JPH0371618A - Manufacture of solid electrolytic capacitor - Google Patents

Manufacture of solid electrolytic capacitor

Info

Publication number
JPH0371618A
JPH0371618A JP20719189A JP20719189A JPH0371618A JP H0371618 A JPH0371618 A JP H0371618A JP 20719189 A JP20719189 A JP 20719189A JP 20719189 A JP20719189 A JP 20719189A JP H0371618 A JPH0371618 A JP H0371618A
Authority
JP
Japan
Prior art keywords
dopant
polymer film
film
electrode body
conductive polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20719189A
Other languages
Japanese (ja)
Inventor
Seiji Imoto
井本 誠二
Yutaka Kado
鹿渡 裕
Tatsuo Mori
森 辰男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP20719189A priority Critical patent/JPH0371618A/en
Publication of JPH0371618A publication Critical patent/JPH0371618A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

PURPOSE:To prevent generation of exfoliation and falling off from the surface of an electrode body by a method wherein, after an electrolytically polymerized conductive high molecular film is formed, its dopant content is decreased by electrolyzing it in the solution of carboxylic acid, it is processed into the electrodes of various shapes, and a doping is conducted again. CONSTITUTION:After an electrolytically polymerized conductive high molecular film is formed on a chemical oxidative polymerization high molecular film by doping a dopant, a dedoping operation is conducted by electrolyzing the high molecular film in a carboxylic acid solution using an electrode body as the cathode. Subsequently, the above-mentioned film is processed into electrodes of various shapes, and an electrolytically polymerized conductive high molecular film is formed while a dopant is being doped again. The conductive high molecular film containing a large quantity of dopant has a very high degree of hardness, but if the content of dopant is small, its degree of hardness decreases, it becomes a soft film, the works of winding, bending and the like can be conducted together with an electrode. As a result, the generation of exfoliation and falling off from the surface of an electrode body can be prevented.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ポリピロールなどの導電性高分子膜を固体電
解質として用いた電解コンデンサの製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing an electrolytic capacitor using a conductive polymer film such as polypyrrole as a solid electrolyte.

従来の技術 従来のポリピロールなどの導電性高分子膜を固体電解質
として用いた電解コンデンサでは、あらかじめ粗面化し
た皮膜形成性金属箔に誘電体皮膜を形成し、この誘電体
皮膜を形成した金属に酸化剤を用いて、ビロール、チオ
フェン、アニリンまたはフランなどの化学酸化重合導電
性高分子膜を形成せしめた後、該化学酸化重合導電性高
分子膜上に電解重合導電性高分子膜を形成した電極を用
いて固体電解コンデンサを構成したものが検討されてい
る。
Conventional technology In conventional electrolytic capacitors that use a conductive polymer film such as polypyrrole as a solid electrolyte, a dielectric film is formed on a film-forming metal foil that has been roughened in advance, and the metal on which this dielectric film is formed is coated with a dielectric film. After forming a chemically oxidized conductive polymer film of virol, thiophene, aniline, or furan using an oxidizing agent, an electrolytically polymerized conductive polymer film was formed on the chemically oxidized conductive polymer film. Solid electrolytic capacitors constructed using electrodes are being considered.

発明が解決しようとする問題点 上述の固体電解コンデンサにおいては、導電性高分子膜
を形成した後、巻回しなどにより電極体を加工しようと
しても、生成した導電性高分子膜はきわめて硬度が高い
ために不可能であり、強力に加工した場合には導電性高
分子膜は破壊してしまう。
Problems to be Solved by the Invention In the solid electrolytic capacitor described above, even if an attempt is made to process the electrode body by winding or the like after forming a conductive polymer film, the resulting conductive polymer film has extremely high hardness. Therefore, it is impossible, and the conductive polymer film will be destroyed if it is processed strongly.

また、化学1合した段階で巻回しなどの加工する方法も
考えられるが、巻回し時、機械と接触あるいは振動によ
り、化学重合により形成された導電性高分子膜が上記電
極体の表面より剥離、脱落などが生ずるといった問題が
あり、未だ実用化には至っていない。
Alternatively, a method of processing such as winding at the stage of chemical polymerization may be considered, but during winding, the conductive polymer film formed by chemical polymerization may peel off from the surface of the electrode body due to contact with a machine or vibration. There are problems such as , falling off, etc., and it has not yet been put into practical use.

