JPH0371956B2 - - Google Patents

Info

Publication number
JPH0371956B2
JPH0371956B2 JP60299283A JP29928385A JPH0371956B2 JP H0371956 B2 JPH0371956 B2 JP H0371956B2 JP 60299283 A JP60299283 A JP 60299283A JP 29928385 A JP29928385 A JP 29928385A JP H0371956 B2 JPH0371956 B2 JP H0371956B2
Authority
JP
Japan
Prior art keywords
steel plate
steel
laminate
base material
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60299283A
Other languages
Japanese (ja)
Other versions
JPS62158583A (en
Inventor
Seishiro Yoshihara
Takao Kawanami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP29928385A priority Critical patent/JPS62158583A/en
Priority to CA000505855A priority patent/CA1266156A/en
Priority to DE8686302508T priority patent/DE3664588D1/en
Priority to EP86302508A priority patent/EP0201202B2/en
Publication of JPS62158583A publication Critical patent/JPS62158583A/en
Priority to US07/218,476 priority patent/US4831708A/en
Publication of JPH0371956B2 publication Critical patent/JPH0371956B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はクラツド材を圧延により製造する方
法、特にクラツト用素材の組立加工、圧延そして
仕上加工に関するものである。 (従来の技術) 従来技術としての特開昭55−100890号公報、同
55−128390号公報、同56−122681号公報、同57−
109587号公報に記載されたクラツド材の製造方法
はいづれもサンドイツチ状に母材、合せ材、合せ
材、母材の順あるいは覆い材、合せ材、母材の順
に重ね合せているが、分離剤と接合予定面が同一
空間内にあり、分離剤が接合予定面を汚染する可
能性が大きい。又特開昭57−115991号公報記載の
方法は合せ材と合せ材間に分離剤を密封溶接して
いるが、圧延力によつて該溶接部が破壊した場合
に、分離剤が接合予定面と同一空間に包含される
ことになるため、同様に分離剤が接合予定面を汚
染する可能性が大きく、特開昭57−154387号公報
記載の方法は冷間圧延によつて空気抜き穴から残
存空気を押し出した後、空気抜き孔を溶接する
が、冷間圧延工程が追加されるため製造費用上昇
の可能性が大きい。 また従来技術ではチタンやジルコニウムやクロ
ムなどの炭化物を生成しやすい金属を合せ材とす
るとき、合せ材の存在する空間に炭素含有量が
0.12%以上の鋼が共存し、これらを加熱すると、
鋼中の炭素は合せ材の表面で合せ材との炭化物と
なつて、製品の曲げ加工やせん断強さに悪影響を
及ぼすに至る。この傾向は合せ材の存在する空間
に有機物が存在する場合には著るしく増大され
る。 (発明が解決しようとする問題点) 本発明は接合強度が強くかつ圧延中および圧延
後に反りの小さいクラツド鋼の製造法を提供する
ことを目的とする。 (問題点を解決するための手段) 本発明の要旨とするところは下記のとおりであ
る。 (1) 合せ材をその存在空間から接合阻害物質を排
除した状態で、炭素含有量が0.03重量%以下の
覆い鋼板によつて密封し、該合せ材を内包する
覆い鋼板組立体を鋼母材と反り防止部材との間
に層状に挟み、鋼母材と反り防止部材とを溶接
した後、650℃以上、900℃以下の温度域に加熱
し熱間圧延して合せ材の両面を隣接面に接合
し、得られた圧延材の周辺を切断して分離剤位
置で分離し、合せ材外面の覆い鋼板を除去する
ことを特徴とするチタン、チタン合金、ジルコ
ニウム、ジルコニウム合金または含クロム鋼の
接合境界部炭素濃縮距離20μm以下の圧延クラ
ツド鋼板の製造法。 (2) 合せ材をその存在空間から接合阻害物質を排
除した状態で、炭素含有量が0.03重量%以下の
覆い鋼板によつて包囲し、その内部に不活性ガ
スを吹き込みながら覆い鋼板の四周を溶接し、
覆い鋼板表面を100℃以上に加熱しながら合せ
材を含む空間を10-1Torr以下に減圧した後密
閉し、該覆い鋼板組立体を鋼母材と反り防止部
材との間に層状に挟み、鋼母材と反り防止部材
とを溶接した後、650℃以上、900℃以下の温度
域に加熱し熱間圧延して合せ材の両面を隣接面
に接合し、得られた圧延材の周辺を切断して分
離剤位置で分離し、合せ材外面の覆い鋼板を除
去することを特徴とするチタン、チタン合金、
ジルコニウム、ジルコニウム合金または含クロ
ム鋼の接合境界部炭素濃縮距離20μm以下の圧
延クラツド鋼板の製造法。 (3) 合せ材をその存在空間から接合阻害物質を排
除した状態で、炭素含有量が0.03重量%以下の
覆い鋼板によつて包囲し、その内部に不活性ガ
スを吹き込みながら覆い鋼板の四周を溶接し、
覆い鋼板表面を100℃以上に加熱しながら合せ
材を含む空間を10-1Torr以下に減圧した後密
閉し、該覆い鋼板組立体を鋼母材と反り防止部
材との間に層状に挟み、鋼母材と反り防止部材
とを溶接した後、650℃以上、900℃以下の温度
域に加熱し熱間圧延して合せ材の両面を隣接面
に接合し、得られた圧延材の周辺を切断して分
離剤位置で分離した後、合せ材外面に覆い鋼板
をつけたまま再加熱して熱間圧延することを特
徴とするチタン、チタン合金、ジルコニウム、
ジルコニウム合金または含クロム鋼の接合境界
部炭素濃縮距離20μm以下の圧延クラツド鋼板
の製造法。 (発明の作用) 本発明の基本となる構成要件とその作用は次の
ように整理できる。 (1) 本発明では炭素含有量が0.03%以下の覆い鋼
板によつて合せ材を密封し、炭素含有量の高い
鋼母材を隔離する。この要件によつて鋼母材の
炭素含有量は合せ材の炭化物生成とは無関係と
なり、鋼母材の炭素含有量を大きくしてその強
度を上げることが可能となる。この覆い鋼板と
しては合金元素を含まない炭素鋼が安価で加工
しやすいため最も適しているが、炭素含有量が
0.03%以下であれば合金元素を含む鋼を用いる
ことができる。また覆い鋼板の厚さは素材組立
中の板の強度と圧延中の炭素の拡散距離から
0.1mm以上であることが望ましく、いわゆる箔
は不適当である。 (2) 本発明では素材組立体を900℃以下に加熱し
て圧延接合することによつて、覆い鋼板中の炭
素が加熱中に合せ材へ移動して合せ材との炭化
物を形成するのを抑制する。加熱温度が900℃
を超えると覆い鋼板中からの炭素あるいは炭化
物の放出にともなう合せ材金属の炭化が目立
ち、クラツド鋼製品の曲げまたはせん断性を悪
化し始める。また加熱温度は材料の再結晶温度
すなわち650℃以上に加熱することが望ましい。 (3) 本発明では合せ材を密閉する覆い鋼板の表面
を100℃以上に加熱しながら、合せ材と覆い鋼
板により構成される空間を10-1torr以下に減圧
して封印することによつて、この空間から有機
物を除去して炭素の供給減を少なくし、合せ材
の炭化物生成量を減少させることができる。 (4) 本発明ではさらに覆い鋼板によつて合せ材を
母材に固定し、覆い鋼板もまた周囲を強固に母
材に溶接固定することによつて、加工工程中の
合せ材の変位、覆い鋼板の破断、そしてそれら
の不均一変形による合せ材寸法精度の悪化を防
止できる。このような効果を最大限に得るため
に、本発明に用いる覆い鋼板と合せ材の接触面
もまた接合を目的として十分清浄に保ち、合せ
材の存在する空間からは接合の阻害となる成分
を工業的に可能な限り排除する。こうすること
によつて合せ材の両面を完全に接合させ、十分
に拘束しながら圧延することによつて反りを防
止するとともに変形を均一化させることができ
る。 (5) 本発明では次の様に素材を組立てるのが望ま
しい。すなわち、母材と合せ材と覆い鋼板とを
その合せ面を清浄にして層状に重ね、母材と覆
い鋼板の周囲を溶接するに際し、母材と覆い鋼
板間にアルゴン、ヘリウムなどの不活性ガスを
吹込みながら母材と覆い鋼板を密閉溶接するこ
とによつて、溶接スパツタ、溶接ヒユーム、あ
るいは溶接熱による内部汚染を防止する。 (6) 本発明において反り防止材を用いる場合には
この反り防止材と接する覆い鋼板との間が熱間
圧延後に容易に分離できることが必要である。
そのためにこれらの接する面の少なくとも一方
に厚さ30μm以上の酸化層を存在せしめるこ
と、またはAl2O3、SiO2、TiO2、Cr2O3
Fe2O3、Fe3O4のいづれか一つ以上を主成分と
する粉末を樹脂をビヒクルとして厚さ10μm以
上に塗布する。樹脂をビヒクルとする理由は安
価で塗装性が優れているからであるが、これは
加熱中に多量のガスを発生するので、分離予定
面は外気と通じこのガスを排することが望まし
い。 次に本発明に用いる素材の組立方法とその構造
について説明する。 第1図に本発明を実施する素材組立体の途中の
状態を示す。清浄にした合せ材1に合せ材と接す
る面を清浄にした覆い鋼板2,3を層状に重ねて
之等の覆い鋼板の四周を溶接して合せ材を密封す
る。このとき、合せ材1および合せ材と対する覆
い鋼板2,3が溶接時のヒユームやスパツタによ
つて汚染されないように、ノズル4からアルゴン
又はヘリウムなどの不活性ガスや窒素や炭酸ガス
などの非酸化性ガスを吹込むのが望ましい。覆い
鋼板の四周を溶接したのち、ノズル4を閉鎖する
が、その前に覆い鋼板表面を100℃以上に加熱し
ながら合せ材と覆い鋼板により構成される空間を
10-1torr以下の圧力に減圧するのが望ましい。覆
い鋼板表面の加熱は水分や有機物の排除に効果が
あり、減圧は水分や有機物の排除を一層効率良く
行ない、かつ、接合予定面の酸化防止に効果があ
る。覆い鋼板と母材の溶接時期は特に限定される
ものではないが、第1図のように覆い鋼板の四周
を溶接したのち、第2図のように覆い鋼板と母材
6とを溶接するのが最も作業がやりやすく、接合
