JPH0372052A - Manufacture of wear-resistant sintered alloy - Google Patents

Manufacture of wear-resistant sintered alloy

Info

Publication number
JPH0372052A
JPH0372052A JP20879989A JP20879989A JPH0372052A JP H0372052 A JPH0372052 A JP H0372052A JP 20879989 A JP20879989 A JP 20879989A JP 20879989 A JP20879989 A JP 20879989A JP H0372052 A JPH0372052 A JP H0372052A
Authority
JP
Japan
Prior art keywords
weight
powder
less
treatment
alloy powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20879989A
Other languages
Japanese (ja)
Inventor
Toru Ogasawara
徹 小笠原
Tsuyoshi Morishita
強 森下
Katsuya Ouchi
大内 勝哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP20879989A priority Critical patent/JPH0372052A/en
Publication of JPH0372052A publication Critical patent/JPH0372052A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the corrosion resistance of the Co-base hard grains themselves, to reduce pores in a matrix structure and to improve its hardness by regulating mixed powder having specified compsn. of which ferroalloy powder is added to ferrous and Co-base alloy powder as a raw material and subjecting a sintered body to soln. treatment and precipitation treatment. CONSTITUTION:Mixed powder of ferrous alloy powder constituted of, by weight, 7 to 22% Ni, 16 to 26% Cr, <=3% Mo, <=0.2% C, <=1% Si, <=2% Mn, <=1% inevitable impurities and the balance Fe, ferroalloy powder in which the content of one or more kinds among P, B, Si, Mn and Mo is regulated to 0.5 to 5.0% to the total content and Co-base alloy powder, 5 to 40% to the total content, is used. Material powder of which the above powder is mixed with a suitable amt. of lubricant is subjected to compacting and sintering to obtain a sintered body. The sintered body is successively subjected to soln. treatment and precipitation hardening treatment and is thereafter subjected to Pb impregnation treatment, by which the wear-resistant sintered alloy can be obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、エンジンのバルブシート等のように耐摩耗性
および耐食性が要求される部品を構成するに適した耐摩
性焼結合金の製造方法に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for producing a wear-resistant sintered alloy suitable for constructing parts that require wear resistance and corrosion resistance, such as engine valve seats. It is related to.

(従来の技術) エンジンのバルブシート等のように、高温下における耐
摩耗性および耐食性が要求される部品を構成する金属材
料として、硬質粒子分散型焼結合金か用いられるように
なってきている。一般に、該硬質粒子分散型焼結合金は
、硬質粒子としてFe基合金、高炭素フェロモリブデン
等を用い、鉄系合金粉末に対してFeベースにC,Co
、Mo。
(Prior art) Hard particle dispersed sintered alloys have come to be used as metal materials for components that require wear resistance and corrosion resistance under high temperatures, such as engine valve seats. . In general, the hard particle dispersed sintered alloy uses Fe-based alloy, high carbon ferromolybdenum, etc. as hard particles, and uses Fe-based C, Co, etc. for iron-based alloy powder.
, Mo.

Cr、W、V等を加えて、耐摩耗性および耐食性、靭性
を向上させる構成となっている。
It has a structure in which Cr, W, V, etc. are added to improve wear resistance, corrosion resistance, and toughness.

このような構成の焼結合金は、−膜内に結晶粒子間に多
数の気孔が生成される多孔質とされているが、有鉛ガソ
リンが使用されるエンジンのバルブシートとして用いら
れる焼結合金の場合、かかるバルブシートが他のエンジ
ンにおけるバルブシートに比べて高温にさらされること
となることに鑑み、バルブシートのバルブフェースと接
触する部分の温度を下げる目的と、母地組織の強度およ
び硬さを上げる目的とのため、鉛(Pb)や銅(Cu)
を前記気孔中に含浸させる方法が用いられている。
A sintered alloy with such a structure is considered to be porous with many pores formed between crystal grains within the film, but it is used as a valve seat in engines that use leaded gasoline. In this case, the valve seats are exposed to higher temperatures than valve seats in other engines, so the purpose of reducing the temperature of the part of the valve seat that contacts the valve face and For the purpose of increasing the temperature, lead (Pb) and copper (Cu) are
A method is used in which the pores are impregnated with the pores.

一方、フォークリフト用LPG燃料エンジンのように、
最高回転数が乗用車用エンジンの1/2程度で、しかも
断続運転の機会が多いものに使用されるバルブシートの
場合、弁との当接部における表面温度が比較的低い時、
空気あるいは潤滑油等に含まれている水分が前記当接部
に凝縮付着し、該凝縮水とエンジンの排気バルブ側に排
出される燃焼生成物中に含まれる硫黄酸化物とが反応し
て硫酸(H,So、)が生成されることとなり、バルブ
シートにおける弁との当接部に腐食および摩耗等が生じ
てしまうという問題がある。
On the other hand, like LPG fuel engines for forklifts,
In the case of valve seats used in engines whose maximum rotational speed is about half that of a passenger car engine and which are frequently operated intermittently, when the surface temperature at the contact part with the valve is relatively low,
Moisture contained in the air or lubricating oil condenses and adheres to the contact area, and the condensed water reacts with sulfur oxides contained in the combustion products discharged to the exhaust valve side of the engine, producing sulfuric acid. (H, So,) will be generated, and there is a problem that corrosion, wear, etc. will occur at the contact portion of the valve seat with the valve.

