JPS61226192A - Production of clad metal plate - Google Patents

Production of clad metal plate

Info

Publication number
JPS61226192A
JPS61226192A JP6376685A JP6376685A JPS61226192A JP S61226192 A JPS61226192 A JP S61226192A JP 6376685 A JP6376685 A JP 6376685A JP 6376685 A JP6376685 A JP 6376685A JP S61226192 A JPS61226192 A JP S61226192A
Authority
JP
Japan
Prior art keywords
welding
electron beam
metal
filler metal
joining face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6376685A
Other languages
Japanese (ja)
Other versions
JPH0350634B2 (en
Inventor
Itaru Watanabe
渡邊 之
Shigechika Kosuge
小菅 茂義
Kiyokazu Nakada
清和 仲田
Akihiro Tanaka
明広 田中
Shigeyasu Matsumoto
松本 重康
Kazuaki Matsumoto
和明 松本
Akira Takane
章 多賀根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP6376685A priority Critical patent/JPS61226192A/en
Publication of JPS61226192A publication Critical patent/JPS61226192A/en
Publication of JPH0350634B2 publication Critical patent/JPH0350634B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To attemper drastically the butt accuracy of joining face and to increase the quality by performing enclosed welding in a vacuum with feeding at the specified angle with the beam axis of electron beam the brazing filler metal at the rear part of the welding progressing direction of the joining face of cladded metal plate. CONSTITUTION:The joining face on which >= two sheets of the metallic plate 2, 3 of the same kind or different kind are overlapped is subjected to the enclosed welding in a vacuum by irradiating electron beam 5 in parallel or with slant angle of the joining face with feeding brazing filler metal 6 frm the rear part of the welding progressing direction. In this case the brazing filler metal 6 is collided with the electron beam inside the beam hole to be formed on the joining face by the electron beam and yet is fed so as to make the angle a with the beam axis of the electron beam 5 deg.<=a<=(65-0.4d) deg., [provided d(mm): depth of welding penetration]. The sound welding zone without any welding defect is obtainable irrespective of how the base metal and cladding metal being combined and the clad metal plate of high quality can therefore be produced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はクラッド金属板の製造方法、詳細には電子ビー
ム溶接による素材金属板の組立溶接を適切に行うための
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing clad metal plates, and more particularly to a method for appropriately performing assembly and welding of raw metal plates by electron beam welding.

[従来の技術] 2枚以上の金属板を積層接着させたクラッド金属板は、
耐食性、耐摩耗性あるいは耐熱性の優れ、かつ高強度を
有する安価な構造用材料として広い分野で使用されてい
る。
[Prior art] A clad metal plate made by laminating and bonding two or more metal plates is
It is used in a wide range of fields as an inexpensive structural material with excellent corrosion resistance, wear resistance, and heat resistance, and high strength.

クラッド金属板を製造する方法として、11!1法、肉
盛法、圧延法等があるが、大面積のものを高能率かつ安
価に製造できる圧延法が最も一般的に用いられている。
Methods for producing clad metal plates include the 11!1 method, overlay method, rolling method, etc., but the rolling method is most commonly used because it can produce large-area products with high efficiency and at low cost.

圧延法は接合する而を清浄にしてv4Fmシ熱間または
温間で圧延し冶金的に接合させる方法である。
The rolling method is a method in which the parts to be joined are cleaned and rolled in v4Fm hot or warm conditions to metallurgically join them.

圧延法によるクラッド製造において留意すべぎ点は接合
面間の雰囲気清浄度である。すなわち接合面を清浄にし
ても接合面間に大気が存在する場合には加熱時及び圧延
時に酸化物等が形成され、これが冶金的接合を妨げ十分
な接合強さが得られない原因となる。従って十分な接合
強さを有i゛るクラッド金属板を製造するには、クラッ
ド組立ての段階で接合面間に存在する大気゛を極力排気
し低圧力の状態にしておく必要がある。この他接合面間
の大気を不活性ガスで置換する方法もあるが、加熱時に
接合面間のガスが膨張して圧着を妨げる方向に作用する
ため、前者の接合面間を低圧力にする方法に比し劣って
いる。
When manufacturing cladding by the rolling method, an important point to keep in mind is the cleanliness of the atmosphere between the joint surfaces. That is, even if the bonding surfaces are clean, if the atmosphere exists between the bonding surfaces, oxides and the like will be formed during heating and rolling, which will impede metallurgical bonding and cause insufficient bonding strength to be obtained. Therefore, in order to manufacture a clad metal plate with sufficient bonding strength, it is necessary to exhaust the atmosphere existing between the bonding surfaces as much as possible during the clad assembly stage to maintain a low pressure state. Another method is to replace the atmosphere between the joint surfaces with an inert gas, but since the gas between the joint surfaces expands during heating and acts in a direction that hinders crimping, the former method lowers the pressure between the joint surfaces. It is inferior to.