予定面も清浄に保てる。 第3図は素材組立体の完成断面図で覆い鋼板2
と反り防止材7の間には分離剤8が介在してい
る。この分離剤は覆い鋼板2の外面あるいはこれ
と接する反り防止材7の面の一方あるいは両方
に、合計30μm以上の酸化層をあらかじめ生成さ
せておくかまたはAl2O3、SiO2、TiO2、Cr2O3
Fe2O3、Fe3O4のいづれか一つ以上を主成分とす
る粉末を樹脂をビヒクルとして厚さ10μm以上に
塗布乾燥したものが望ましい。デイスタントピー
ス9は母材6と反り防止材7の四周を溶接する際
に、覆い鋼板2が破損しないように機能する。デ
イスタンスピース9と母材あるいは反り防止材間
にはこれらが接合しないようにここに分離剤8を
介在させておくと、圧延後にこのデイスタンスピ
ース9の位置を切断すれば、合せ材を大気に露出
させない状態で反り防止材を除去できる。このよ
うに反り防止材を除去したクラツド材はそのまま
再加熱しても合せ材1は覆い鋼板2によつて完全
に酸化が防止され、またその後の圧延によつても
ロールによつて合せ材が直接きずつけられること
はない。合せ材外面の覆い鋼板は切削、研削また
は酸洗によつて除去される。 反り防止材7は第2図に示すような組立体とす
ることができる。すなわち第2図に示す組立体2
個を第4図に示すように覆い鋼板2が分離材を隔
てて対向するように四周を溶接して組立てる。こ
のような素材組立体からは2枚のクラツド鋼板が
一度に製造できる。 (実施例) 表1に実施例を示す。鋼母材は0.17%炭素鋼、
覆い鋼材は0.01%極低炭素鋼を用いた。組立素材
は幅150mm、長さ200mmの小試験片であるが、これ
で生産圧延用の圧延状況と品質を十分評価でき
る。すべての試験片はMIG溶接法で溶接し、溶
接中の溶接汚染を防ぐためにアルゴンガスを内部
に吹込んでおり、溶接完了後、内部を10-2torrに
減圧している。加熱温度はいづれも800℃である。 従来法の例1では厚さ20mmの鋼母材に厚さ6mm
のステンレス鋼を直接すみ肉溶接している。この
例では圧延中にステンレス鋼側へ大きく反り、冷
却後には反りは増大し、合せ材の厚さ偏差(=最
大厚さ−最小厚さ)は0.33mmと大きい。せん断強
さは低目であり、曲げ試験結果も悪い。 従来法の例2では第4図で覆い鋼板2,2′,
3,3′を有しない構造であるが、せん断強さが
低く、側曲げ試験結果も悪い。 本発明の例3ないし例4ではそれぞれ第3図と
第4図に示す構造であり、反りを顕著にするため
に非対称の構造としているが、圧延中および冷却
中の反りは十分許容できる範囲にある。さらに合
せ厚さ偏差、母材と合せ材のせん断強さ、側曲げ
試験結果ともに良好である。せん断強さと側曲げ
試験結果は接合境界付近に富化する炭化物の分布
厚さと関係がある。炭化物は合せ材がチタンある
いはチタン合金の場合には主としてTiC、合せ材
または覆い鋼板がステンレス鋼の場合には主とし
てCr7C3、Cr23C6である。これらの炭化物が島津
製作所製EPMA(機種名:EMX−SM)を用い
て、加速電圧20kV、試料電流0.01μA、ビーム径
1μmとして接合部断面を直角に横切つて炭素を
線分析した場合に、カウント数0.5kを記録紙の全
幅とするとき、第5図に示すように接合境界部の
炭素濃縮距離を測定する。この炭素濃縮距離はせ
ん断強さと関係があり、チタンクラツド鋼の例で
は第6図に示すようにJIS G 3603規定のせん断
値14Kgf/mm2は炭素濃縮距離20μm以下で満足で
きる。チタンと鋼の接合境界部のこのような炭素
の濃縮はTiCであり、これが微量である場合には
せん断強さを向上させるが、炭素濃縮距離が20μ
mを超える程度にTiCが生成するとかえつて脆く
なりせん断値の低い値が混在する。以上のことは
ステンレス鋼を合せ材とする場合、あるいは中間
材とする場合にも同様であり、この場合にはTiC
の代りにCr7C3、Cr23C6が同様に生成して同様の
挙動を示す。
(Industrial Field of Application) The present invention relates to a method for producing a cladding material by rolling, and in particular to assembly, rolling and finishing of a cladding material. (Prior art) Japanese Patent Application Laid-Open No. 55-100890 and the same
No. 55-128390, No. 56-122681, No. 57-
In all of the methods for manufacturing clad materials described in Publication No. 109587, layers are layered in the order of base material, laminate material, laminate material, and base material in a sandwich pattern, or in the order of covering material, laminate material, and base material. and the surface to be joined are in the same space, and there is a high possibility that the separation agent will contaminate the surface to be joined. Furthermore, in the method described in JP-A No. 57-115991, a separator is hermetically welded between the laminates, but if the welded part breaks due to rolling force, the separator will leak onto the surfaces to be joined. Since the separation agent is contained in the same space as the air release hole, there is a high possibility that the separating agent will contaminate the surface to be joined. After pushing out the air, the air vent hole is welded, but since a cold rolling process is added, there is a high possibility that manufacturing costs will increase. In addition, with conventional technology, when metals that easily generate carbides, such as titanium, zirconium, and chromium, are used as laminates, carbon content increases in the space where the laminates exist.
When 0.12% or more steel coexists and these are heated,
The carbon in the steel forms carbides with the laminate on the surface of the laminate, which adversely affects the bending process and shear strength of the product. This tendency is significantly increased when organic matter is present in the space where the laminate is present. (Problems to be Solved by the Invention) An object of the present invention is to provide a method for manufacturing clad steel that has strong joint strength and has small warpage during and after rolling. (Means for solving the problems) The gist of the present invention is as follows. (1) Seal the laminate with a cover steel plate with a carbon content of 0.03% by weight or less with bonding inhibiting substances removed from the space, and insert the cover steel plate assembly containing the laminate into the steel base material. After welding the steel base material and the warpage prevention member, the steel base material and the warpage prevention member are heated to a temperature range of 650°C or higher and 900°C or lower and hot-rolled to make both sides of the laminated material adjacent to each other. of titanium, titanium alloy, zirconium, zirconium alloy, or chromium-containing steel, which is characterized by joining the rolled material, cutting the periphery of the obtained rolled material, separating it at the separating agent position, and removing the covering steel plate on the outer surface of the laminated material. A method for manufacturing rolled clad steel sheets with a carbon concentration distance of 20 μm or less at the joint boundary. (2) With bonding inhibiting substances removed from the space in which the laminate exists, it is surrounded by a covering steel plate with a carbon content of 0.03% by weight or less, and while inert gas is blown into the interior, the four circumferences of the covering steel plate are surrounded. weld,