上記の如き問題に対処するためには、従来の強度を維持
し、ざらに銅腐食摩耗性を改善することが要求されると
ころであり、該要求に応え得るものとしては、特開昭6
3−114947号公報にも開示されているように、鉄
系合金粉末CC:0.2重量%以下、Mo:3.0重量
%以下、Ni:8〜22重量%、Cr:16〜26重量
%、Ti、Ta、Nbのうらの少なくとも1種=0.5
〜6.0重量%)に対して、45〜40重量%のCo基
合金粉末を混合して焼結するようにしたものが既に提案
されている。
In order to deal with the above-mentioned problems, it is required to maintain the conventional strength and significantly improve copper corrosion abrasion resistance.
As disclosed in Publication No. 3-114947, iron-based alloy powder CC: 0.2% by weight or less, Mo: 3.0% by weight or less, Ni: 8 to 22% by weight, Cr: 16 to 26% by weight. %, at least one of Ti, Ta, and Nb = 0.5
~6.0% by weight), a method in which 45 to 40% by weight of Co-based alloy powder is mixed and sintered has already been proposed.

上記公知例の焼結合金材料では、Co基硬質粒子自身お
よび母地組織の耐食性向上は図れるものの、気孔の減少
および母地組織の硬度向上の点ては不十分であり、なお
、改善の余地か存している。
Although the above-mentioned known examples of sintered alloy materials can improve the corrosion resistance of the Co-based hard particles themselves and the matrix structure, they are insufficient in reducing pores and improving the hardness of the matrix structure, and there is still room for improvement. It still exists.

本発明は、上記の点に鑑みてなされたもので、Co基硬
質粒子自身の耐食性を改善すること、母地組織の耐食性
を改善することに加えて、母地組織中の気孔の減少およ
び母地組織の硬度向上を図ることを目的とするものであ
る。
The present invention has been made in view of the above points, and in addition to improving the corrosion resistance of the Co-based hard particles themselves and the corrosion resistance of the matrix structure, the present invention also aims to reduce pores in the matrix structure and improve the corrosion resistance of the matrix structure. The purpose is to improve the hardness of the ground structure.

(課題を解決するための手段) 本発明では、上記課題を解決するための手段として、N
i:’/−22重量%、Cr:16〜26重量%、MO
:3重量%以下、C:0.2重里%以下、Si1重量%
以下、Mn・2重量%以下、不可避不純物1重量%以下
、Fe:残部の組成を有する鉄系合金粉末と、P、B、
SiSMnSMoのうち少なくとも1種が全量に対して
05〜5.0重量%になるようなフェロアロイ粉末と、
全量に対して5〜40重量%となるCo基合金粉末とか
らなる混合合金粉末に対して、適量の潤滑剤を混合して
得られる焼結用原料粉末を所定形状に圧縮成形し、その
後焼結することにより得られた焼結体に対して、固溶化
処理および析出硬化処理を順次施した後、Pb含浸処理
を施すようにしている。
(Means for solving the problem) In the present invention, as a means for solving the above problem, N
i:'/-22% by weight, Cr: 16-26% by weight, MO
: 3% by weight or less, C: 0.2% by weight or less, Si 1% by weight
Hereinafter, an iron-based alloy powder having a composition of 2% by weight or less of Mn, 1% or less of unavoidable impurities, and the balance of Fe, P, B,
A ferroalloy powder in which at least one of SiSMnSMo is 05 to 5.0% by weight based on the total amount;
A raw material powder for sintering obtained by mixing an appropriate amount of lubricant with a mixed alloy powder consisting of 5 to 40% by weight of Co-based alloy powder based on the total amount is compressed into a predetermined shape, and then sintered. The sintered body obtained by sintering is sequentially subjected to solution treatment and precipitation hardening treatment, and then subjected to Pb impregnation treatment.

上記の如くして得られる焼結体を構成すべき鉄系合金粉
末の組成を上記の如く定めたのは、以下の理由に基づく
The composition of the iron-based alloy powder constituting the sintered body obtained as described above was determined as described above based on the following reasons.

Niは、焼結時にFeと結合して焼結合金の母地組織を
オーステナイト化することにより、母地組織の靭性を向
上させる役目を果たす。そして、母地組織中におけるN
iの含有量を規定する実験を行った結果、Niの含有量
が7重量%未満では、母地組織を構成するオーステナイ
ト組織が不安定となり、また、22重量%を超える場合
には、母地組織の硬度が低下することが確認された。従
って、鉄系合金粉末中におけるNiの含有量は、7〜2
2重量%の範囲とするのか望ましい。
Ni combines with Fe during sintering to turn the matrix structure of the sintered alloy into austenite, thereby improving the toughness of the matrix structure. and N in the parent organization.
As a result of experiments to determine the Ni content, it was found that if the Ni content is less than 7% by weight, the austenite structure that makes up the matrix structure becomes unstable, and if it exceeds 22% by weight, the matrix structure becomes unstable. It was confirmed that the hardness of the tissue decreased. Therefore, the Ni content in the iron-based alloy powder is 7 to 2
It is desirable that the content be within the range of 2% by weight.