接合面間を低圧力の状態にしかつクラッドの組立溶接を
能率的に行う方法として、電子ビーム溶接による密閉溶
接が提案されている。この方法は真空室の中に組立溶接
すべき部材をセットし、所定の真空度まで排気した後電
子ビーム溶接で部材の周囲を密閉溶接する方法である。
Sealed welding using electron beam welding has been proposed as a method for efficiently assembling and welding cladding while maintaining a low pressure state between joint surfaces. In this method, parts to be assembled and welded are set in a vacuum chamber, the vacuum is evacuated to a predetermined degree of vacuum, and then the periphery of the parts is hermetically welded using electron beam welding.

[発明が解決すべき問題点] 電子ビームによる密閉溶接の方法は、第7図(A>に示
すように基材(3)と合せ材(2)との接合面(4)に
対し電子ビーム(5)を垂直に照射する方法と、同図(
B)に示すように接合面(4)に対し平行にビーム(5
)を照射する方法とに大別できるが、現状では双方の方
法とも以下に述べる問題を抱えており、実用化に当って
はその克服が大きな課題になっている。
[Problems to be Solved by the Invention] In the method of hermetic welding using an electron beam, as shown in FIG. (5) Vertical irradiation method and the same figure (
As shown in B), the beam (5) is parallel to the joint surface (4).
), but currently both methods have the problems described below, and overcoming them is a major challenge for practical application.

1) 接合面に対しビームを垂直に照射する方法におい
ては、加熱及び圧延時にかがるせん断力を接合面位置に
おける溶接金属幅で支えなければならない。しかし、電
子ビーム溶接における溶接金属幅は広くとも5〜6jI
Ilが限界であり、ぜん断力によって電子ビーム溶接ビ
ード部(1a)が破断し、密閉性が打ち破られる危険性
が極めて高い。また基材(3)と合せ材(2)の組合せ
によっては溶接時に溶接金属中に割れの発生する恐れが
ある。例えば、基材が炭素鋼、合せ材がオーステナイト
系ステンレス鋼の組合゛ せでは、溶接金属のミクロ組
織はオーステナイトとマルテンリイトとの混合組織から
成るため溶接割れ感受性が非常に高く割れが発生してし
よう。
1) In the method of irradiating the beam perpendicularly to the joint surface, the shear force generated during heating and rolling must be supported by the weld metal width at the joint surface position. However, the weld metal width in electron beam welding is at most 5 to 6JI.
Il is the limit, and there is an extremely high risk that the electron beam welding bead (1a) will break due to shearing force and the sealing property will be broken. Furthermore, depending on the combination of the base material (3) and the laminate material (2), cracks may occur in the weld metal during welding. For example, when the base material is carbon steel and the composite material is austenitic stainless steel, the microstructure of the weld metal consists of a mixed structure of austenite and martenrite, so the weld cracking susceptibility is extremely high and cracks may occur. .

2) 接合面に対しビームを平行に照射する     
一方法においては、溶接ビード(1b)の溶込み深さで
圧延時のせん断力を支えるため、溶込み深さを調整する
ことによってこのせん断力に十分耐えることができる。
2) Irradiate the beam parallel to the joint surface
In one method, the shearing force during rolling is supported by the penetration depth of the weld bead (1b), so that this shearing force can be sufficiently withstood by adjusting the penetration depth.

従って、この方法は接合面に対しビームを垂直に照射す
る方法よりも、より実用的であると言える。しかしなが
ら、良好な密閉溶接ビードを形成する点においては、ビ
ームを垂直に照射する方法以上に問題がある。
Therefore, this method can be said to be more practical than the method of irradiating the beam perpendicularly to the joint surface. However, this method has more problems than the vertical beam irradiation method in terms of forming a good hermetic weld bead.

すなわち、電子ビーム溶接は細く絞られたビームを用い
て溶接するため、密閉溶接すべき突合せ面に間隙が存在
づると、第8図に示すように電子ビームの多くはこの間
隙を素通りし本来溶接されるべき所には溶接ビードはほ
とんど形成されなくなる。間隙を素通りしたビームが発
散して広がった地点で溶接ビード(1C)が形成される
こともあるが、この場合のビードのノド厚はせん断力に
耐えられる程ではなく、またこの部分は圧延後切り捨て
ることになるため歩留りが低下する他、ビードが形成さ
れる場所も不確定であり実用上極めて問題である。
In other words, since electron beam welding uses a narrowly focused beam, if there is a gap between the butt surfaces that are to be hermetically welded, most of the electron beam will pass through this gap and the welding will not be completed, as shown in Figure 8. Almost no weld bead is formed where it should be. A weld bead (1C) may be formed at the point where the beam that passed through the gap diverges and spreads, but in this case the bead throat thickness is not large enough to withstand the shearing force, and this part is Since the bead is cut off, the yield is reduced, and the location where the bead is formed is also uncertain, which is extremely problematic in practice.