While heating the surface of the covering steel plate to 100°C or higher, the space containing the cladding material is depressurized to 10 -1 Torr or less and then sealed, and the covering steel plate assembly is sandwiched in layers between the steel base material and the warpage prevention member, After welding the steel base material and the warpage prevention member, the steel base material and the warpage prevention member are heated to a temperature range of 650°C or higher and 900°C or lower and hot rolled to join both sides of the laminated material to the adjacent surfaces, and the periphery of the resulting rolled material is Titanium, titanium alloy, characterized in that it is cut and separated at the separating agent position, and the covering steel plate on the outer surface of the laminate is removed.
A method for manufacturing a rolled clad steel plate with a carbon concentration distance of 20 μm or less at the joint boundary of zirconium, zirconium alloy, or chromium-containing steel. (3) With bonding inhibiting substances removed from the space in which the laminate exists, it is surrounded by a covering steel plate with a carbon content of 0.03% by weight or less, and while inert gas is blown into the interior, the four circumferences of the covering steel plate are surrounded. weld,
While heating the surface of the covering steel plate to 100°C or higher, the space containing the cladding material is depressurized to 10 -1 Torr or less and then sealed, and the covering steel plate assembly is sandwiched in layers between the steel base material and the warpage prevention member, After welding the steel base material and the warpage prevention member, the steel base material and the warpage prevention member are heated to a temperature range of 650°C or higher and 900°C or lower and hot rolled to join both sides of the laminated material to the adjacent surfaces, and the periphery of the resulting rolled material is Titanium, titanium alloy, zirconium, which is characterized by being cut and separated at the separating agent position, then reheated and hot rolled with the outer surface of the laminate covered with a steel plate.
A method for producing a rolled clad steel plate of zirconium alloy or chromium-containing steel with a carbon concentration distance of 20 μm or less at the joint boundary. (Operation of the invention) The basic constituent elements of the present invention and their operation can be summarized as follows. (1) In the present invention, the laminated material is sealed with a cover steel plate having a carbon content of 0.03% or less to isolate the steel base material with a high carbon content. This requirement makes the carbon content of the steel base material independent of carbide formation in the laminate, making it possible to increase the carbon content of the steel base material to increase its strength. Carbon steel, which does not contain alloying elements, is most suitable for this covering steel plate because it is cheap and easy to process, but the carbon steel
Steel containing alloying elements can be used if the content is 0.03% or less. The thickness of the covering steel plate is determined based on the strength of the plate during material assembly and the diffusion distance of carbon during rolling.
It is desirable that the thickness is 0.1 mm or more, and so-called foil is inappropriate. (2) In the present invention, by heating the material assembly to 900°C or less and rolling joining it, carbon in the covering steel plate moves to the laminate material during heating and forms carbides with the laminate material. suppress. Heating temperature is 900℃