Crは、母地組織の高温強度、耐食性および耐酸化性の
向上に寄与する。そして、鉄系合金粉末中におけるCr
の含有量を規定する実験を行った結果、Niが同時に含
有されている状態においては、Crの含有量が16重量
%未満では、母地組織の高温強度、耐食性および耐酸化
性が十分に向上するものとならず、また、26重量%を
超える場合には、母地組織の硬度が低下することが確認
された。従って、鉄系合金粉末中におけるCrの含有量
は、16〜26重量%の範囲とするのが望ましい。
Cr contributes to improving the high temperature strength, corrosion resistance, and oxidation resistance of the parent structure. And Cr in iron-based alloy powder
As a result of conducting experiments to determine the content of Cr, it was found that when Ni is included at the same time, when the Cr content is less than 16% by weight, the high-temperature strength, corrosion resistance, and oxidation resistance of the matrix structure are sufficiently improved. It was also confirmed that when the amount exceeds 26% by weight, the hardness of the matrix structure decreases. Therefore, the content of Cr in the iron-based alloy powder is preferably in the range of 16 to 26% by weight.

Moは、母地組織の高温強度および靭性を向上させる役
目を果たす。そして、鉄系合金粉末中におけるMoの含
有量を規定する実験を行った結果、Moの含有量が3重
里%を超える場合には、母地組織を構成するオーステナ
イト組織が不安定となることが確認された。従って、鉄
系合金粉末中におけるMoの含有量は、3重量%以下と
するのが望ましい。
Mo serves to improve the high temperature strength and toughness of the host structure. As a result of conducting experiments to determine the content of Mo in iron-based alloy powder, it was found that when the content of Mo exceeds 3%, the austenite structure constituting the matrix structure becomes unstable. confirmed. Therefore, it is desirable that the content of Mo in the iron-based alloy powder is 3% by weight or less.

Cは、鉄系合金粉末の製造過程で必然的に含まれ、焼結
時にCrと結合して母地組織にCr欠乏部を生じさせる
ものとなるCr炭化物を生成する。
C is inevitably included in the manufacturing process of iron-based alloy powder, and combines with Cr during sintering to produce Cr carbide that causes Cr-deficient areas in the matrix structure.

従って、鉄系合金粉末中におけるCの含有量は、0.2
重量%以下とするのが望ましい。
Therefore, the content of C in the iron-based alloy powder is 0.2
It is desirable that the amount is less than % by weight.

SiおよびMnは、共に母地組織の硬度向上に寄与する
が、多すぎると靭性の低下を招くこととなる。従って、
鉄系合金粉末中におけるSiおよびMnの含有量は、そ
れぞれ1重量%以下および2重量%以下とするのが望ま
しい。
Both Si and Mn contribute to improving the hardness of the base structure, but if they are present too much, they will lead to a decrease in toughness. Therefore,
The contents of Si and Mn in the iron-based alloy powder are desirably 1% by weight or less and 2% by weight or less, respectively.

なお、この鉄系合金粉末の粒度は、成形性および焼結性
を良好に保持するためには80メソシユ以下とするのが
望ましい。
The particle size of this iron-based alloy powder is preferably 80 mesosites or less in order to maintain good formability and sinterability.

また、焼結体生成のための混合合金粉末中に、C,P、
B、S i、Mn、Moのうち少なくとも1種が全量に
対して0.5〜5.0重量%になるようなフェロアロイ
粉末が含まれるのは、以下の理由に基づく。
In addition, C, P,
The reason why the ferroalloy powder contains at least one of B, Si, Mn, and Mo in an amount of 0.5 to 5.0% by weight based on the total amount is based on the following reason.

P、B1Si、Mn%Moは、焼結時に液相成分を生成
して焼結合金の密度を向上させ、母地組織中に生成され
る気孔の数を低減させる役目を果たす。そして、混合合
金粉末中におけるPSBSSi、 Mn、 Moのうち
少なくとも1種の含有量を規定する実験を行った結果、
P 、 B s S i−、M n、 MOのうち少な
くとも1種の含有量が、0.5重量%未満では、焼結時
に生成される液相成分の量が不足して焼結合金の高密度
化が促進されず、母地組織中に生成される気孔の割合が
10%を超えるものとなり、また、5.0重量%を超え
る場合には、母地組織中に生成される気孔の割合は既に
】0%以下とされており、コストの上昇に見合うそれ以
上の効果は得られないことが確認された。従って、K’
4 ei金合金粉末中おけるP、 B、 S i、 M
n、 Moのうち少なくとも1種の含有量は、0.5〜
50重里%の範囲とするのが望ましい。なお、有効な気
孔率の目安を10%以下とした理由は、この程度の気孔
率の焼結体が溶製材と同程度の耐食性を示すことによる
。また、このフェロアロイ粉末の粒度は、150メツシ
ユ以下とするのが望ましく、鉄系合金粉末とフェロアロ
イ粉末を見合した時に80〜200メノシユの粒径のも
のが30%以下に抑えられることが望ましい。さらに、
フェロアロイ粉末には、通常Cが含まれているが、この
Cの含有量を補填すべくグラファイト粉末(0,5〜2
.0重量%)を添加する場合もある。
P, B1Si, and Mn%Mo form liquid phase components during sintering, improve the density of the sintered alloy, and serve to reduce the number of pores generated in the matrix structure. As a result of conducting an experiment to define the content of at least one of PSBSSi, Mn, and Mo in the mixed alloy powder,
If the content of at least one of P, BsSi-, Mn, and MO is less than 0.5% by weight, the amount of liquid phase component generated during sintering will be insufficient and the sintered alloy will have a high If densification is not promoted and the proportion of pores generated in the matrix tissue exceeds 10%, and if it exceeds 5.0% by weight, the proportion of pores produced in the matrix tissue is already below 0%, and it has been confirmed that no further effect commensurate with the increased cost can be obtained. Therefore, K'
4 P, B, S i, M in ei gold alloy powder
The content of at least one of n and Mo is 0.5 to
It is desirable to set the range to 50%. The reason why the effective porosity is set to 10% or less is that a sintered body with a porosity of this level exhibits corrosion resistance comparable to that of ingot material. The particle size of this ferroalloy powder is preferably 150 mesh or less, and it is desirable that the particle size of 80 to 200 mesh is suppressed to 30% or less when the iron-based alloy powder and ferroalloy powder are combined. moreover,
Ferroalloy powder usually contains C, but in order to compensate for this C content, graphite powder (0.5 to 2
.. 0% by weight) may be added.