本発明者らの実験によれば、基材と合せ材を支障なく密
閉溶接するためには突合せ面の間隙を0.5履以内に抑
えなければならないが、実際のクラッド組立部材におい
ては・それ以上の間隙が存在し、全溶接線にわたって間
隙が0.5as+以内になることは皆無に近い。間隙を
0.5ff1以内に制御するには、基材と合せ材の接合
面の平坦度を厳しく管理する必要がある。そのためには
基材、合せ材双方の接合面全面にわたって機械加工を施
し単基な面に仕上げる必要があるが、これには真人な研
削設備投資及び多大な工数が強いられ、その実際上の適
用はほとんど不可能に近い。
According to experiments conducted by the present inventors, in order to hermetically weld the base material and the cladding material without any trouble, the gap between the abutting surfaces must be suppressed to within 0.5 mm, but in actual clad assembly members, There is a gap greater than that, and it is almost never the case that the gap is less than 0.5as+ over the entire weld line. In order to control the gap within 0.5ff1, it is necessary to strictly control the flatness of the joint surface between the base material and the laminate material. To achieve this, it is necessary to machine the entire joint surface of both the base material and the laminate material to finish it into a single surface, but this requires an investment in serious grinding equipment and a large amount of man-hours, making it difficult to apply in practice. is almost impossible.

また、仮に接合面の突合せ間隙が0.5a1以内に納ま
る場合でも、前述の如く基材と合せ材の組合せによって
は溶接時に溶接金属中に割れが発生する可能性が非常に
高い。
Further, even if the butt gap between the joint surfaces is within 0.5a1, there is a very high possibility that cracks will occur in the weld metal during welding, depending on the combination of the base material and the laminate material, as described above.

[問題点を解決するための手段] 本発明者らは、密閉溶接方法として、上記後者の電子ビ
ームを接合面に平行に照射する方法が実川内であるとの
考えから、上記問題点を解決すべく検討を行った。この
結果、溶接部に対しフィラワイヤ等の溶加材を特定の条
件で供給しつつ電子ビーム溶接することにより、接合面
の突合せ精度を厳しく管理することなく良好な密閉溶接
が行えることを見い出した。また、このような溶接を行
うことにより、溶接金属の成分値を自在に調整し、その
適正化を図れることも判った。
[Means for Solving the Problems] The present inventors solved the above problems based on the idea that the latter method of irradiating an electron beam parallel to the joint surface is the method used by Jitsukawachi as a hermetic welding method. We have considered this as much as possible. As a result, they discovered that by performing electron beam welding while supplying a filler metal such as filler wire to the weld under specific conditions, it is possible to perform good hermetic welding without strictly controlling the butt accuracy of the joint surfaces. It has also been found that by performing such welding, the component values of the weld metal can be freely adjusted and optimized.

電子ビーム溶接においては、従来溶加材を溶接部に安定
して供給しつつ溶接することは困難とされ、このため溶
加材を用いた溶接を実用に供するといった試みはなされ
ておらず、またこれが開先面の突合せ精度に対する厳し
い要求につながっていた。発明者らは溶加材連続供給電
子ビーム溶接に関し詳細な実験を行った結果、電子ビー
ム溶接においても溶加材の供給角度及び供給位置を適正
に制御することにより、十分安定して溶接部に溶加材を
供給できることを見出したものであり、その基本的構成
は重ね合された金属板の接合面を、溶加材を溶接進行方
向後方から供給しつつ、接合面に対し平行または斜角を
もって電子ビームを照射することにより密閉溶接するよ
うにし、しかも上記溶加材を電子ビームにより接合面に
形成されるビーム孔内部で電子ビームと衝突させ、且つ
電子ビームのビーム軸に対する角度αを5°≦α≦(6
5−0,4d)”  (但し、d(mm):溶接連込み
深さ)とするよう供給するようにしたものである。
In electron beam welding, it has traditionally been difficult to weld while stably supplying filler metal to the welding area, and for this reason, no attempt has been made to put welding using filler metal into practical use. This has led to strict requirements for the butt precision of the groove surfaces. The inventors conducted detailed experiments on continuous filler metal supply electron beam welding, and found that even in electron beam welding, by appropriately controlling the supply angle and position of the filler metal, it is possible to stably form the welded part. It was discovered that it is possible to supply filler metal, and its basic configuration is to supply filler metal from the rear in the welding direction to the joint surface of stacked metal plates, parallel to or at an angle to the joint surface. The filler material is collided with the electron beam inside the beam hole formed in the joint surface by the electron beam, and the angle α with respect to the beam axis of the electron beam is set to 5. °≦α≦(6
5-0,4d)'' (where d (mm): welding depth).

第1図は本発明の実施状況を示すもので、(1)は溶接
ビード、(6)は溶加材である。
FIG. 1 shows the implementation status of the present invention, in which (1) is a weld bead and (6) is a filler metal.

