いることが好ま
しい。ビニル芳香族炭化水素重合体、(メタ)ア
クリル酸エステル系重合体およびポリオレフイン
系エラストマーの添加は、本発明の目的を達成す
るために非常に効果的であるが、あまり多く添加
すると加工時の流れ性およびフイルム強度が低下
する。このため、エチレン系重合体をさらに添加
することにより加工時の流れ性およびフイルム強
度を適当にコントロールすることが出来る。 本発明の接着用樹脂組成物は、一軸押出機、二
軸押出機、バンバリミキサー、熱ロール等にて溶
融混練する方法を用い製造することが出来る。各
成分の混合は同時に行なつてもよく、また、分括
して行なつてもよい。溶融混練に必要な温度は
100〜250℃であり、時間は30秒〜10分で充分であ
る。 本発明の接着用樹脂組成物には必要に応じて、
酸化防止剤、紫外線吸収剤等の安定剤、滑剤、無
機充填剤、界面活性剤、帯電防止剤、銅害防止
剤、難燃剤、発泡剤、顔料等の着色剤、可塑剤等
を添加混合して使用することが出来る。 本発明の接着用樹脂組成物は、ポリエチレン、
エチレン−不飽和エステル共重合体、ポリプロピ
レン、エチレン−α−オレフイン共重合体、エポ
キシ基、カルボン酸基もしくはジカルボン酸(無
水物)基等の官能基含有ポリオレフイン系重合体
等のオレフイン系重合体、塩化ビニル樹脂、塩化
ビニリデン樹脂、塩化ビニルと酢酸ビニル、塩化
ビニリデンあるいはアクリル酸エステル系単量体
との共重合体、塩化ビニルグラフトエチレン−酢
酸ビニル共重合体、塩素化ポリオレフイン、クロ
ロスルフオン化ポリオレフイン、エチレン−テト
ラフルオロエチレン共重合体、エチレン−ヘキサ
フルオロプロピレン共重合体等のハロゲン含有重
合体、ポリエステル系樹脂、ポリアミド、エチレ
ン−酢酸ビニル共重合体ケン化物、ABS樹脂、
ポリカーボネート樹脂、ポリウレタン樹脂等の合
成樹脂類、アルミニウム、鉄、ニツケル、亜鉛、
銅、クロム等の金属、ガラス、陶磁器、紙および
木材などの接着に用いることが出来る。なかで
も、軟質および硬質ポリ塩化ビニル樹脂、ポリエ
ステル系樹脂、ABS樹脂、ポリカーボネート樹
脂、ポリウレタン樹脂等の合成樹脂類とアルミニ
ウム、鉄、鉛、銅等の金属の両者に対して特に好
適な接着性を有したものである。 また、本発明の接着用樹脂組成物は、一般のプ
ラスチツクに用いられる成型・加工法(インフレ
ーシヨン法、T−ダイ押出法、押出ラミネート法
等)により、優れた成型・加工性を有するととも
に、フイルムブロツキングの少ないものである。 本発明の接着用樹脂組成物を用いて積層体を製
造する方法は、特に規定されるものではなく、公
知の積層法または塗装法あるいは両者の組合せな
ど任意の技術を適用することが出来る。たとえ
ば、基材と基材の間にフイルム状、シート状、粉
末状、ペレツト状等の形態で、本発明の接着用樹
脂組成物を介在させ、溶融温度以上に加熱し、圧
着させる方法、あるいは、一方の基材表面にあら
かじめ、押出コーテイング法、ドライラミネート
法、共押出成型法、あるいは、粉末または溶液で
塗布後加熱し本発明の接着用樹脂組成物をコート
しておき、他方の基材と重ね合せ溶融温度以上に
加熱し圧着する方法等がある。接着温度は一般に
70〜250℃で行なわれる。 本発明の接着用樹脂組成物は、例えば、軟質ポ
リ塩化ビニル樹脂をシース層とするアルミ、鉛あ
るいは銅等の金属ラツプケーブル(通信および電
力用)の接着層に使われるなど工業的意味は極め
て大きいものである。 以下に本発明を実施例によつて説明するが本発
明はこれらによつて限定されるものではない。な
お、物性の測定は以下の方法により行つた。 (1) 熱可塑性共重合ポリエステル樹脂(A)の融点 延伸した糸状の樹脂サンプルを偏光顕微鏡付き
の融点測定器に十字にセツトし、除々に昇温した
場合に偏光映像が消失する温度を判読する。 (2) 熱可塑性共重合ポリエステル樹脂(A)の還元粘
度 フエノールとテトラクロルエタンとの60/40重
量比の混合溶媒を使つた0.1gr/25mlなる濃度の
溶液について30℃においてウベローデ粘度計で落
下秒数を判読し算出した。 (3) 軟質プリ塩化ビニル樹脂とアルミニウムの接
着性(S−PVC/Al)−耐水保持性 軟質ポリ塩化ビニル樹脂シート(S−PVC)
と軟質アルミニウム(Al)の間に接着性樹脂組
成物フイルム(50〜60μ)を介在させ、180℃×
5分×10Kg/cm2の条件で接着した後、10mm巾に切
断し、70℃温水に所定期間浸漬後Alを180℃の角
度に曲げ、100mm/分の引張速度で剥離強度を測
定した。 (4) 押出加工性 20mmφT−ダイ加工機(田辺プラスチツク製)
を140℃に設定し、50〜60μフイルム成型加工時
における冷却ロールへの粘着状況を目安として加
工性を評価した。 冷却ロールへ粘着した加工出来ず :× 冷却ロールへやや粘着する :△ 冷却ロールへ粘着なし :〇 (5) フイルムのブロツキング性 (2)項同様に、140℃に設定したT−ダイ加工機
で、50〜60μのフイルムに成型しコイル状に巻
く。1日放置した後、フイルムの巻きほぐしを行
ない、その容易さを目安としブロツキング性を評
価した。 巻きほぐしが非常に困難 :× 巻きほぐしがやや困難 :△ 巻きほぐしが非常に容易 :〇 また、上記接着性試験に使用した基材は以下の
通りである。 Γ 軟質アルミニウム JIS−H4000、A−1050R−O(150μテープ) Γ 軟質ポリ塩化ビニル樹脂 ポリ塩化ビニル樹脂:スミリツト SX−13(住
友化学工業(株)製)100重量部、ジオクチルテレフ
タレート60重量部、炭酸カルシウム10重量部、3
塩基性硫酸鉛(トリベース)3重量部、2塩基性
亜リン酸鉛1重量部を150℃ロールにて5分間混
練した後、2mm厚のシート状に押出した。 熱可塑性共重合ポリエステル樹脂の製造例 撹拌器、温度計、溜出用コンデンサーを具備し
た容器中にジメチルテレフタレート582重量部、
ジメチルイソフタレート194重量部、1,4−ブ
タンジオール108重量部、ジエチレングリコール
85重量部、分子量1000のポリテトラメチレングリ
コール40重量部、およびテトラブトキシチタン
0.42重量部を混入し160℃〜210℃、4時間かけて
エステル交換反応を行なつた。 次に、反応温度を250℃まで昇温し40分かけて
5mmHgまで減圧し、更に0.3mmHg以下の真空下
90分かけて重縮合反応を行なつた。 得られた共重合ポリエステル樹脂(A−1)
は、融点124℃、還元粘度0.88を有していた。
NMR等の分析によりポリエステル樹脂組成を分
析したところ、ジカルボン酸成分としてテレフタ
ル酸75モル%、およびイソフタル酸25モル%から
なり、グリコール成分として1,4−ブタンジオ
ール64モル%、ジエチレングリコール35モル%、
およびポリテトラメチレングリコール1モル%か
らなる縮合重合物であつた。 同様の方法により本発明のポリエステル樹脂
((A−2)〜(A−4))と比較用のポリエステ
ル樹脂((A−5)〜(A−10))を製造した。表
−1にそのポリエステル樹脂の特性値および構成
モノマー組成を示す。
The present invention relates to a novel adhesive resin composition. More specifically, the present invention relates to a resin composition characterized by its adhesion to synthetic resins such as polyvinyl chloride resins and polyester resins, and metals, as well as its water resistance. In general, thermoplastic copolymerized polyester resins are
It is widely used in various paints and adhesives because it has excellent flexibility, weather resistance, and excellent adhesion to various base materials. Among others, polyester resins, soft and hard polyvinyl chloride resins,
It is known to have excellent adhesion to synthetic resins such as polycarbonate resin, ABS resin, and polyurethane resin. It also has adhesive properties to metals such as aluminum, lead, and iron, but this is not necessarily as satisfactory as the adhesive properties to the synthetic resins mentioned above. Therefore, if a laminate of synthetic resin and metal is manufactured using thermoplastic copolymerized polyester resin alone as an adhesive, it is difficult to obtain a laminate of synthetic resin and metal that is sufficiently satisfactory for practical use. There is a strong desire to develop a resin with well-balanced and high adhesive properties. In addition, thermoplastic copolymer polyester resins can be made into films and processed by molding and processing methods used for general plastics (inflation method, T-die extrusion method, extrusion lamination method, coextrusion method, etc.).
When laminating on a base material such as metal, it sticks to the cooling roll and cannot be peeled off, making it impossible to mold or process, or even if it can be molded or processed, the film has a large amount of blocking.
Once the film has been wound into a coil, if a laminate is to be produced again using an offline method, it is difficult to unwind the film, resulting in poor crimp workability. Therefore, there is a strong desire to develop a resin that has excellent moldability and processability and less film blocking. In view of these circumstances, the present inventors have developed a film that maintains the unique adhesion of thermoplastic copolyester resin to various synthetic resins, has high adhesion to metals, has excellent moldability and processability, and The present invention was developed as a result of extensive research into an adhesive resin that exhibits less blocking and good water resistance retention. That is, the present invention uses a thermoplastic copolyester resin (A) and an ethylene copolymer containing a functional group.
In an adhesive resin composition prepared by melt-mixing (B) and, if necessary, another type of thermoplastic resin (C), the thermoplastic copolymerized polyester resin (A) is 40 to 80% by weight, and (B) and The total amount of (C) is 60 to 20% by weight, and the thermoplastic copolymerized polyester resin (A) contains 60 to 95 mol% of terephthalic acid and 40 to 5 mol% of isophthalic acid as dicarboxylic acid components, and low molecular weight glycol. 1,4-butanediel as a component 55-95 mol%