さらに、前記混合合金粉末中におけるCo基合金粉末の
割合が5〜40重量%とされるのは、以下の理由に基づ
く。
Furthermore, the reason why the proportion of the Co-based alloy powder in the mixed alloy powder is set to 5 to 40% by weight is based on the following reason.

Co基合金粉末は、それ自体耐食性に優れているととも
に、焼結時に母地組織中に分散混入される硬質粒子を生
威し、母地組織の耐摩耗性の向上に寄与するものとなる
。そして、混合粉末中におけるCo基合金粉末の割合を
規定する実験を行った結果、混合合金粉末中におけるC
o基合金粉末の割合が、5重量%未満では、焼結時に生
成される硬質粒子の量が不足し、母地組織が十分な耐摩
耗性を有するものとならず、また、40重量%を超える
場合には、硬質粒子の増加に伴って母地組織の靭性が低
下することが確認された。従って、混合合金粉末中にお
けるCo基合金粉末の割合は、5〜40重量%の範囲と
するのか望ましい。
The Co-based alloy powder itself has excellent corrosion resistance, and also produces hard particles that are dispersed and mixed into the matrix structure during sintering, contributing to improving the wear resistance of the matrix structure. As a result of conducting an experiment to define the proportion of Co-based alloy powder in the mixed powder, we found that
If the proportion of O-based alloy powder is less than 5% by weight, the amount of hard particles generated during sintering will be insufficient, and the base structure will not have sufficient wear resistance. It was confirmed that when the amount of hard particles is exceeded, the toughness of the matrix structure decreases as the number of hard particles increases. Therefore, the proportion of the Co-based alloy powder in the mixed alloy powder is preferably in the range of 5 to 40% by weight.

なお、Co基合金粉末の粒度が80メノシユを超える場
合、圧粉成形した時の圧粉体強度が低くなること、母地
組織との焼結面積が小さくなって運転時の荷重等により
硬質粒子が脱落し易くなること、硬質粒子の占める面積
が小さくなって多量の硬質粒子の添加を要することとな
るため、80メ。
In addition, if the particle size of the Co-based alloy powder exceeds 80 mesh, the strength of the compact when compacted will be low, and the sintered area with the matrix structure will be small, causing hard particles to form due to the load during operation, etc. 80 meters because the hard particles tend to fall off and the area occupied by the hard particles becomes smaller, requiring a large amount of hard particles to be added.

シュ以下とするのが望ましい。It is desirable that it be less than

(作 用) 本発明では、上記手段により次のような作用が得られる
(Function) In the present invention, the following effects can be obtained by the above means.

即ち、Ni:7〜22重遣%重量r:16〜26重里%
、M o : 3重1%以下、C:0,2重量%以下、
sl:1重量%以下、M n : 2重量%以下、不可
避不純物:1重量%以下、Fe:残部の組成を有する鉄
系合金粉末と、PSB、SiSMnSMoのうち少なく
とも1種が全量に対して0.5〜5.0重重%になるよ
うなフェロアロイ粉末と、全量に対して5〜40重量%
となるCo基合金粉末とからなる混合合金粉末に対して
、適量の潤滑剤を混合して得られる混合合金粉末を所定
形状に圧縮成形し、その後焼結するようにしたことによ
り、得られた焼結体の母地組織の耐食性および耐摩耗性
が向上せしめられるとともに、この焼結体に対して、固
溶化処理および析出硬化処理を順次施した後、Pb含浸
処理を施すようにしたことにより、炭化物が均一微細に
分散させられ、硬度および耐摩耗性がより一層向上せし
められる。
That is, Ni: 7-22 weight% Weight r: 16-26 weight%
, Mo: 3 weight 1% or less, C: 0.2 weight % or less,
sl: 1% by weight or less, Mn: 2% by weight or less, unavoidable impurities: 1% by weight or less, Fe: the balance, and at least one of PSB and SiSMnSMo is 0 relative to the total amount. .5 to 5.0% by weight of ferroalloy powder and 5 to 40% by weight of the total amount.
The mixed alloy powder obtained by mixing an appropriate amount of lubricant with the mixed alloy powder consisting of Co-based alloy powder and The corrosion resistance and wear resistance of the matrix structure of the sintered body are improved, and the sintered body is sequentially subjected to solution treatment and precipitation hardening treatment, and then Pb impregnation treatment. , carbide is uniformly and finely dispersed, and hardness and wear resistance are further improved.