本発明では重ね合わされた基材(3)と合せ材(2)と
の接合面を、溶加材(6)を供給しつつ電子ビーム(5
)を照射することにより密閉溶接する。電子ビーム(5
)は接合面に対して平行または斜角をもって照射され、
接合面に沿って溶接を行う。
In the present invention, the bonding surface of the overlaid base material (3) and laminate material (2) is bonded with an electron beam (5) while supplying the filler material (6).
) to perform hermetic welding by irradiating. Electron beam (5
) is irradiated parallel or obliquely to the joint surface,
Perform welding along the joint surface.

被溶接材に電子ビームを照射すると、被溶接材は加熱・
溶融され、一部蒸発に至る。この時、蒸発反力により溶
融池(7)にはビーム孔(8)が形成されるが、前記溶
加材(6)は溶接進行方向におけるビーム後方側からこ
のビーム孔(8)内に供給され、電子ビーム(5)と該
ビーム孔内で衝突せしめられる。溶加材(6)としては
、所謂フィラワイヤのほか帯状、棒状等の適宜な形状の
ものを用いることができる。
When the material to be welded is irradiated with an electron beam, the material will be heated and
It is melted and partially evaporated. At this time, a beam hole (8) is formed in the molten pool (7) due to the evaporation reaction force, and the filler metal (6) is supplied into this beam hole (8) from the rear side of the beam in the welding direction. and collides with the electron beam (5) within the beam aperture. As the filler material (6), in addition to a so-called filler wire, a material having an appropriate shape such as a band shape or a rod shape can be used.

溶接進行方向においてビーム後方から供給される溶加材
(6)は、電子ビーム(5)のビーム軸に対し所定の角
度αをもたせることが必要であり、具体的には、供給角
度α(d13(II)を、溶は込み深さをd(m)とし
た場合、ビーム軸に対して5°≦α≦(65−0,4d
))の範囲内にする必要がある。供給角度が5°未満で
は溶加材の供給位置の微小変動で、ビームとの衝突位置
が著しく変動することになり、安定した溶加材の溶融が
困難となる。また、供給角度が(65−0,4d)”を
超えると、溶加材の供給位置の微小変動で溶加材が溶融
池(7)に接触あるいは突入してしまい、溶加材の溶融
が不可能になる。このようなことから供給角度αは上記
範囲に規制される。第3図は、溶は込み深さdと溶加材
供給角度αとの関係を示すもので、斜線で囲まれる[I
Iの領域が適正領域となる。
The filler metal (6) supplied from the rear of the beam in the welding direction needs to have a predetermined angle α with respect to the beam axis of the electron beam (5). Specifically, the supply angle α (d13 (II), when the penetration depth is d (m), 5°≦α≦(65-0,4d
)) must be within the range. If the supply angle is less than 5°, even a small change in the supply position of the filler metal will cause the collision position with the beam to change significantly, making it difficult to stably melt the filler metal. In addition, if the feeding angle exceeds (65-0,4d)'', the filler metal will come into contact with or rush into the molten pool (7) due to minute fluctuations in the feed position of the filler metal, which will prevent the filler metal from melting. For this reason, the feeding angle α is regulated within the above range. Figure 3 shows the relationship between the penetration depth d and the filler metal feeding angle α. [I
The area I is the proper area.

このような本発明法によれば、許容できる開先間隙幅を
約3m8度まで拡大できることができ、これにより接合
面の突合せ精度を大幅に緩和することができる。また本
発明によれば、溶加材を用いることにより溶接金属の成
分の適正化が図られ、基材と合せ材の組み合せ如何にか
かわらず、溶接欠陥のない健全な溶接部を得ることがで
きる。
According to the method of the present invention, the permissible groove gap width can be expanded to about 3 m8 degrees, thereby making it possible to significantly reduce the butting accuracy of the joint surfaces. Furthermore, according to the present invention, the composition of the weld metal can be optimized by using filler metal, and a sound welded part without welding defects can be obtained regardless of the combination of the base material and the laminate material. .

[実施例] 以下本発明の詳細な説明する。[Example] The present invention will be explained in detail below.

・実施例1 基  材  SM  41    80X  1,0O
OX  500am合せ材 S U S 304 20
X 1,0OOX 5GGam+上記材料それぞれにつ
き接合すべき面を機械加工して清浄にした後重ね合せた
が、基材と合せ材は密着させず、rIJIIji2層を
設は接合面を突合せた。この後真空室内に部材を搬入し
、15pa以下の真空度の下で10分間排気後、W4F
F4材の周辺をフィラワイヤを連続供給しながら接合面
に平行方向に電子ビームを照射して溶接した。溶接条件
は加速電圧150kV、ビーム電流100mA、溶接速
度30ca/■in1フイラワイヤSUS 312(1
,2φ)、フィラワイヤ供給角度α40°、フィラワイ
ヤ供給量16m/■inとし、第4図に示されるように
、横向姿勢で溶接した。
・Example 1 Base material SM 41 80X 1,0O
OX 500am laminating material S US 304 20
X 1,0OOX 5GGam+For each of the above materials, the surfaces to be bonded were machined and cleaned and then stacked, but the base material and the laminated material were not brought into close contact, and the two layers of rIJIIji were provided and the bonding surfaces were butted. After this, the parts were carried into the vacuum chamber, and after being evacuated for 10 minutes under the degree of vacuum of 15 pa or less, the W4F
Welding was performed around the F4 material by irradiating an electron beam in a direction parallel to the joint surface while continuously supplying filler wire. Welding conditions are acceleration voltage 150kV, beam current 100mA, welding speed 30ca/in1 filler wire SUS 312 (1
, 2φ), a filler wire supply angle α of 40°, and a filler wire supply amount of 16 m/inch, and welding was performed in a horizontal position as shown in FIG.