and diethylene glycol in an amount of 45 to 5 mol%, and polytetramethylene glycol with a molecular weight of 600 to 6,000 based on the total dicarboxylic acid.
Consisting of 4 mol%, melting point 100-150℃, reduced viscosity
Ethylene copolymer (B) which is a thermoplastic copolymerized polyester resin of 0.5 or more and contains a functional group.
However, melt index 0.5 to 50g/10 minutes (JIS
K6760), α, β unsaturated glycidyl ester,
1 selected from α,β unsaturated glycidyl ethers, α,β unsaturated carboxylic acids and their anhydrides
The present invention relates to an adhesive resin composition characterized in that it is an ethylene copolymer containing 0.01 to 20 mol% of one or more functional groups. The present invention will be explained in detail below. The thermoplastic copolyester resin (A) used in the present invention has a dicarboxylic acid component consisting of 60 to 95 mol% of terphthalic acid and 40 to 5 mol% of isophthalic acid. When the amount of terephthalic acid is less than 60 mol%, the melting point of the polyester produced is
The temperature is less than 100°C, which is disadvantageous from the viewpoint of blocking resistance and easy processability, which are characteristics of the composition according to the present invention. On the other hand, as a low molecular weight glycol component, 1,
Consists of 55 to 95 mol% of 4-butanediol and 45 to 5 mol% of diethylene glycol, and further contains 0.1 to 4 mol% of polytetramethylene glycol with a molecular weight of 600 to 6000 based on the total dicarboxylic acid component.
Consisting of If the content of 1,4-butanediol is less than 55 mol%, the crystallinity of the resulting polyester will decrease and the melting point will become less than 100°C, which is not preferable. Specifically, the melting point of the polyester produced is 100
The combination of these dicarboxylic acid components and glycol components can be freely selected and designed within the above range so that the temperature falls within the range of ~150°C. As mentioned above, the thermoplastic copolyester resin (A) of the present invention has a melting point of 100 to 150°C. When the temperature exceeds 150°C, the adhesion and processability, which are characteristics of the composition according to the present invention, are poor, and the temperature exceeds 100°C.
If the temperature is below .degree. C., a blocking-free film cannot be obtained even with the composition of the present invention. Further, the thermoplastic copolyester resin (A) suitable for the composition according to the present invention has a reduced viscosity of 0.5.
The above are used. If the reduced viscosity is less than 0.5, the mechanical properties of the composition according to the present invention will deteriorate, and not only will sufficient mounting force not be obtained, but it will also be disadvantageous in terms of blocking resistance and ease of processing. The ethylene copolymer (B) containing a functional group used in the present invention can be copolymerized with ethylene and ethylene having the above-mentioned functional group by a known method such as a high-pressure radical polymerization method, a solution polymerization method, or an emulsion polymerization method. monomer, α, β-unsaturated glycidyl ester, α,
It is obtained by copolymerizing β-unsaturated glycidyl ether, α,β-unsaturated carboxylic acid, and unsaturated monomers such as anhydrides thereof. Specific examples of unsaturated monomers include glycidyl methacrylate,
Examples include glycidyl acrylate, allyl glycidyl ether, 2-methylallyl glycidyl ether, acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, maleic anhydride, itaconic anhydride, and heimic anhydride. The amount of these unsaturated monomers is about 0.01 to about 20 mole percent, preferably about 0.1 to about 10 mole percent. In addition, Special Publication No. 37-18392, Publication No. 52
As shown in JP-A-30546, JP-A-58-147792, and JP-A-51-66391, unsaturated monomers having the aforementioned functional groups are grafted onto ethylene homopolymers or copolymers. Copolymers prepared by the following methods can also be used in the present invention. In addition, the ethylene copolymer (B) used in the present invention
In addition to the above components, unsaturated ester monomers such as methyl acrylate, ethyl acrylate, methyl methacrylate, butyl acrylate and other unsaturated carboxylic acid esters and vinyl acetate propionate are added as a third component. Copolymers obtained by copolymerizing or graft polymerizing unsaturated vinyl esters such as vinyl esters can also be used. The melt index of the ethylene copolymer (B) may be within a range that is easy to process, and is 0.5 to 50 g/10 minutes. Different types of thermoplastic resins used in the present invention
Particularly preferred as (C) is one selected from vinyl aromatic hydrocarbon polymers or copolymers, (meth)acrylic acid ester polymers or copolymers, ethylene polymers, and polyolefin elastomers. Or two or more types of resins. The vinyl aromatic hydrocarbon polymer, which is one of the thermoplastic resins (C), is a single or copolymer of vinyl aromatic hydrocarbons having 8 to 20 carbon atoms, particularly 8 to 12 carbon atoms. Specifically, polystyrene, poly-α-methylstyrene, polyvinyltriene, poly-β-
These include methylene styrene, styrene-acrylonitrile copolymer, styrene-acrylonitrile butadiene copolymer, and the like. A preferred vinyl aromatic hydrocarbon polymer is polystyrene. The (meth)acrylic acid ester polymer, which is one of the thermoplastic resins (C), has the general formula (However, in the formula, R 1 is hydrogen or a methyl group, and R 2 is an alkyl group having 1 to 4 carbon atoms.)