If it exceeds this value, the carbonization of the cladding metal due to the release of carbon or carbide from the covering steel sheet becomes noticeable, and the bending or shearing properties of the clad steel product begin to deteriorate. Further, the heating temperature is desirably higher than the recrystallization temperature of the material, that is, 650°C. (3) In the present invention, the surface of the covering steel plate that seals the laminate is heated to 100°C or higher, while the space formed by the laminate and the covering steel plate is sealed by reducing the pressure to 10 -1 torr or less. By removing organic matter from this space, the decrease in carbon supply can be reduced, and the amount of carbide produced in the laminate can be reduced. (4) In the present invention, the cladding material is further fixed to the base material by a covering steel plate, and the surrounding steel plate is also firmly welded to the base material, so that displacement of the cladding material during the processing process, It is possible to prevent breakage of the steel plates and deterioration of the dimensional accuracy of the laminate due to their non-uniform deformation. In order to maximize these effects, the contact surface between the covering steel plate and the laminate used in the present invention is also kept sufficiently clean for the purpose of bonding, and the space where the laminate is present is free of any components that may impede bonding. Eliminate as much as industrially possible. By doing this, both sides of the laminate are completely joined, and by rolling with sufficient restraint, warping can be prevented and deformation can be made uniform. (5) In the present invention, it is desirable to assemble the materials as follows. In other words, the base material, the cladding material, and the covering steel plate are stacked in layers with their mating surfaces cleaned, and when welding the periphery of the base material and the covering steel plate, an inert gas such as argon or helium is applied between the base material and the covering steel plate. Internal contamination from welding spatter, welding fumes, or welding heat is prevented by sealingly welding the base metal and the covering steel plate while blowing in the welding material. (6) When a warpage prevention material is used in the present invention, it is necessary that the warpage prevention material and the contact steel plate can be easily separated after hot rolling.
For this purpose, an oxide layer with a thickness of 30 μm or more must be present on at least one of these contacting surfaces, or Al 2 O 3 , SiO 2 , TiO 2 , Cr 2 O 3 ,
A powder containing one or more of Fe 2 O 3 and Fe 3 O 4 as a main component is applied to a thickness of 10 μm or more using a resin as a vehicle. The reason why a resin is used as a vehicle is that it is inexpensive and has excellent paintability, but since it generates a large amount of gas during heating, it is desirable that the surface to be separated communicates with the outside air to exhaust this gas. Next, a method of assembling the materials used in the present invention and its structure will be explained. FIG. 1 shows an intermediate state of a material assembly for implementing the present invention. Covering steel plates 2 and 3, whose surfaces in contact with the cladding materials have been cleaned, are layered over the cleaned laminate material 1, and the four circumferences of these covering steel plates are welded to seal the laminate materials. At this time, in order to prevent the cladding material 1 and the covering steel plates 2 and 3 for the cladding materials from being contaminated by fumes and spatter during welding, inert gas such as argon or helium, or non-toxic gas such as nitrogen or carbon dioxide gas is supplied from the nozzle 4. It is desirable to blow in oxidizing gas. After welding the four circumferences of the cover steel plate, the nozzle 4 is closed, but before that, the space formed by the cladding material and the cover steel plate is heated while heating the cover steel plate surface to 100℃ or more.
It is desirable to reduce the pressure to 10 -1 torr or less. Heating the surface of the covered steel plate is effective in eliminating moisture and organic matter, and reducing the pressure is effective in eliminating moisture and organic matter even more efficiently and preventing oxidation of the surfaces to be joined. The timing of welding the cover steel plate and the base metal is not particularly limited, but after welding the four circumferences of the cover steel plate as shown in Fig. 1, welding the cover steel plate and the base metal 6 as shown in Fig. 2 is recommended. is the easiest to work with, and the surface to be joined can be kept clean. Figure 3 is a cross-sectional view of the completed material assembly, covering the steel plate 2.
A separating agent 8 is interposed between the anti-warp material 7 and the anti-warp material 7 . This separating agent can be used by forming an oxide layer of 30 μm or more in total on one or both of the outer surface of the covering steel plate 2 or the surface of the anti-warp material 7 in contact with the outer surface of the covering steel plate 2, or using Al 2 O 3 , SiO 2 , TiO 2 , Cr2O3 ,