この時のビードの溶込み深さは約30.であった。The bead penetration depth at this time is approximately 30mm. Met.

電子ビーム溶接で密閉溶接された材料を1250℃で均
一加熱した後圧下比3で圧延した。圧延終了時の温度は
1050℃であった。加熱及び圧延時に溶接ビードは破
断することなくせん断力に十分に耐えた。
The material hermetically welded by electron beam welding was uniformly heated at 1250°C and then rolled at a reduction ratio of 3. The temperature at the end of rolling was 1050°C. During heating and rolling, the weld bead sufficiently withstood the shearing force without breaking.

圧延後接合面全面にわたって超音波試験を実施したが、
欠陥エコーは全く検出されなかった。
Ultrasonic tests were conducted over the entire joint surface after rolling, but
No defective echoes were detected.

圧延後の材料について圧延材の両端及び中央部から各3
個のせん断試験片を取り出しせん断強度を知らべたが、
35〜39Ksf/JIII2の値が得られ、JISで
規定されているせん断強度(≧20Kgf /1xs2
)を十分に上回る良好な結果が得られた。また表、裏及
び側曲げ試験も実施したが、接合面でのハクリは全く認
められなかった。接合面のミクロ組織を第4図に示すが
、基材と合せ材は十分に接合している。
Regarding the material after rolling, 3 each from both ends and the center of the rolled material.
We took out several shear test specimens and found out their shear strength.
A value of 35 to 39Ksf/JIII2 was obtained, and the shear strength specified by JIS (≧20Kgf/1xs2
) were obtained. Front, back, and side bending tests were also conducted, but no peeling was observed at the joint surfaces. The microstructure of the bonded surface is shown in FIG. 4, and the base material and the laminate material are sufficiently bonded.

・実施例2 実施例1では基材と合せ材をf!着せず接合面間に2m
のm隙を設け、フィラワイヤを連続供給して密閉溶接を
行った。ここでは基材及び合せ材の材種及び寸法は実施
例1と同一とし、接合面間隙をOiwすなわち基材と合
せ林を密着して重ね合せた。この場合基材と合せ材の接
合面は機械加工を施し平坦にした。真空排気及びフィラ
ワイヤ供給量以外の溶接条件は実施例1と同一である。
・Example 2 In Example 1, the base material and the laminated material were f! 2m between joint surfaces without attaching
A gap of m was provided, and filler wire was continuously supplied to perform sealing welding. Here, the types and dimensions of the base material and the laminated material were the same as in Example 1, and the joint surface gap was Oiw, that is, the base material and the laminated material were closely overlapped. In this case, the joint surface between the base material and the laminate material was machined to make it flat. Welding conditions other than vacuum evacuation and feed amount of filler wire were the same as in Example 1.

ビード形状的にはフィラワイヤの供給を必要としないが
、基材と合せ材をフィラワイヤ無しに直接電子ビーム溶
接すると溶接金属中に割れがしばしば発生した。この割
れを防止するため5US312系統のフィラワイヤ(1
,2φ)を連続的に供給しながら電子ビーム溶接を行っ
た。
Although the bead shape does not require the supply of filler wire, when the base material and the laminate were directly electron beam welded without a filler wire, cracks often occurred in the weld metal. To prevent this cracking, 5US312 series filler wire (1
, 2φ) was continuously supplied while electron beam welding was performed.

割れ防止に必要なフィラワイヤの最低供給量は1.2R
/Winであるが、フイラワイヤの供給量が多くなると
溶融金属が過剰になり、溶接部表面から溶融金属が垂れ
落ち溶接金属内部に空洞欠陥を発生させるため、その供
給量の上限を2.5rrt/yitn以下にする必要が
あった。実際の密閉溶接においては、フイラワイヤ供給
量を1.8m/sinに設定して電子ビーム溶接を行っ
た。fi閑溶接された材料を1250℃で均一加熱した
後圧下比3で圧延した。溶接ビードは加熱及び圧延時の
せん断力に十分耐えた。圧延材の接合面全面にわたって
超音波試験を行ったが、欠陥エコーは検出されなかった
。圧延材の両端及び中央部からそれぞれ3個のせん断試
験片を採取し接合部のせん断強度を調べたが34〜39
に9f/m 2の値が得られJISjJl格1(上20
Kst/llm2)を大幅に上回る良好な結果が得られ
た。
The minimum supply amount of filler wire required to prevent cracking is 1.2R.
/Win, but when the supply amount of filler wire increases, the molten metal becomes excessive, and the molten metal drips from the welding part surface and creates a cavity defect inside the weld metal, so the upper limit of the supply amount is set to 2.5rrt/ It needed to be below yitn. In actual sealed welding, electron beam welding was performed with the feed rate of filler wire set to 1.8 m/sin. The fi-free welded material was heated uniformly at 1250°C and then rolled at a reduction ratio of 3. The weld bead sufficiently withstood the shear forces during heating and rolling. An ultrasonic test was conducted over the entire joint surface of the rolled material, but no defect echo was detected. Three shear test pieces were taken from both ends and the center of the rolled material, and the shear strength of the joint was examined.34-39
A value of 9f/m2 was obtained and JISjJl rating 1 (upper 20
Good results were obtained that significantly exceeded Kst/llm2).