Specifically, they include methyl acrylate polymer, methyl methacrylate polymer, ethyl acrylate polymer, butyl acrylate polymer, methyl methacrylate-butyl acrylate copolymer, and the like. In the present invention, the most preferred (meth)acrylic acid ester polymers are methyl methacrylate polymers and copolymers mainly composed of methyl methacrylate.
The (meth)acrylic acid ester polymer may be one further copolymerized with other unsaturated monomers such as styrene, acrylonitrile, etc. The ethylene polymer, which is one of the thermoplastic resins (C), is at least one polymer selected from polyethylene and ethylene-unsaturated ester copolymers. The method for producing these polymers is not particularly limited, and known methods such as high-pressure radical polymerization, solvent polymerization, and solution polymerization can be applied. Ethylene-
Examples of unsaturated ester copolymers include ethylene-vinyl ester copolymers such as ethylene-vinyl acetate copolymer, ethylene-vinyl propionate copolymer, ethylene-methyl methacrylate copolymer, and ethylene-methyl acrylate copolymer. Examples include ethylene-unsaturated carboxylic acid ester copolymers such as polymers, ethylene-ethyl acrylate copolymers, and ethylene-butyl acrylate copolymers. When this ethylene polymer is a copolymer, its ethylene content is 50 mol% or more, preferably 70 mol% or more.
~99 mol%. The melt index of the ethylene polymer is 0.01 to 300g/10 minutes, preferably 0.1
~80g/10 minutes. Examples of the polyolefin elastomer, which is one of the thermoplastic resins (C), include ethylene-propylene copolymer rubber, ethylene-propylene-nonconjugated diene copolymer rubber, ethylene-butene copolymer rubber,
These include ethylene-isobutylene copolymer rubber, attacking polypropylene, and the like. Among these, ethylene-propylene copolymer rubber, ethylene-propylene-nonconjugated diene copolymer rubber, and ethylene-butene copolymer rubber are particularly preferred. The proportions of each component in the adhesive resin composition of the present invention are:
Thermoplastic copolyester resin (A) component is 40 to 80
Weight%, ethylene copolymer (B) component and thermoplastic resin
The total amount of component (C) is 60 to 20% by weight, and the ratio of the ethylene copolymer (B) component in the total amount of the ethylene copolymer (B) component and the thermoplastic resin (C) component is 5%. ~100
Weight%. Thermoplastic copolymerized polyester resin
When component (A) is less than 40% by weight and the total amount of ethylene copolymer (B) component and thermoplastic resin (C) component exceeds 60% by weight, various synthetic resins specific to thermoplastic copolyester resin (A), In particular, the adhesion to soft polyvinyl chloride resin is significantly reduced. In addition, the total amount of the ethylene copolymer (B) component and the thermoplastic resin (C) component is less than 20% by weight, and the thermoplastic copolymer polyester resin
When the content of component (A) exceeds 80% by weight, not only is no effect of improving adhesion to metals, but also the extrusion processability of the thermoplastic copolyester resin (A) and the blocking property of the film cannot be improved. Furthermore, in a composition of a thermoplastic copolyester resin (A) component and a thermoplastic resin (C) component to which the ethylene copolymer (B) component is not added, the adhesion to various substrates is reduced. In the adhesive resin composition of the present invention, an improvement effect is observed even in a composition of a thermoplastic copolyester resin (A) and an ethylene copolymer (B); The improvement effect is greater when a composition consisting of one or more types of copolymer (B) and thermoplastic resin (C) is used. That is,
By adding one or more thermoplastic resins (C), the effect of improving extrusion processability, blocking properties of the film, and adhesion to metals is remarkable. In particular, a combination of at least one selected from vinyl aromatic hydrocarbon polymers, (meth)acrylic acid ester polymers, or polyolefin elastomers and at least one selected from ethylene polymers is used. is preferred. The addition of vinyl aromatic hydrocarbon polymers, (meth)acrylic acid ester polymers, and polyolefin elastomers is very effective in achieving the objectives of the present invention, but if too much is added, problems may occur during processing. properties and film strength are reduced. Therefore, by further adding an ethylene polymer, flowability and film strength during processing can be appropriately controlled. The adhesive resin composition of the present invention can be produced by melt-kneading using a single-screw extruder, twin-screw extruder, Banbury mixer, heated rolls, or the like. The components may be mixed simultaneously or in batches. The temperature required for melt kneading is
The temperature is 100 to 250°C, and a time of 30 seconds to 10 minutes is sufficient. The adhesive resin composition of the present invention includes, if necessary,
Antioxidants, stabilizers such as ultraviolet absorbers, lubricants, inorganic fillers, surfactants, antistatic agents, copper damage inhibitors, flame retardants, foaming agents, colorants such as pigments, plasticizers, etc. are added and mixed. It can be used as The adhesive resin composition of the present invention comprises polyethylene,
Olefin polymers such as ethylene-unsaturated ester copolymers, polypropylene, ethylene-α-olefin copolymers, polyolefin polymers containing functional groups such as epoxy groups, carboxylic acid groups or dicarboxylic acid (anhydride) groups, Vinyl chloride resin, vinylidene chloride resin, copolymer of vinyl chloride and vinyl acetate, vinylidene chloride or acrylic acid ester monomer, vinyl chloride grafted ethylene-vinyl acetate copolymer, chlorinated polyolefin, chlorosulfonated polyolefin , halogen-containing polymers such as ethylene-tetrafluoroethylene copolymer and ethylene-hexafluoropropylene copolymer, polyester resin, polyamide, saponified ethylene-vinyl acetate copolymer, ABS resin,