(発明の効果) 本発明によれば、Ni:7〜22重量%、Cr:16〜
26@量%、Mo・3重量%以下、C・0.2重里%以
下、Si:1重項%以下、M n : 2重量%以下、
不可避不純物=1重量%以下、Fe残部の組成を有する
鉄系き金粉末と、P、B、S i、Mn、Moのうち少
なくとも1種が全量に対して0.5〜5.0重量%にな
るようなフェロアロイ粉末と、全量に対して5〜40重
量%となるCo基合金粉末とからなる混合合金粉末に対
して、適量の潤滑剤とを混合して得られる混合合金粉末
を所定形状に圧縮成形し、その後焼結することにより、
母地組織の耐食性および耐摩耗性が向」二せしめられる
こととなっている焼結体に対して、固溶化処理および析
出硬化処理を順次施した後、Pb含浸処理を施すように
したので、耐食性が向上することは勿論のこと、炭化物
が均一微細に分散させられ、硬度および耐摩耗性がより
一層向上せしめられることとなるという優れた効果があ
る。
(Effect of the invention) According to the invention, Ni: 7 to 22% by weight, Cr: 16 to 22% by weight
26@% by weight, Mo: 3% by weight or less, C: 0.2% by weight or less, Si: 1% or less, Mn: 2% by weight or less,
Unavoidable impurities = 1% by weight or less, Fe balance iron-based gold powder, and at least one of P, B, Si, Mn, and Mo is 0.5 to 5.0% by weight based on the total amount A mixed alloy powder consisting of a ferroalloy powder having a ferroalloy powder and a Co-based alloy powder having a content of 5 to 40% by weight based on the total amount is mixed with an appropriate amount of a lubricant to form a mixed alloy powder into a predetermined shape. By compression molding and then sintering,
The sintered body, which is supposed to improve the corrosion resistance and wear resistance of the base structure, is subjected to solution treatment and precipitation hardening treatment in sequence, and then Pb impregnation treatment. Not only does corrosion resistance improve, but carbides are uniformly and finely dispersed, resulting in further improvements in hardness and wear resistance, which is an excellent effect.

(実施例) 以下、本発明の耐摩性焼結合金の製造方法を具体例に基
づいて説明する。
(Example) Hereinafter, the method for manufacturing a wear-resistant sintered alloy of the present invention will be explained based on a specific example.

まず、以下の組成を有する焼結用原料粉末を調製する。First, a raw material powder for sintering having the following composition is prepared.

マトリノクスとして ステンレス銅粉(鉄系合金粉末)・70重里%組組成1
2.8重量%Ni、17.2重量%Cr、02重量%M
n、 0.9重量%S1.001重量%C12,5重量
%Mo、0.5重量%Nb、残余Fe粒径:177μm
以下 フェロアロイ粉末、10重量% 組成:4.2重量%C12,4重量%P、942重量%
MO14,3重量%Cr、残余Fe 粒径・74μm以下 Co基合金粉末として ステライト粉末(商品名)・20重量%組1i:1.2
1重量%Cl2L 58重量%Cr、2,26重量%F
e、2.39重量%Ni、1.26重屋%Si、4.6
4重量%W1残余C。
Stainless steel copper powder (iron alloy powder) as matrinox 70% composition 1
2.8 wt% Ni, 17.2 wt% Cr, 02 wt% M
n, 0.9 wt% S1.001 wt% C12, 5 wt% Mo, 0.5 wt% Nb, residual Fe particle size: 177 μm
Ferroalloy powder, 10% by weight Composition: 4.2% by weight C12, 4% by weight P, 942% by weight
MO14, 3 wt% Cr, residual Fe particle size: 74 μm or less Stellite powder (trade name) as Co-based alloy powder, 20 wt% group 1i: 1.2
1 wt% Cl2L 58 wt% Cr, 2,26 wt% F
e, 2.39% by weight Ni, 1.26% Si, 4.6
4% by weight W1 remainder C.

を室径  44〜177μ m 上記各組55.のステンレス粉末、フェロアロイ粉末お
よびCo基合金粉末を混合して得られた混合合金粉末に
対して、潤滑剤として作用する1重量%のステアリン酸
亜鉛を添加することにより、焼結用原料粉末が調製され
る。なお、本実施例の場合、鉄系合金粉末中にNb:0
.5重量%が含まれているが、このNbは焼結時に優先
的にCと結合して炭化物を生成する如く作用し、このこ
とによりCr炭化物の生成を抑制して母地組織の結晶粒
界におけるCr欠乏部の発生を抑制する。また、Nbと
同様な作用をなすものとしては、Ti、Taがあり、こ
れらの少なくとも1種を使用することが許容される。こ
れらのNb、 Ti、 Taの少なくとも1種を添加す
る場合、その含有量は、0.5〜6.0重量%の範囲と
されるのが望ましい。
The chamber diameter is 44 to 177 μm for each of the above groups 55. Raw material powder for sintering is prepared by adding 1% by weight of zinc stearate, which acts as a lubricant, to the mixed alloy powder obtained by mixing stainless steel powder, ferroalloy powder, and Co-based alloy powder. be done. In the case of this example, Nb:0 in the iron-based alloy powder
.. 5% by weight, this Nb acts to preferentially combine with C to form carbides during sintering, thereby suppressing the formation of Cr carbides and forming grain boundaries in the host structure. This suppresses the occurrence of Cr-deficient areas. Moreover, there are Ti and Ta that have the same effect as Nb, and it is permissible to use at least one of these. When at least one of these Nb, Ti, and Ta is added, the content is preferably in the range of 0.5 to 6.0% by weight.