また表、裏及び側曲げ試験も実施したが、接合面でのハ
クリは全く認められなかった。
Front, back, and side bending tests were also conducted, but no peeling was observed at the joint surfaces.

・実施例3 実施例1及び2では接合面を機械加工したが、実際の上
では大面積の接合面を機械加工することは種々の困難を
伴なう。そこで接合する面を機械加工せずスケールを落
して清浄にするのみで基材(8M41)と合せ材(S 
U S 304)を重ね合せた。この場合、基材及び合
せ材の平坦度はあまり良好でなく、第5図に示す゛よう
に突合せ面の間隙は0〜3as+の間で変化した。予じ
め間隙を測定し、間隙に応じてフィラワイヤの供給車を
変化させ電子ビーム溶接による密閉溶接を行った。基本
的な溶接条件は実施例1と同様である。溶接線全線にわ
たって良好なビード形状が得られ、溶接割れも11察さ
れなかった。
- Example 3 In Examples 1 and 2, the joint surfaces were machined, but in practice, machining a large-area joint surface involves various difficulties. Therefore, without machining the surfaces to be joined, the base material (8M41) and the mating material (S
US 304) were superimposed. In this case, the flatness of the base material and the laminate material was not very good, and the gap between the abutting surfaces varied between 0 and 3 as+, as shown in FIG. The gap was measured in advance, and the filler wire supply car was changed according to the gap to perform sealing welding by electron beam welding. The basic welding conditions are the same as in Example 1. A good bead shape was obtained over the entire weld line, and no weld cracks were observed.

実施例1と同一の条件で圧延した圧延材について、超音
波試験を実施したが欠陥エコーは検出されなかった。圧
延材の両端及び中央部からそれぞれ3個のせん断試験片
を採取し接合部のせん断強度を調べたが、36〜40に
9f/as2の値が得られ良好な結果が得られた。また
、表、裏及び側曲げ試験も実施したが、接合面のハクリ
は全く認められなかった。
An ultrasonic test was conducted on the rolled material rolled under the same conditions as in Example 1, but no defect echo was detected. Three shear test pieces were taken from both ends and the center of the rolled material to examine the shear strength of the joint, and good results were obtained, with values of 9f/as2 ranging from 36 to 40. In addition, front, back, and side bending tests were also conducted, but no peeling of the bonded surfaces was observed.

・実施例では5M41と5US304の組合せで圧延ク
ラッドを製造したが、これ以外の組合せでも適正成分の
フィラワイヤを供給することにより良好な密閉溶接がで
きた。
- In the example, a rolled cladding was produced using a combination of 5M41 and 5US304, but good hermetic welding could be achieved with other combinations by supplying filler wire with appropriate composition.

以上の如く、クラッド金属板の組立溶接に本発明の溶加
材供給電子ビーム溶接法を適用することにより、基材と
合せ材の材種の組合せ如何に拘らず溶接割れの無い溶接
ビードを形成することができる。同時に、接合部の突合
柱面に3s程度の間隙が生じても十分に対応可能であり
良好な溶接ビードを形成できる。従って現状の基材及び
合V材の平坦痕でも本発明を適用Jることによって良好
な密閉溶接が可能であり、圧延後の接合部の諸性質も十
分に満足できるものであることが判明し、本発明の有効
性が確認された。
As described above, by applying the filler metal supply electron beam welding method of the present invention to assembly welding of clad metal plates, a weld bead without weld cracking can be formed regardless of the combination of the base material and laminate materials. can do. At the same time, even if a gap of about 3 seconds occurs on the abutting column surfaces of the joint, it can be sufficiently coped with and a good weld bead can be formed. Therefore, it has been found that by applying the present invention, it is possible to perform good hermetic welding even on the flat marks of the current base material and composite V material, and that the various properties of the joint after rolling are also sufficiently satisfactory. , the effectiveness of the present invention was confirmed.