問題点を解決するための手段 あらかじめ粗面化した皮膜形成性金属箔に誘電体皮膜を
形成し、この誘電体皮膜上にビロール、チオフェン、ア
ニリンまたはフランなどの化学酸化重合導電性高分子膜
を形成した後、電解重合することにより該化学酸化重合
導電性高分子膜上にドーパントをドーピングさせながら
、電解重合導電性高分子膜を形成する工程と、その後カ
ルボン酸塩の溶液中で該電極体を陰極(負極)として電
解することにより、脱ドープあるいはドーパント含有量
を減少させたあと、各形状の電極に加工し、再度ドーパ
ントをドーピングさせながら電解重合導電性高分子膜を
形成する工程を経て、電極体を形成することを特徴とす
る固体電解コンデンサの製造方法である。
Means for solving the problem: A dielectric film is formed on a film-forming metal foil that has been roughened in advance, and a chemically oxidized conductive polymer film of virol, thiophene, aniline, or furan is coated on this dielectric film. After the formation, a step of forming an electrolytically polymerized conductive polymer film while doping a dopant onto the chemical oxidation polymerized conductive polymer film by electrolytic polymerization, and then forming the electrode body in a solution of a carboxylic acid salt. After dedoping or reducing the dopant content by electrolyzing it as a cathode (negative electrode), it is processed into electrodes of various shapes and goes through the process of forming an electropolymerized conductive polymer film while doping the dopant again. , a method for manufacturing a solid electrolytic capacitor characterized by forming an electrode body.

作用 本発明の固体電解コンデンサの製造方法では、あらかじ
め誘電体皮膜を形成した皮膜形成性金属箔にビロール、
チオフェン、アニリンまたはフランなどの化学酸化重合
導電性高分子膜を形成した後、電解重合することにより
該化学酸化重合導電性高分子膜上にドーパントをドーピ
ングさせながら電解重合導電性高分子膜を形成したあと
、カルボン酸塩の溶液中で該電極体を陰極(負極)とし
て電解することにより、脱ドープさせる工程を付加した
ものである。
Function: In the method for manufacturing a solid electrolytic capacitor of the present invention, virol,
After forming a chemically oxidized conductive polymer film of thiophene, aniline, or furan, electropolymerization is performed to form an electrolytically polymerized conductive polymer film while doping a dopant onto the chemically oxidized conductive polymer film. After that, a step of dedoping is added by electrolyzing the electrode body in a solution of a carboxylic acid salt as a cathode (negative electrode).

ポリピロールなどの導電性高分子膜はその伝導性を高め
るため、各種のドーパントを皮膜内に含有している。ド
ーパントを多量に含有している導電性高分子膜は極めて
硬度が高い性質をもっているが、ドーパントの含有量が
低い場合には硬度は低下し、柔らかい皮膜となり電極と
ともに、巻回、折曲げなどの加工が可能となる。また導
電性高分子膜は電極との密着性が高く、また電解重合後
の導電性高分子膜の表面は極めて均一であり、脱ドーパ
ント後も機械と接触しても剥離、脱落などの問題は発生
しない。
Conductive polymer films such as polypyrrole contain various dopants in order to increase their conductivity. A conductive polymer film containing a large amount of dopant has extremely high hardness, but if the dopant content is low, the hardness decreases and it becomes a soft film that can be rolled, bent, etc. along with the electrode. Processing becomes possible. In addition, the conductive polymer film has high adhesion with the electrode, and the surface of the conductive polymer film after electrolytic polymerization is extremely uniform, so there are no problems such as peeling or falling off even after dedopanting and when it comes into contact with machinery. Does not occur.

また、脱ドーパントの方法はカルボン酸塩の溶液中で該
電極体を陰極(負極)として電解するだすで可能であり
、量産においても充分容易な操作である。
In addition, the de-dopant method can be performed by electrolyzing the electrode body in a solution of a carboxylic acid salt using the electrode body as a cathode (negative electrode), and the operation is sufficiently easy even in mass production.

実施例 本発明を従来例と比較して説明する。Example The present invention will be explained in comparison with a conventional example.