Synthetic resins such as polycarbonate resin and polyurethane resin, aluminum, iron, nickel, zinc,
It can be used to bond metals such as copper and chrome, glass, ceramics, paper, and wood. In particular, it has particularly suitable adhesion to both synthetic resins such as soft and hard polyvinyl chloride resin, polyester resin, ABS resin, polycarbonate resin, and polyurethane resin, and metals such as aluminum, iron, lead, and copper. It is something that we have. Furthermore, the adhesive resin composition of the present invention has excellent moldability and processability by molding and processing methods used for general plastics (inflation method, T-die extrusion method, extrusion lamination method, etc.). , with less film blocking. The method for producing a laminate using the adhesive resin composition of the present invention is not particularly limited, and any known technique such as a known lamination method, a coating method, or a combination of both can be applied. For example, a method in which the adhesive resin composition of the present invention in the form of a film, sheet, powder, pellet, etc. is interposed between base materials, heated to a temperature higher than the melting temperature, and bonded under pressure; , the adhesive resin composition of the present invention is coated on the surface of one base material in advance by extrusion coating method, dry lamination method, coextrusion molding method, or by coating with powder or solution and heating. There are methods such as stacking them on top of each other, heating them to a temperature higher than their melting temperature, and pressing them together. The bonding temperature is generally
It is carried out at 70-250°C. The adhesive resin composition of the present invention is of great industrial significance, as it can be used, for example, as an adhesive layer for metal wrap cables (for communications and power) made of aluminum, lead, copper, etc. whose sheath layer is a soft polyvinyl chloride resin. It is something. The present invention will be explained below with reference to Examples, but the present invention is not limited thereto. The physical properties were measured by the following method. (1) Melting point of thermoplastic copolymer polyester resin (A) Place the stretched filamentous resin sample crosswise in a melting point measuring device equipped with a polarizing microscope, and read the temperature at which the polarized image disappears when the temperature is gradually increased. . (2) Reduced viscosity of thermoplastic copolymerized polyester resin (A) A solution with a concentration of 0.1gr/25ml using a mixed solvent of phenol and tetrachloroethane in a weight ratio of 60/40 was measured using an Ubbelohde viscometer at 30°C. The number of seconds was read and calculated. (3) Adhesion between soft pre-vinyl chloride resin and aluminum (S-PVC/Al) - Water resistance Soft polyvinyl chloride resin sheet (S-PVC)
An adhesive resin composition film (50 to 60 μ) was interposed between the aluminum and soft aluminum (Al), and
After bonding under conditions of 5 minutes x 10 Kg/cm 2 , it was cut into 10 mm widths, immersed in 70°C hot water for a predetermined period of time, the Al was bent at an angle of 180°C, and the peel strength was measured at a tensile rate of 100 mm/min. (4) Extrusion processability 20mmφT-die processing machine (manufactured by Tanabe Plastics)
was set at 140°C, and the processability was evaluated based on the adhesion to the cooling roll during 50 to 60μ film forming processing. Unable to process due to adhesion to the cooling roll: × Slight adhesion to the cooling roll: △ No adhesion to the cooling roll: 〇(5) Blocking property of the film As in item (2), using the T-die processing machine set at 140℃. , formed into a 50-60μ film and wound into a coil. After being left for one day, the film was unwound and the blocking property was evaluated based on the ease of unwinding. Very difficult to unwind: × Slightly difficult to unwind: △ Very easy to unwind: 〇 The base materials used in the above adhesion test are as follows. Γ Soft aluminum JIS-H4000, A-1050R-O (150μ tape) Γ Soft polyvinyl chloride resin Polyvinyl chloride resin: Sumiritz SX-13 (manufactured by Sumitomo Chemical Co., Ltd.) 100 parts by weight, dioctyl terephthalate 60 parts by weight, 10 parts by weight of calcium carbonate, 3
3 parts by weight of basic lead sulfate (tribase) and 1 part by weight of dibasic lead phosphite were kneaded for 5 minutes on a roll at 150°C, and then extruded into a 2 mm thick sheet. Example of manufacturing thermoplastic copolyester resin: 582 parts by weight of dimethyl terephthalate in a container equipped with a stirrer, a thermometer, and a condenser for distillation.
194 parts by weight of dimethyl isophthalate, 108 parts by weight of 1,4-butanediol, diethylene glycol
85 parts by weight, 40 parts by weight of polytetramethylene glycol with a molecular weight of 1000, and tetrabutoxytitanium
0.42 parts by weight was mixed and transesterification reaction was carried out at 160°C to 210°C for 4 hours. Next, the reaction temperature was raised to 250℃, the pressure was reduced to 5mmHg over 40 minutes, and the pressure was further reduced to 0.3mmHg or less.
The polycondensation reaction was carried out over 90 minutes. Obtained copolymerized polyester resin (A-1)
had a melting point of 124°C and a reduced viscosity of 0.88.
When the polyester resin composition was analyzed by NMR analysis, it was found that the dicarboxylic acid component was 75 mol% of terephthalic acid and 25 mol% of isophthalic acid, and the glycol component was 64 mol% of 1,4-butanediol, 35 mol% of diethylene glycol,
It was a condensation polymer consisting of polytetramethylene glycol and 1 mol% of polytetramethylene glycol. Polyester resins of the present invention ((A-2) to (A-4)) and comparative polyester resins ((A-5) to (A-10)) were produced in the same manner. Table 1 shows the characteristic values and constituent monomer composition of the polyester resin.