該焼結用原料粉末を5t/。□!の圧縮圧力で所定形状
に金型成形して圧粉体を成形し、該圧粉体を、1]、ガ
ス中において750’CX30分の条件で脱ワノクス処
理した後、次の条件で焼結、固溶化処理、析出硬化処理
を施す。
5 tons of the raw material powder for sintering. □! A green compact is formed by molding into a predetermined shape with a compression pressure of , solution treatment, and precipitation hardening treatment.

(1)  焼結・固溶化処理 前述のようにして脱ワノクス処理された圧粉体を、真空
中(5X 10−’Torr)にて、10°C/分の昇
温スピードで1100’Cまで加熱し、1100°Cて
10分間保持した後、5°C/分の昇温スピードで11
20℃まで加熱し、1120°Cで30分間保持する。
(1) Sintering/solution treatment The green compact that has been subjected to the Wanox removal treatment as described above is heated to 1100'C at a heating rate of 10°C/min in vacuum (5X 10-'Torr). After heating and holding at 1100°C for 10 minutes, increase the temperature to 1100°C at a heating rate of 5°C/min.
Heat to 20°C and hold at 1120°C for 30 minutes.

その後、5°C/分の降温スピードで1100℃まで除
冷し、1100°Cで20分間保持した後、N2ガス雰
囲気中にて急冷する。
Thereafter, it was slowly cooled down to 1100°C at a cooling rate of 5°C/min, held at 1100°C for 20 minutes, and then rapidly cooled in an N2 gas atmosphere.

このようにして得られた焼結体は、硬度HRB:60程
度であり、硬度が不足するところから、次の析出硬化処
理を行う。
The sintered body thus obtained has a hardness of approximately HRB: 60, and since the hardness is insufficient, the following precipitation hardening treatment is performed.

(n)  析出硬化処理 a)焼入れ 固溶化処理後の焼結体を、真空中(5X 10−’To
rr)にて、10°C7分の昇温スピードで750℃ま
で加熱し、750°Cで10分間保持した後、5℃/分
の昇温スピードで760°Cまで加熱し、760℃で9
0分間保持し、その後、N、ガス雰囲気中にて急冷する
(n) Precipitation hardening treatment a) The sintered body after quenching and solid solution treatment is heated in vacuum (5X 10-'To
rr), heated to 750°C at a heating rate of 10°C for 7 minutes, held at 750°C for 10 minutes, then heated to 760°C at a heating rate of 5°C/min, and heated at 760°C for 9 minutes.
The sample was held for 0 minutes, and then rapidly cooled in a N gas atmosphere.

b)焼き戻し 前述の焼入れ処理後30分間放置した後、真空中(5X
 10−’T orr)にて、1007分の昇温スピー
ドで550 ’Cまで加熱し、550°Cで10分間保
持した後、5℃/分の昇温スピードで560°Cまで加
熱し、560°Cで90分間保持し、その後、N、ガス
雰囲気中にて急冷する。
b) Tempering After leaving it for 30 minutes after the above-mentioned quenching treatment, heat it in a vacuum (5X
10-' Torr), heated to 550'C at a heating rate of 1007 minutes, held at 550°C for 10 minutes, then heated to 560°C at a heating rate of 5°C/min, Hold at °C for 90 minutes, then quench in a N, gas atmosphere.

上記のようにして得られた焼結体は、気孔率:9゜8%
、硬度HRB:70〜75であった。
The sintered body obtained as above had a porosity of 9°8%.
, hardness HRB: 70-75.

上記焼結体に対して、含浸装置(例えば、オートクレー
ブ)を用いてPb含浸を施して封孔を行ったところ、硬
度HRB:85〜90の耐腐食・耐摩耗特性に優れた焼
結体が得られた。
When the above sintered body was impregnated with Pb using an impregnating device (for example, an autoclave) and sealed, a sintered body with hardness HRB: 85 to 90 and excellent corrosion and wear resistance properties was obtained. Obtained.

このようにして得られた焼結体における内部金属組織が
、第1図に顕微鏡写真をもって示されている。第1図の
写真によれば、オーステナイトの母地組織(写真におい
て灰色を呈している部分)に微細な炭化物が分散析出し
ているのがわかる。そして、母地組織中において白色球
形状を呈している部分はCo基硬質粒子である。また、
母地組織中に点在する黒色部分は、母地組織中に占める
割合が10%以下とされた気孔であり、Pbが1されて
いる。即ち、上記固溶化熱処理により、Cr炭化物やσ
相は再固溶され、粒界腐食を防止することとなっている
The internal metal structure of the sintered body thus obtained is shown in FIG. 1 as a micrograph. According to the photograph in FIG. 1, it can be seen that fine carbides are dispersed and precipitated in the austenite matrix structure (the gray part in the photograph). The white spherical portions in the base tissue are Co-based hard particles. Also,
The black parts dotted in the matrix structure are pores that account for 10% or less of the matrix structure, and contain 1 Pb. That is, by the above solution heat treatment, Cr carbide and σ
The phase is redissolved to prevent intergranular corrosion.

ついで、本実施例により得られた焼結体と、比較例との
比較結果について述べる。
Next, the results of comparison between the sintered body obtained in this example and a comparative example will be described.