It is preferable that a powder containing one or more of Fe 2 O 3 and Fe 3 O 4 as a main component is coated and dried to a thickness of 10 μm or more using a resin as a vehicle. The distant piece 9 functions to prevent the cover steel plate 2 from being damaged when welding the four circumferences of the base material 6 and the anti-warp material 7. If a separating agent 8 is interposed between the distance piece 9 and the base material or anti-warpage material to prevent them from joining, if the distance piece 9 is cut after rolling, the mating material will be exposed to the atmosphere. The anti-warpage material can be removed without exposing it to the surface. Even if the clad material from which the anti-warp material has been removed is reheated as it is, the laminate material 1 will be completely prevented from oxidizing by the covering steel plate 2, and even during subsequent rolling, the laminate material will be oxidized by the rolls. It cannot be hurt directly. The covering steel plate on the outer surface of the laminate is removed by cutting, grinding, or pickling. The anti-warpage member 7 can be assembled as shown in FIG. That is, the assembly 2 shown in FIG.
As shown in FIG. 4, the pieces are assembled by welding the four circumferences so that the covering steel plates 2 face each other with the separating material in between. Two clad steel plates can be manufactured at once from such a material assembly. (Example) Table 1 shows examples. Steel base material is 0.17% carbon steel,
The covering steel material used was 0.01% ultra-low carbon steel. The assembled material is a small test piece with a width of 150 mm and a length of 200 mm, which is sufficient to evaluate the rolling conditions and quality for production rolling. All test pieces were welded using the MIG welding method, argon gas was blown into the interior to prevent weld contamination during welding, and the interior was depressurized to 10 -2 torr after welding was completed. The heating temperature was 800°C in all cases. In example 1 of the conventional method, a 6 mm thick steel base material is used for a 20 mm thick steel base material.
Stainless steel is directly fillet welded. In this example, there was a large warpage toward the stainless steel side during rolling, and the warpage increased after cooling, and the thickness deviation of the laminate (=maximum thickness - minimum thickness) was as large as 0.33 mm. Shear strength is low and bending test results are also poor. In example 2 of the conventional method, as shown in Fig. 4, the covered steel plates 2, 2',
Although the structure does not have 3,3', the shear strength is low and the side bending test results are also poor. Examples 3 and 4 of the present invention have the structures shown in FIGS. 3 and 4, respectively, and are asymmetrical structures to make warpage more noticeable, but warpage during rolling and cooling is within a sufficiently permissible range. be. Furthermore, the deviation in the laminated thickness, the shear strength of the base material and the laminated material, and the side bending test results are all good. The shear strength and side bending test results are related to the distribution thickness of carbides enriched near the joint boundary. Carbides are mainly TiC when the cladding material is titanium or titanium alloy, and are mainly Cr 7 C 3 and Cr 23 C 6 when the cladding material or covering steel plate is stainless steel. These carbides were collected using a Shimadzu EPMA (model name: EMX-SM) at an accelerating voltage of 20 kV, sample current of 0.01 μA, and beam diameter.
When line analysis of carbon is performed perpendicularly across the cross section of the joint with a diameter of 1 μm, and the count number is 0.5k as the full width of the recording paper, the carbon concentration distance at the joint boundary is measured as shown in Figure 5. This carbon enrichment distance is related to shear strength, and in the case of titanium clad steel, as shown in Figure 6, the shear value of 14 Kgf/mm 2 specified by JIS G 3603 can be satisfied with a carbon enrichment distance of 20 μm or less. Such carbon enrichment at the titanium-steel joint interface is TiC, which improves shear strength if it is in trace amounts, but if the carbon enrichment distance is 20μ
When TiC is generated to an extent exceeding m, it becomes brittle and contains a mixture of low shear values. The above is the same when stainless steel is used as a laminate material or as an intermediate material; in this case, TiC
Instead, Cr 7 C 3 and Cr 23 C 6 are generated in the same way and exhibit similar behavior.