【表】【table】

【表】 実施例1〜6、比較例1〜5 表−1の共重合ポリエステル樹脂(A−2)エ
ポキシ基含有エチレン共重合体として、メルトイ
ンデツクス7g/10分、グリシジルメタクリレー
ト含有量10重量%、酢酸ビニル含有量4重量%の
エチレン共重合体(B−1)および、メルトイン
デツクス6g/10分、酢酸ビニル含有量10重量%
のエチレン−酢酸ビニル共重合体(C−1)ある
いは日本ポリスチレン工業(製)ポリスチレン:
エスブライト8(C−2)を表−2に示す割合で
混合し、30mmφ押出機を用いて、190℃の温度で
再造粒した。得られた接着用樹脂組成物を20mm
φT−ダイ加工機で50〜60μのフイルムに製膜し
た。このフイルムを用い接着性試験を行なつた結
果を表−2に示す。 比較例として(A−2)および(B−1)を単
独に用いた場合、(B−1)を添加しなかつた場
合および表−1の共重合ポリエステル樹脂(A−
9)を用いた場合の結果を表−2に示す。
[Table] Examples 1 to 6, Comparative Examples 1 to 5 As the copolymerized polyester resin (A-2) of Table 1, epoxy group-containing ethylene copolymer, melt index: 7 g/10 min, glycidyl methacrylate content: 10 weight %, ethylene copolymer (B-1) with a vinyl acetate content of 4% by weight, and a melt index of 6 g/10 minutes, a vinyl acetate content of 10% by weight.
Ethylene-vinyl acetate copolymer (C-1) or polystyrene manufactured by Nippon Polystyrene Kogyo Co., Ltd.:
S-Brite 8 (C-2) was mixed in the proportions shown in Table 2, and re-granulated at a temperature of 190°C using a 30 mmφ extruder. 20mm of the obtained adhesive resin composition
A film of 50 to 60 μm was formed using a φT-die processing machine. Table 2 shows the results of an adhesion test using this film. As comparative examples, when (A-2) and (B-1) were used alone, when (B-1) was not added, and when the copolymerized polyester resin (A-
9) is shown in Table 2.