比較例1は、C:0.g〜1.2重量%、Cr:5.0
〜80重量%、M o : 0゜3〜0.8重量%、C
o:5.0−10.0重量%、W:1.5〜4.0重量
%、Fe:残部の組成を有する焼結体に対して、Cu・
13.0〜21.0重量%を含浸させたものである。
Comparative Example 1 has C:0. g ~ 1.2% by weight, Cr: 5.0
~80% by weight, Mo: 0°3~0.8% by weight, C
Cu/
It is impregnated with 13.0 to 21.0% by weight.

比較例2は、C:0.4〜0.8重量%、Cr:0.5
〜2゜0重攬%、Mo:3. (1−7,0重量%、C
o:10〜15重量%、N i :0.5〜2.0重量
%、Fe:残部の組成を有する焼結体に対して、トリバ
ロイ合金を分散させ且つl’b:13〜23重量%を含
浸させたものである。
Comparative example 2 has C: 0.4 to 0.8% by weight, Cr: 0.5
~2°0 weight%, Mo:3. (1-7.0% by weight, C
o: 10 to 15% by weight, Ni: 0.5 to 2.0% by weight, and Fe: the balance, in which Tribaloy alloy is dispersed and l'b: 13 to 23% by weight. It is impregnated with.

比較例3は、本実施例と同−組成の焼結体であって、P
ba+のみを施し、固溶化処理および析出硬化処理を行
わなかったもの。
Comparative Example 3 is a sintered body with the same composition as this example, and P
Only ba+ was applied without solution treatment or precipitation hardening treatment.

そして、本実施例のものおよび比較例1〜3のものから
テストピースをそれぞれ切り出し、0.1%の硫酸(H
,So、)水溶酸中に浸漬し、マグネットスターラで常
時攪拌し、所定時間経過後における腐食摩耗減量を測定
することにより、耐食性の比較を行ったところ、第2図
の特性図に示す結果が得られた。
Then, test pieces were cut out from those of this example and those of Comparative Examples 1 to 3, and 0.1% sulfuric acid (H
, So, ) was immersed in aqueous acid, constantly stirred with a magnetic stirrer, and the corrosion resistance was compared by measuring the loss of corrosion and abrasion after a predetermined period of time.The results shown in the characteristic diagram in Figure 2 were compared. Obtained.

また、本実施例のものおよび比較例1〜3のものからバ
ルブシートをそれぞれ形成し、各バルブシートをLPG
ガス仕様のエンジンに装着して2400rpmの回転数
で100時間の連続運転を行った後における各バルブシ
ートの摩耗量を測定することにより、耐摩粍性の比較を
行ったところ、第3図の特性図に示す結果が得られた。
In addition, valve seats were formed from those of this example and those of Comparative Examples 1 to 3, and each valve seat was
We compared the wear resistance by measuring the amount of wear on each valve seat after 100 hours of continuous operation at a rotation speed of 2400 rpm when installed in a gas specification engine.The characteristics shown in Figure 3 were compared. The results shown in the figure were obtained.

なお、エンジンの運転時に各バルブシートと摺接するバ
ルブとしては、5UH−35製のものが使用された。
The valves made of 5UH-35 were used to come into sliding contact with each valve seat during engine operation.

上記測定結果によれば、本実施例の焼結体は、比較例1
.2の焼結体に比べて耐食性および耐摩粍性において極
めて優れた性状を呈していることが明らかである。なお
、比較例3の焼結体は、本実施例の焼結体とほとんど変
わらぬ耐食性を示しているが、耐摩耗性において本実施
例の焼結体より劣っている。
According to the above measurement results, the sintered body of this example is the same as that of comparative example 1.
.. It is clear that this sintered body exhibits extremely superior properties in terms of corrosion resistance and abrasion resistance compared to the sintered body No. 2. The sintered body of Comparative Example 3 exhibits almost the same corrosion resistance as the sintered body of this example, but is inferior to the sintered body of this example in wear resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の耐摩性焼結合金の製造方法により製造
された焼結体の内部金属組織を示す顕微鏡写真、第2図
は本発明の耐摩性焼結合金の製造方法により製造された
焼結体(即ち、実施例)と比較例1〜3との耐食性を比
較するための特性図、第3図は本発明の耐摩性焼結合金
の製造方法により製造された焼結体(即ち、実施例)と
比較例1〜3との耐摩耗性を比較するための特性図であ
る。 jllE 1に2図 第3図
Figure 1 is a micrograph showing the internal metal structure of a sintered body produced by the method for producing a wear-resistant sintered alloy of the present invention, and Figure 2 is a micrograph showing the internal metal structure of a sintered body produced by the method for producing a wear-resistant sintered alloy of the present invention. FIG. 3 is a characteristic diagram for comparing the corrosion resistance of the sintered body (i.e., Example) and Comparative Examples 1 to 3. , Example) and Comparative Examples 1 to 3 in terms of wear resistance. jllE 1 to 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1、Ni:7〜22重量%、Cr:16〜26重量%、
Mo:3重量%以下、C:0.2重量%以下、Si:1
重量%以下、Mn:2重量%以下、不可避不純物:1重
量%以下、Fe:残部の組成を有する鉄系合金粉末と、
P、B、Si、Mn、Moのうち少なくとも1種が全量
に対して0.5〜5.0重量%になるようなフェロアロ
イ粉末と、全量に対して5〜40重量%となるCo基合
金粉末とからなる混合合金粉末に対して、適量の潤滑剤
を混合して得られる焼結用原料粉末を所定形状に圧縮成
形し、その後焼結することにより得られた焼結体に対し
て、固溶化処理および析出硬化処理を順次施した後、P
b含浸処理を施すことを特徴とする耐摩性焼結合金の製
造方法。
1, Ni: 7-22% by weight, Cr: 16-26% by weight,
Mo: 3% by weight or less, C: 0.2% by weight or less, Si: 1
An iron-based alloy powder having a composition of 2% by weight or less, Mn: 2% by weight or less, unavoidable impurities: 1% by weight or less, and Fe: the balance;
A ferroalloy powder in which at least one of P, B, Si, Mn, and Mo accounts for 0.5 to 5.0% by weight based on the total amount, and a Co-based alloy that contains 5 to 40% by weight based on the total amount. For a sintered body obtained by compression-molding a raw material powder for sintering obtained by mixing an appropriate amount of lubricant into a predetermined shape and then sintering a mixed alloy powder consisting of powder, After sequentially performing solution treatment and precipitation hardening treatment, P
b. A method for producing a wear-resistant sintered alloy, which comprises performing an impregnation treatment.
JP20879989A 1989-08-11 1989-08-11 Manufacture of wear-resistant sintered alloy Pending JPH0372052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20879989A JPH0372052A (en) 1989-08-11 1989-08-11 Manufacture of wear-resistant sintered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20879989A JPH0372052A (en) 1989-08-11 1989-08-11 Manufacture of wear-resistant sintered alloy