【表】【table】

【表】 (発明の効果) 本発明によれば接合強度の強いクラツド鋼を高
価な合せ材を酸化させずに製造することができ
る。本発明では覆い材が炭素含有量0.03%以下の
鋼板であり、合せ材がチタンまたはその合金、ジ
ルコニウム、ステンレス鋼など炭化物を生じやす
い金属である。本発明によればまた、素材組立溶
接が容易であり、かつ安価である。さらに従来せ
ん断試験値が低目に変動した炭素含有量0.12%以
上の鋼が母材として用いられ、せん断試験値を高
位に安定させることができる。
[Table] (Effects of the Invention) According to the present invention, clad steel with strong joint strength can be produced without oxidizing expensive laminates. In the present invention, the covering material is a steel plate with a carbon content of 0.03% or less, and the bonding material is a metal that easily forms carbides, such as titanium or its alloy, zirconium, or stainless steel. According to the present invention, assembly and welding of materials is also easy and inexpensive. Furthermore, steel with a carbon content of 0.12% or more, which conventionally had low shear test values, is used as the base material, making it possible to stabilize the shear test values at a high level.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の圧延用素材組立
の中間段階を示す図、第3図、第4図は本発明圧
延用素材の組立後の状態を示す図、第5図は炭素
濃縮距離の説明図、第6図は本発明の効果を示す
炭素濃縮距離とせん断強さの関係を示す図であ
る。 1:合せ材、2,3:覆い鋼板、4:ノズル、
5:覆い鋼板の母材側面、6:母材、7:反り防
止材、8:分離剤、9:デイスタンスピース、1
0:四周溶接部。
Figures 1 and 2 are diagrams showing an intermediate stage of assembling the rolling material of the present invention, Figures 3 and 4 are diagrams showing the state of the rolling material of the present invention after assembly, and Figure 5 is carbon enrichment. An explanatory diagram of distance, FIG. 6 is a diagram showing the relationship between carbon concentration distance and shear strength, which shows the effect of the present invention. 1: Laminating material, 2, 3: Covering steel plate, 4: Nozzle,
5: Side surface of the base material of the covering steel plate, 6: Base material, 7: Warpage prevention material, 8: Separation agent, 9: Distance piece, 1
0: Four circumference welded part.