また、電子ビームによる密閉溶接は例えば3面を従来の
アーク溶接法で溶接し残りの1面を真空室の中で電子ビ
ーム溶接する等種々のプロセスが考えられるが、何れの
場合においても電子ビームによる密閉溶接においては溶
加材を供給して溶接することが肝要であり、本発明の適
用されるところである。
In addition, various processes can be considered for hermetic welding using an electron beam, such as welding three sides using the conventional arc welding method and then electron beam welding the remaining one side in a vacuum chamber, but in any case, the electron beam In closed welding, it is important to supply filler metal and perform welding, and this is where the present invention is applied.

なお、上記の密r1m接は接合面に平行に電子ビームを
照射する方法で行ったが、第6図に示すように接合面に
対しある程度角度を持たじて電子ビームを照射する方法
も有効であった。但し角度(θ)を20°を越えて設定
すると溶加材の安定供給が困難になるため電子ビームの
入射角度θは20@以下に制限される。
Note that the above dense r1m contact was performed by irradiating the electron beam parallel to the bonding surface, but it is also effective to irradiate the electron beam at a certain angle to the bonding surface, as shown in Figure 6. there were. However, if the angle (θ) is set to exceed 20°, it becomes difficult to stably supply the filler metal, so the incident angle θ of the electron beam is limited to 20@ or less.

上記は合せ材と基材が異種材料の組合せの場合であるが
、本発明は当然ながら合せ材とi!材が同種材料の組合
せの場合も極めて有効に利用できその効果が大なること
を確認している。
The above is a case where the laminate material and the base material are a combination of different materials, but the present invention naturally applies to the laminate material and the i! It has been confirmed that even a combination of similar materials can be used extremely effectively and the effect will be even greater.

溶接姿勢に関しても、本発明は横向姿勢のみならず下向
及び立向姿勢における溶接にも十分適用可能であり、ク
ラッド部材を立てて下向きあるいは立向姿勢で溶接する
こともできる。
Regarding the welding position, the present invention is fully applicable to welding not only in a horizontal position but also in a downward and vertical position, and it is also possible to weld in a downward or vertical position with the clad member erected.

[考案の効果] 以上述べた本発明によれば、許容できる開先間隙幅を従
来に較べ著しく拡大することができ、これにより接合面
の突合せ精度を大幅に緩和することができ、加えて、溶
加材を用いることにより溶接金属の成分の適正化を可能
ならしめ、基材と合せ材の組み合せ如何にかかわらず溶
接欠陥のない健全な溶接部を得ることができるという優
れた効果がある。
[Effects of the invention] According to the present invention described above, the permissible groove gap width can be significantly expanded compared to the conventional method, and as a result, the butting accuracy of the joint surfaces can be significantly relaxed, and in addition, The use of a filler metal makes it possible to optimize the composition of the weld metal, and has the excellent effect of making it possible to obtain a sound welded part without welding defects, regardless of the combination of the base material and the laminate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の実施状況を示すもので、第
1図は斜視説明図、第2図は溶接部の部分拡大図である
。第3図は溶接部は込み深さと溶加材供給角度との関係
を示すものである。第4図は実・施例(1)における接
合面の金all織を示す顕微鏡拡大写真である。第5図
は実施例(3)における基材と合せ材の重合状態を示す
斜視説明図である。第6図は本発明の他の実施状況を示
す斜視説明図である。第7図(A>及び(B)はそれぞ
れ従来の電子ビーム溶接方法を示す説明図である。第8
図は従来法における溶接状況を示す説明図である。 図において、(1)は溶接ビード、(2)は合せ材、(
3)は基材、(5)は電子ビーム、(6)は溶加材、(
8)はビーム孔を各示す。 (x200)
1 and 2 show the state of implementation of the present invention, with FIG. 1 being a perspective explanatory view and FIG. 2 being a partially enlarged view of a welded portion. FIG. 3 shows the relationship between the penetration depth of the weld and the filler metal supply angle. FIG. 4 is an enlarged microscope photograph showing the gold all-weave on the joint surface in Example (1). FIG. 5 is a perspective explanatory view showing the polymerization state of the base material and the laminate material in Example (3). FIG. 6 is a perspective explanatory view showing another implementation situation of the present invention. FIGS. 7(A) and (B) are explanatory diagrams each showing a conventional electron beam welding method.
The figure is an explanatory diagram showing a welding situation in a conventional method. In the figure, (1) is a weld bead, (2) is a cladding material, (
3) is the base material, (5) is the electron beam, (6) is the filler metal, (
8) shows each beam hole. (x200)

Claims (1)