【表】 実施例7、比較例6 表−1の共重合ポリエステル樹脂(A−1)を
65重量%、実施例−1の(B−1)を10重量%お
よび実施例−1の(C−1)を25重量%混合し、
実施例−1と同様に評価した結果を表−3に示
す。 比較例として共重合ポリエステル樹脂を単独で
用いた場合の結果を表−3に示す。 実施例8,9、比較例7,8 表−1の共重合ポリエステル樹脂(A−3)、
および(A−4)を70重量%、実施例−1の(B
−1)を30重量%を混合し実施例−1と同様に評
価した結果を表−3に示す。 比較として共重合ポリエステル樹脂を単独で用
いた場合の結果を表−3に示す。 比較例 9,10 表−1の共重合ポリエステル樹脂(A−11)を
用い実施例8と同様に評価した結果を比較例9と
して表−3に示す。また共重合ポリエステル単独
で用いた場合の結果を比較例10として表−3に示
す。
[Table] Example 7, Comparative Example 6 Copolymerized polyester resin (A-1) in Table-1
65% by weight, 10% by weight of (B-1) of Example-1 and 25% by weight of (C-1) of Example-1,
Table 3 shows the results of evaluation in the same manner as in Example-1. Table 3 shows the results when a copolymerized polyester resin was used alone as a comparative example. Examples 8 and 9, Comparative Examples 7 and 8 Copolymerized polyester resin (A-3) in Table-1,
and (A-4) in an amount of 70% by weight, (B in Example-1)
-1) was mixed with 30% by weight and evaluated in the same manner as in Example-1. The results are shown in Table-3. For comparison, Table 3 shows the results when copolymerized polyester resin was used alone. Comparative Examples 9 and 10 The copolymerized polyester resin (A-11) shown in Table 1 was evaluated in the same manner as in Example 8. The results are shown in Table 3 as Comparative Example 9. Further, the results when the copolymerized polyester was used alone are shown in Table 3 as Comparative Example 10.

【表】 用い評価した。
比較例 11〜13 表−1の共重合ポリエステル樹脂(A−6)、
(A−7)あるいは(A−8)を用いた以外は実
施例7と同様に評価した結果を表−4に示す。
[Table] Used and evaluated.
Comparative Examples 11-13 Copolymerized polyester resin (A-6) in Table-1,
Table 4 shows the results of evaluation in the same manner as in Example 7 except that (A-7) or (A-8) was used.

【表】 還元粘度0.32の共重合ポリエステル樹脂を用い
た組成物では非常に低い粘着性しか示さなかつ
た。また、融点が低い共重合ポリエステル樹脂を
用いた組成物ではフイルムのブロキングが大きく
実用に供し得ない。 比較例 14〜15 表−1の共重合ポリエステル樹脂(A−5)あ
るいは(A−10)を70重量%、実施例−1の(B
−1)を10重量および実施例−1の(C−1)を
20重量%を混合し30mmφ押出機を用いて250℃の
温度で再造粒した。得られた組成物を20mmφT−
ダイ加工機で50〜60μのフイルムに製膜した。こ
のフイルムを用い通常の180℃×5分×10Kg/cm2
の条件で接着したところ0Kg/cmであつた。そこ
で250℃×5分×10Kg/cmの条件で接着したとこ
ろ(A−5)組成物0.9Kg/cm、(A−10)組成物
0.4Kg/cmであり、非常に低い接着性しか示さな
かつた。 実施例 10〜14 表−1の共重合ポリエステル樹脂(A−2)を
65重量%、実施例−1の(C−1)を25重量%お
よび表−5に示すエチレン共重合体(B)を10重量%
を混合し、実施例−1と同様に評価した結果を表
−5に示す。 比較例 16 表−1の共重合体ポリエステル樹脂(A−9)
を用い実施例12と同様に評価した結果を表−5に
示す。
[Table] A composition using a copolyester resin with a reduced viscosity of 0.32 exhibited only very low tackiness. Furthermore, a composition using a copolyester resin having a low melting point causes a large blocking of the film and cannot be put to practical use. Comparative Examples 14-15 70% by weight of the copolymerized polyester resin (A-5) or (A-10) in Table-1, (B
-1) by weight and (C-1) of Example-1
20% by weight was mixed and re-granulated at a temperature of 250°C using a 30mmφ extruder. The obtained composition was 20mmφT−
A film of 50 to 60 μm was formed using a die processing machine. Using this film, the normal temperature is 180℃ x 5 minutes x 10Kg/cm 2
When bonded under these conditions, it was 0 kg/cm. Therefore, when bonding was carried out under the conditions of 250°C x 5 minutes x 10Kg/cm, (A-5) composition 0.9Kg/cm, (A-10) composition
0.4 Kg/cm, showing very low adhesion. Examples 10-14 Copolymerized polyester resin (A-2) in Table-1
65% by weight, 25% by weight of (C-1) in Example-1, and 10% by weight of the ethylene copolymer (B) shown in Table-5.
were mixed and evaluated in the same manner as in Example 1. The results are shown in Table 5. Comparative Example 16 Copolymer polyester resin (A-9) in Table-1
Table 5 shows the results of evaluation in the same manner as in Example 12.