Claims (1)

【特許請求の範囲】 1 合せ材をその存在空間から接合阻害物質を排
除した状態で、炭素含有量が0.03重量%以下の覆
い鋼板によつて密封し、該合せ材を内包する覆い
鋼板組立体を鋼母材と反り防止部材との間に層状
に挟み、鋼母材と反り防止部材とを溶接した後、
650℃以上、900℃以下の温度域に加熱し熱間圧延
して合せ材の両面を隣接面に接合し、得られた圧
延材の周辺を切断して分離剤位置で分離し、合せ
材外面の覆い鋼板を除去することを特徴とするチ
タン、チタン合金、ジルコニウム、ジルコニウム
合金または含クロム鋼の接合境界部炭素濃縮距離
20μm以下の圧延クラツド鋼板の製造法。 2 合せ材をその存在空間から接合阻害物質を排
除した状態で、炭素含有量が0.03重量%以下の覆
い鋼板によつて包囲し、その内部に不活性ガスを
吹き込みながら覆い鋼板の四周を溶接し、覆い鋼
板表面を100℃以上に加熱しながら合せ材を含む
空間を10-1Torr以下に減圧した後密閉し、該覆
い鋼板組立体を鋼母材と反り防止部材との間に層
状に挟み、鋼母材と反り防止部材とを溶接した
後、650℃以上、900℃以下の温度域に加熱し熱間
圧延して合せ材の両面を隣接面に接合し、得られ
た圧延材の周辺を切断して分離剤位置で分離し、
合せ材外面の覆い鋼板を除去することを特徴とす
るチタン、チタン合金、ジルコニウム、ジルコニ
ウム合金または含クロム鋼の接合境界部炭素濃縮
距離20μm以下の圧延クラツド鋼板の製造法。 3 合せ材をその存在空間から接合阻害物質を排
除した状態で、炭素含有量が0.03重量%以下の覆
い鋼板によつて包囲し、その内部に不活性ガスを
吹き込みながら覆い鋼板の四周を溶接し、覆い鋼
板表面を100℃以上に加熱しながら合せ材を含む
空間を10-1Torr以下に減圧した後密閉し、該覆
い鋼板組立体を鋼母材と反り防止部材との間に層
状に挟み、鋼母材と反り防止部材とを溶接した
後、650℃以上、900℃以下の温度域に加熱し熱間
圧延して合せ材の両面を隣接面に接合し、得られ
た圧延材の周辺を切断して分離剤位置で分離した
後、合せ材外面に覆い鋼板をつけたまま再加熱し
て熱間圧延することを特徴とするチタン、チタン
合金、ジルコニウム、ジルコニウム合金または含
クロム鋼の接合境界部炭素濃縮距離20μm以下の
圧延クラツド鋼板の製造法。
[Scope of Claims] 1. A covering steel plate assembly in which the laminate is sealed with a covering steel plate having a carbon content of 0.03% by weight or less, with bonding inhibiting substances excluded from the space in which the laminate exists, and the laminate is enclosed therein. is sandwiched between the steel base material and the warpage prevention member in a layered manner, and after welding the steel base material and the warpage prevention member,
The outer surface of the laminate is heated to a temperature range of 650℃ or higher and 900℃ or lower and hot-rolled to bond both sides of the laminate to the adjacent surfaces. Carbon enrichment distance at the joint boundary of titanium, titanium alloy, zirconium, zirconium alloy or chromium-containing steel, characterized by removing the covering steel plate.
A method for producing rolled clad steel sheets of 20μm or less. 2 With the bonding material excluded from the space in which it exists, it is surrounded by a covering steel plate with a carbon content of 0.03% by weight or less, and the four circumferences of the covering steel plate are welded while blowing inert gas into the inside. , while heating the cover steel plate surface to 100°C or higher, the space containing the cladding material is depressurized to 10 -1 Torr or less and then sealed, and the cover steel plate assembly is sandwiched in layers between the steel base material and the warpage prevention member. After welding the steel base material and the warpage prevention member, the steel base material and the warpage prevention member are heated to a temperature range of 650°C or higher and 900°C or lower and hot rolled to join both sides of the laminate to the adjacent surfaces, and the surroundings of the resulting rolled material are is cut and separated at the separating agent position,
A method for manufacturing a rolled clad steel plate having a carbon enrichment distance of 20 μm or less at the joint boundary of titanium, titanium alloy, zirconium, zirconium alloy, or chromium-containing steel, characterized by removing the covering steel plate on the outer surface of the laminated material. 3. With bonding inhibiting substances removed from the existing space, the laminate is surrounded by a cover steel plate with a carbon content of 0.03% by weight or less, and the four circumferences of the cover steel plate are welded while blowing inert gas into the interior. , while heating the cover steel plate surface to 100°C or higher, the space containing the cladding material is depressurized to 10 -1 Torr or less and then sealed, and the cover steel plate assembly is sandwiched in layers between the steel base material and the warpage prevention member. After welding the steel base material and the warpage prevention member, the steel base material and the warpage prevention member are heated to a temperature range of 650°C or higher and 900°C or lower and hot rolled to join both sides of the laminate to the adjacent surfaces, and the surroundings of the resulting rolled material are Joining of titanium, titanium alloy, zirconium, zirconium alloy, or chromium-containing steel characterized by cutting and separating at the separating agent position, then reheating and hot rolling with the outer surface of the laminate covered with a steel plate. A method for manufacturing rolled clad steel sheets with a boundary carbon concentration distance of 20 μm or less.
JP29928385A 1985-04-05 1985-12-28 Production of rolled clad steel sheet Granted JPS62158583A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP29928385A JPS62158583A (en) 1985-12-28 1985-12-28 Production of rolled clad steel sheet
CA000505855A CA1266156A (en) 1985-04-05 1986-04-04 Method for producing a clad plate by hot-rolling
DE8686302508T DE3664588D1 (en) 1985-04-05 1986-04-04 Method for producing a clad plate by hot-rolling
EP86302508A EP0201202B2 (en) 1985-04-05 1986-04-04 Method for producing a clad plate by hot-rolling
US07/218,476 US4831708A (en) 1985-04-05 1988-07-06 Method for producing a clad plate by hot rolling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29928385A JPS62158583A (en) 1985-12-28 1985-12-28 Production of rolled clad steel sheet