Publications (1)

Publication Number Publication Date
JPH0372052A true JPH0372052A (en) 1991-03-27

Family

ID=16562313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20879989A Pending JPH0372052A (en) 1989-08-11 1989-08-11 Manufacture of wear-resistant sintered alloy

Country Status (1)

Country Link
JP (1) JPH0372052A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3276034A4 (en) * 2015-03-27 2019-01-23 Diamet Corporation Heat-resistant sintered material having excellent oxidation resistance, wear resistance at high temperatures and salt damage resistance, and method for producing same
CN109666858A (en) * 2019-02-28 2019-04-23 浙江华业塑料机械有限公司 A kind of iron(-)base powder of machine barrel wearing layer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6144152A (en) * 1984-08-07 1986-03-03 Teikoku Piston Ring Co Ltd Manufacture of wear resistant sintered alloy
JPS61291946A (en) * 1985-06-18 1986-12-22 Hitachi Powdered Metals Co Ltd Manufacture of wear resistance sintered alloy
JPS63114947A (en) * 1986-10-31 1988-05-19 Mazda Motor Corp Sintered alloy member excellent in wear resistance and corrosion resistance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6144152A (en) * 1984-08-07 1986-03-03 Teikoku Piston Ring Co Ltd Manufacture of wear resistant sintered alloy
JPS61291946A (en) * 1985-06-18 1986-12-22 Hitachi Powdered Metals Co Ltd Manufacture of wear resistance sintered alloy
JPS63114947A (en) * 1986-10-31 1988-05-19 Mazda Motor Corp Sintered alloy member excellent in wear resistance and corrosion resistance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3276034A4 (en) * 2015-03-27 2019-01-23 Diamet Corporation Heat-resistant sintered material having excellent oxidation resistance, wear resistance at high temperatures and salt damage resistance, and method for producing same
US10683568B2 (en) 2015-03-27 2020-06-16 Diamet Corporation Heat-resistant sintered material having excellent oxidation resistance, high-temperature wear resistance and salt damage resistance, and method for producing same
CN109666858A (en) * 2019-02-28 2019-04-23 浙江华业塑料机械有限公司 A kind of iron(-)base powder of machine barrel wearing layer

Similar Documents

Publication Publication Date Title
JP4127021B2 (en) Hard particles, wear-resistant iron-based sintered alloy, method for producing wear-resistant iron-based sintered alloy, and valve seat
JPH0350824B2 (en)
JPH0350823B2 (en)
JP3784926B2 (en) Ferrous sintered alloy for valve seat
JPH05202451A (en) Sintered alloy for valve seat
JP3988971B2 (en) Sintered member
JPH0372052A (en) Manufacture of wear-resistant sintered alloy
JPH06179937A (en) Sintered alloy for valve seat
JPH0555592B2 (en)
JP4716366B2 (en) Sintered valve seat manufacturing method
JP3226618B2 (en) Iron-based sintered alloy for valve seat
JPS61291954A (en) Sintering material having wear resistance and corrosion resistance at high temperature and its manufacture
JPS63109142A (en) Ferrous sintered alloy combining heat resistance with wear resistance
JP3440008B2 (en) Sintered member
JP2643743B2 (en) High strength valve seat made of lead impregnated iron-based sintered alloy for internal combustion engine
JPH0115583B2 (en)
JPH10317002A (en) Powder with low coefficient of friction, its sintered compact, and production of sintered compact
JPH0633184A (en) Production of sintered alloy for valve seat excellent in wear resistance
JP2661045B2 (en) Fe-based sintered alloy with excellent sliding properties
JP2842868B2 (en) Iron-based sintered alloy for valve seat
JP2677813B2 (en) High temperature wear resistant iron-based sintered alloy
JPH0561346B2 (en)
JPS599151A (en) Wear-resistant sintered alloy
JP3763605B2 (en) Sintered alloy material for valve seats
JP2697429B2 (en) Two-layer valve seat made of iron-based sintered alloy for internal combustion engine