【表】 実施例 15〜20 表−1の共重合体ポリエステル樹脂(A−2)
を65重量%、実施例−1の(B−1)を10重量%
および表−6に示す熱可塑性樹脂(C)を混合し、実
施例−1と同様に評価した結果を表−6に示す。
押出加工性およびフイルムのブロツキングは
“〇”で良好であつた。
[Table] Examples 15-20 Copolymer polyester resin (A-2) in Table-1
65% by weight, 10% by weight of (B-1) of Example-1
and the thermoplastic resin (C) shown in Table 6 were mixed and evaluated in the same manner as in Example 1. The results are shown in Table 6.
The extrusion processability and blocking of the film were evaluated as "Good" and were good.

【表】【table】

【表】 実施例21〜25、比較例17 実施例−3,4,5,6,14の組成物のフイル
ムを用い下記の方法で耐水保特性を評価した結果
を表−7に示す。 なお比較例として比較例−4の組成物のフイル
ムを用い評価した結果を表−7に示す。 (評価方法) 軟質ポリ塩化ビニル樹脂シート(2mm)/組成
物フイルム(50〜60μ)/エポキシ基含有エチレ
ン共重合体※) フイルム(50μ)/軟質アルミニ
ウム(200μ)の構成に重ね合せ180℃×5分×10
Kg/cm2の条件で接着した後、10mm巾に切断し、70
℃温水に所定期間浸漬後、軟質アルミニウムを
180゜に折り曲げ、100mm/分の引張強度で剥離強
度を測定した。 ※) グリシジルメタクリレート含有量10重量
%、酢酸ビニル含有量5重量%、メルトイン
デツクスg/10分のエチレン共重合体
[Table] Examples 21 to 25, Comparative Example 17 Table 7 shows the results of evaluating the water resistance properties using the films of the compositions of Examples 3, 4, 5, 6, and 14 by the following method. Table 7 shows the results of evaluation using a film of the composition of Comparative Example 4 as a comparative example. (Evaluation method) Soft polyvinyl chloride resin sheet (2 mm) / composition film (50 to 60 μ) / epoxy group-containing ethylene copolymer *) Film (50 μ) / soft aluminum (200 μ) laminated at 180°C 5 minutes x 10
After gluing under the conditions of Kg/cm 2 , cut into 10mm width and 70mm
After soaking in warm water for a specified period of time, the soft aluminum is
It was bent at 180° and the peel strength was measured at a tensile strength of 100 mm/min. *) Ethylene copolymer with glycidyl methacrylate content of 10% by weight, vinyl acetate content of 5% by weight, and melt index g/10 minutes.

【表】【table】

Claims (1)

【特許請求の範囲】 1 熱可塑性共重合ポリエステル樹脂(A)と、官能
基を含有するエチレン共重合体(B)、さらに必要に
応じて別種の熱可塑性樹脂(C)を溶融混合してなる
接着用樹脂組成物において、(A)が40〜80重量%、
(B)と(C)の合計量が60〜20重量%であり、熱可塑性
共重合ポリエステル樹脂(A)が、ジカルボン酸成分
としてテレフタル酸60〜95モル%およびイソフタ
ル酸40〜5モル%からなり、低分子量グリコール
成分として1,4−ブタンジオール55〜95モル
%、およびジエチレングリコール45〜5モル%か
らなり、さらに分子量600〜6000のポリテトラメ
チレングリコールが全ジカルボン酸に対して0.1
〜4モル%からなり、融点100〜150℃、還元粘度
0.5以上の熱可塑性共重合ポリエステル樹脂であ
り、かつ官能基を含有するエチレン共重合体(B)
が、メルトインデツクス0.5〜50g/10分で、α,
β不飽和グリシジルエステル、α,β不飽和グリ
シジルエーテル、α,β不飽和カルボン酸および
その無水物の中から選ばれた1種もしくは2種以
上の官能基を0.01〜20モル%含有するエチレン共
重合体であることを特徴とする接着用樹脂組成
物。 2 熱可塑性共重合ポリエステル樹脂(A)成分が40
〜80重量%、官能基を含有するエチレン共重合体
(B)成分と熱可塑性樹脂(C)成分の合計量が60〜20重
量%であり、かつ、(B)成分と(C)成分の合計量中の
(B)成分の割合が5〜100重量%である特許請求の
範囲第1項記載の接着用樹脂組成物。 3 別種の熱可塑性樹脂(C)がビニル芳香族炭化水
素重合体または共重合体、(メタ)アクリル酸エ
ステル重合体または共重合体、エチレン系重合体
もしくはポリオレフイン系エラストマーの中から
選ばれた1種もしくは2種以上であることを特徴
とする特許請求の範囲第1記載の接着用樹脂組成
物。
[Claims] 1. A thermoplastic copolymerized polyester resin (A), an ethylene copolymer containing a functional group (B), and, if necessary, another type of thermoplastic resin (C), melt-mixed. In the adhesive resin composition, (A) is 40 to 80% by weight,
The total amount of (B) and (C) is 60 to 20% by weight, and the thermoplastic copolyester resin (A) is composed of 60 to 95 mol% of terephthalic acid and 40 to 5 mol% of isophthalic acid as dicarboxylic acid components. It consists of 55 to 95 mol% of 1,4-butanediol and 45 to 5 mol% of diethylene glycol as low molecular weight glycol components, and polytetramethylene glycol with a molecular weight of 600 to 6000 accounts for 0.1% of the total dicarboxylic acid.
~4 mol%, melting point 100~150℃, reduced viscosity
Ethylene copolymer (B) which is a thermoplastic copolymerized polyester resin of 0.5 or more and contains a functional group.
However, at a melt index of 0.5 to 50 g/10 minutes, α,
Ethylene copolymer containing 0.01 to 20 mol% of one or more functional groups selected from β-unsaturated glycidyl esters, α, β-unsaturated glycidyl ethers, α, β-unsaturated carboxylic acids, and their anhydrides. An adhesive resin composition characterized by being a polymer. 2 Thermoplastic copolymerized polyester resin (A) component is 40
~80% by weight, ethylene copolymer containing functional groups
The total amount of component (B) and thermoplastic resin (C) is 60 to 20% by weight, and
The adhesive resin composition according to claim 1, wherein the proportion of component (B) is 5 to 100% by weight. 3. The different thermoplastic resin (C) is selected from vinyl aromatic hydrocarbon polymers or copolymers, (meth)acrylic acid ester polymers or copolymers, ethylene polymers, or polyolefin elastomers. The adhesive resin composition according to claim 1, characterized in that it comprises one or more types.
JP22279683A 1983-11-26 1983-11-26 Bondable resin composition Granted JPS60115657A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP22279683A JPS60115657A (en) 1983-11-26 1983-11-26 Bondable resin composition
DE8484308158T DE3466240D1 (en) 1983-11-26 1984-11-23 Adhesive resin composition
EP84308158A EP0145391B1 (en) 1983-11-26 1984-11-23 Adhesive resin composition
US06/902,085 US4720524A (en) 1983-11-26 1986-08-27 Adhesive resin composition
US07/098,836 US4771106A (en) 1983-11-26 1987-09-21 Adhesive resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22279683A JPS60115657A (en) 1983-11-26 1983-11-26 Bondable resin composition