Publications (2)

Publication Number Publication Date
JPS62158583A JPS62158583A (en) 1987-07-14
JPH0371956B2 true JPH0371956B2 (en) 1991-11-15

Family

ID=17870531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29928385A Granted JPS62158583A (en) 1985-04-05 1985-12-28 Production of rolled clad steel sheet

Country Status (1)

Country Link
JP (1) JPS62158583A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100333844C (en) * 2005-04-04 2007-08-29 吉欣(英德)热轧不锈复合钢有限公司 Process for producing brazing hot rolled metal composite plate adopting composite cog

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5346445A (en) * 1976-10-12 1978-04-26 Kawasaki Steel Co Method of producing steel sheet superior in low temperature embrittlement* anticorrosion and wear proof property
JPS55100890A (en) * 1979-01-26 1980-08-01 Japan Steel Works Ltd:The Production of thick-walled clad steel plate
JPS57109588A (en) * 1980-12-27 1982-07-08 Kawasaki Steel Corp Production of clad steel for structure by vacuum diffusion joining method
JPS57160587A (en) * 1981-03-30 1982-10-02 Mitsubishi Heavy Ind Ltd Manufacture of rolled clad steel by diffusion welding

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5346445A (en) * 1976-10-12 1978-04-26 Kawasaki Steel Co Method of producing steel sheet superior in low temperature embrittlement* anticorrosion and wear proof property
JPS55100890A (en) * 1979-01-26 1980-08-01 Japan Steel Works Ltd:The Production of thick-walled clad steel plate
JPS57109588A (en) * 1980-12-27 1982-07-08 Kawasaki Steel Corp Production of clad steel for structure by vacuum diffusion joining method
JPS57160587A (en) * 1981-03-30 1982-10-02 Mitsubishi Heavy Ind Ltd Manufacture of rolled clad steel by diffusion welding

Also Published As

Publication number Publication date
JPS62158583A (en) 1987-07-14

Similar Documents

Publication Publication Date Title
US4831708A (en) Method for producing a clad plate by hot rolling
JPH0371956B2 (en)
JPS6018205A (en) Manufacture of titanium-clad steel material
JP2663736B2 (en) Manufacturing method of extra thick steel plate
CA1151818A (en) Method for producing clad steel plate
CA1266156A (en) Method for producing a clad plate by hot-rolling
JPS62158584A (en) Rolled clad steel sheet and its production
JPH0371958B2 (en)
JPS60244491A (en) Production of copper or copper alloy clad steel plate
JPH02187282A (en) Manufacture of cladded plate at both surfaces
JPS5930516B2 (en) Manufacturing method of highly corrosion-resistant alloy clad steel sheet without carburizing the composite material surface
JPH031114B2 (en)
JPH02197383A (en) Production of extremely thick steel plate
JPH0469515B2 (en)
JPH03285781A (en) Production of both-side clad plate
JPS63183777A (en) High efficiency slab assembling method
JPS61226192A (en) Production of clad metal plate
JPS63132787A (en) Manufacture of copper clad steel plate
JPS63174790A (en) Manufacture of double-cladded plate
JPH0424156B2 (en)
JPS61273278A (en) Production of clad steel plate by sandwich rolling method
JPH0562036B2 (en)
JPH0225782B2 (en)
JPH0491877A (en) Laminated metallic plate having excellent vibration damping performance and production thereof
JPS63130277A (en) Highly efficient slab assembling method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term