【特許請求の範囲】[Claims] 同種または異種の金属板を2枚以上重ね合わせ、電子ビ
ームにより真空中で密閉溶接した後、熱間圧延または温
間圧延を行い、クラッド金属板を製造する方法において
、上記重ね合わされた金属板の接合面を、溶加材を溶接
進行方向後方から供給しつつ、接合面に対し平行または
斜角をもつて電子ビームを照射することにより密閉溶接
し、前記溶加材を電子ビームにより接合面に形成される
ビーム孔内部で電子ビームと衝突させ、且つ、電子ビー
ムのビーム軸に対する角度αを、5°≦α≦(65−0
.4d)°(但し、d(mm):溶接溶込み深さ)とす
るよう供給することを特徴とするクラッド金属板の製造
方法。
In a method of manufacturing a clad metal plate by stacking two or more metal plates of the same or different types, sealingly welding them in a vacuum using an electron beam, and then hot rolling or warm rolling, the stacked metal plates are The joint surfaces are hermetically welded by irradiating an electron beam parallel or at an oblique angle to the joint surfaces while supplying filler metal from the rear in the welding direction, and the filler metal is applied to the joint surfaces by the electron beam. The electron beam is collided with the electron beam inside the formed beam hole, and the angle α of the electron beam with respect to the beam axis is 5°≦α≦(65-0
.. 4d)° (where d (mm): weld penetration depth).
JP6376685A 1985-03-29 1985-03-29 Production of clad metal plate Granted JPS61226192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6376685A JPS61226192A (en) 1985-03-29 1985-03-29 Production of clad metal plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6376685A JPS61226192A (en) 1985-03-29 1985-03-29 Production of clad metal plate

Publications (2)

Publication Number Publication Date
JPS61226192A true JPS61226192A (en) 1986-10-08
JPH0350634B2 JPH0350634B2 (en) 1991-08-02

Family

ID=13238827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6376685A Granted JPS61226192A (en) 1985-03-29 1985-03-29 Production of clad metal plate

Country Status (1)

Country Link
JP (1) JPS61226192A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04305383A (en) * 1991-04-01 1992-10-28 Sumitomo Metal Ind Ltd Manufacture of clad steel material
JP6469328B1 (en) * 2018-04-12 2019-02-13 三菱電機株式会社 Additive manufacturing apparatus, additive manufacturing system, and additive manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5318446A (en) * 1976-08-03 1978-02-20 Steigerwald Strahltech Energy beam welding using filler metal
JPS5414109A (en) * 1977-07-04 1979-02-02 Torio Kk Intermediate frequency band automatic switching device for fm receiver

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5318446A (en) * 1976-08-03 1978-02-20 Steigerwald Strahltech Energy beam welding using filler metal
JPS5414109A (en) * 1977-07-04 1979-02-02 Torio Kk Intermediate frequency band automatic switching device for fm receiver

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04305383A (en) * 1991-04-01 1992-10-28 Sumitomo Metal Ind Ltd Manufacture of clad steel material
JP6469328B1 (en) * 2018-04-12 2019-02-13 三菱電機株式会社 Additive manufacturing apparatus, additive manufacturing system, and additive manufacturing method
WO2019198212A1 (en) * 2018-04-12 2019-10-17 三菱電機株式会社 Additive manufacturing device, additive manufacturing system, and additive manufacturing method
US11090764B2 (en) 2018-04-12 2021-08-17 Mitsubishi Electric Corporation Additive manufacturing apparatus, additive manufacturing system, and additive manufacturing method

Also Published As

Publication number Publication date
JPH0350634B2 (en) 1991-08-02

Similar Documents

Publication Publication Date Title
Thomy et al. Laser-MIG hybrid welding of aluminium to steel—effect of process parameters on joint properties
US20050263500A1 (en) Laser or laser/arc hybrid welding process with formation of a plasma on the backside
JP5042648B2 (en) Laser welding method for structure made of steel plate
JP2000197969A (en) Blank for integrally forming and forming method thereof
CN112469529B (en) Method for manufacturing dissimilar material bonded structure, and dissimilar material bonded structure
JP4326492B2 (en) Dissimilar materials joining method using laser welding
CN114340833B (en) Method for manufacturing dissimilar material joined structure and dissimilar material joined structure
JP4841970B2 (en) Lap laser welding method
Kumagai Recent technological developments in welding of aluminium and its alloys
JP4978121B2 (en) Butt joining method of metal plates
JP3767369B2 (en) Method of lap welding of thin steel plates and welded thin steel plates
JP4854327B2 (en) Lap laser welding method
JPH04305383A (en) Manufacture of clad steel material
JP2020011276A (en) Dissimilar material joint structure manufacturing method and dissimilar material joint structure
US20050211688A1 (en) Method for hybrid multiple-thickness laser-arc welding with edge welding
JPS61226192A (en) Production of clad metal plate
JPH10328861A (en) Laser lap welding method
JP2008155226A (en) Laser lap weld joint of steel plate, and method for laser lap welding
CN109014580B (en) Lapping laser gap powder filling welding method with rolling assistance
JP2704452B2 (en) Butt joining method of coated composite material, method of manufacturing long composite pipe by the joining method, and pipe for transporting metal scouring substance
JPS6245485A (en) Production of clad metallic sheet
RU2812921C1 (en) Method of laser welding of t-joints of products made of aluminium alloys
JPH06170567A (en) Lap beam welding method
JP7028735B2 (en) Manufacturing method of dissimilar material joint structure and dissimilar material joint structure
Mithun et al. An Analysis of Geometrical and Failure Characteristics of Laser Micro-Welded SS304 and DSS2205