Publications (2)

Publication Number Publication Date
JPS60115657A JPS60115657A (en) 1985-06-22
JPH0372114B2 true JPH0372114B2 (en) 1991-11-15

Family

ID=16788024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22279683A Granted JPS60115657A (en) 1983-11-26 1983-11-26 Bondable resin composition

Country Status (1)

Country Link
JP (1) JPS60115657A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0788449B2 (en) * 1987-04-27 1995-09-27 住友ダウ株式会社 Thermoplastic resin composition
JPH01217091A (en) * 1988-02-25 1989-08-30 Nisshin Steel Co Ltd Resin composition having excellent adhesion to metal
JP2606325B2 (en) * 1988-10-22 1997-04-30 東亞合成株式会社 Polyester resin composition
JP2006265332A (en) * 2005-03-23 2006-10-05 Toray Ind Inc Polybutylene terephthalate resin composition for film and method for producing polybutylene terephthalate film
CN101790564B (en) * 2007-08-29 2012-07-18 东亚合成株式会社 Saturated polyester resin composition and hot melt adhesive composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5193953A (en) * 1975-02-15 1976-08-18
JPS5214683A (en) * 1975-07-18 1977-02-03 Mitsubishi Petrochem Co Ltd Process for preparing a laminate
JPS5638367A (en) * 1979-09-07 1981-04-13 Dainippon Ink & Chem Inc Novel polyester hot-melt adhesive

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5193953A (en) * 1975-02-15 1976-08-18
JPS5214683A (en) * 1975-07-18 1977-02-03 Mitsubishi Petrochem Co Ltd Process for preparing a laminate
JPS5638367A (en) * 1979-09-07 1981-04-13 Dainippon Ink & Chem Inc Novel polyester hot-melt adhesive

Also Published As

Publication number Publication date
JPS60115657A (en) 1985-06-22

Similar Documents

Publication Publication Date Title
EP0145391B1 (en) Adhesive resin composition
US4619969A (en) Polyolefin composition comprising propylene polymer and ethylene/anhydride/ester copolymer
EP1963453B1 (en) Adhesive and coating compositions
JPS61261049A (en) Weatherproof film
US5322908A (en) Resin composition and adhesive using the same
JP4277174B2 (en) Resin composition
JPH0587550B2 (en)
JPH0239931A (en) Laminated film for metal deposition
JPH0372114B2 (en)
EP0734851A2 (en) Laminate of liquid crystal polyester resin composition film and metallic foil, and printed-wiring board using the same
JPS645073B2 (en)
JP2846451B2 (en) Adhesive resin composition
JP3146972B2 (en) Laminated product of liquid crystal polyester resin composition film and metal foil and printed wiring board using the same
JPH0867807A (en) Resin composition, its production and hot-melt adhesive therefrom
JPH0141667B2 (en)
JP2004262166A (en) Multilayer laminate and resin coated metal sheet
JP3515613B2 (en) Heat-resistant heat-sensitive adhesive and multilayer laminate using the adhesive
JP3504377B2 (en) Heat-sensitive adhesive composition and multilayer laminate using the adhesive
JP2004269654A (en) Resin composition and adhesive agent
JPS61238846A (en) Crosslinkable composition
JPH08217925A (en) Heat-sensitive adhesive film and multilayer laminate made thereof
JP2766377B2 (en) Thin crosslinkable resin composition
JPH06182922A (en) Laminate
JPH03281245A (en) Laminate
JPH01228839A (en) Decorative tape