従来例−1 あらかじめ粗面化しその上に耐電圧25V相当の誘電体
皮膜を形成したアルミニウム箔を陽極(試料面積3mm
XIOmm)とし、これに過硫酸アンモニウム0.05
モル/lの水溶液に浸漬したあと、ピロール単量体3モ
ル/lを含む7セトニトリル溶液に10分間浸漬し、化
学酸化重合導電性高分子膜を形成した。さらに該電極を
ビロール単量体0,02モル/12.支持電解質として
0.05モル/j2のトルエンスルホン酸テトラブチル
アンモニウムを含む7セトニトリル溶液中でステンレス
板を陰極(負極)として、0.5mA、  150分間
電解重合を行い、電解重合ポリピロールである電解重合
導電性高分子膜を上記化学酸化重合導電性高分子膜上に
積層し形成した。
Conventional Example-1 An aluminum foil with a roughened surface and a dielectric film with a withstand voltage of 25 V formed thereon was used as an anode (sample area: 3 mm).
XIOmm) and add 0.05 ammonium persulfate to this.
After being immersed in an aqueous solution containing 3 mol/l of pyrrole monomer, it was immersed for 10 minutes in a 7 setonitrile solution containing 3 mol/l of pyrrole monomer to form a chemically oxidized and polymerized conductive polymer film. Furthermore, the electrode was mixed with 0.02 mole of virol monomer/12. Electrolytic polymerization was carried out at 0.5 mA for 150 minutes using a stainless steel plate as a cathode (negative electrode) in a 7-cetonitrile solution containing 0.05 mol/j2 of tetrabutylammonium toluenesulfonate as a supporting electrolyte to produce electrolytically polymerized polypyrrole. A conductive polymer film was laminated and formed on the chemically oxidized and polymerized conductive polymer film.

電極体を巻回し円筒上の電極構造に加工した。さらに、
この表面にカーボン層を形成し、銀ペーストを用いて対
極の陰極リードを取付け、エポキシ樹脂により外装し、
コンデンサを製作した。このコンデンサの特性を第1表
に従来例−1として示す。
The electrode body was wound and processed into a cylindrical electrode structure. moreover,
A carbon layer is formed on this surface, a counter cathode lead is attached using silver paste, and the exterior is covered with epoxy resin.
I made a capacitor. The characteristics of this capacitor are shown in Table 1 as Conventional Example-1.

従来例−2 あらかじめ粗面化しその上に耐電圧25V相当の誘電体
皮膜を形成したアルミニウム箔を陽極(試料面fJI3
 [IX IOnwn) c!:し、これに過硫酸7ン
モニウム0.05モル/iの水溶液に浸漬したあと、ピ
ロール単量体3モル/iを含む7セトニトリル溶液に1
0分間浸漬し、化学酸化重合導電性高分子膜を形成した
。この電極体を巻回し円筒上の電極構造に加工した。
Conventional Example-2 An aluminum foil with a roughened surface and a dielectric film with a withstand voltage of 25 V formed thereon was used as an anode (sample surface fJI3).
[IX IOnwn) c! :, and then immersed in an aqueous solution of 0.05 mol/i of 7 ammonium persulfate, and then immersed in a 7 setonitrile solution containing 3 mol/i of pyrrole monomer.
The sample was immersed for 0 minutes to form a chemically oxidized conductive polymer film. This electrode body was wound and processed into a cylindrical electrode structure.

さらに該電極をビロール単連体0.02モル/i、支持
電解質として0.05モル/I2のトルエンスルホン酸
テトラブチル7ンモニウムを含む7セトニトリル溶液中
でステンレス板を陰極として、0 、5 m A %1
50150分間電解行い、電解重合ポリピロールを上記
化学酸化重合導電性高分子膜上に積層し形成した。さら
に、この表面にカーボン層を形成し、銀ペーストを用い
て対極の陰極リードを取付け、エポキシ樹脂により外装
し、コンデンサを製作した。このコンデンサの特性を第
1表に従来例−2として示す。
Further, the electrode was heated at 0.5 mA%1 using a stainless steel plate as a cathode in a 7cetonitrile solution containing 0.02 mol/i of pyrrole monomer and 0.05 mol/I2 tetrabutyl 7 ammonium toluenesulfonate as a supporting electrolyte.
Electrolysis was carried out for 50,150 minutes to form an electrolytically polymerized polypyrrole layered on the chemically oxidized conductive polymer film. Furthermore, a carbon layer was formed on this surface, a counter cathode lead was attached using silver paste, and the capacitor was packaged with epoxy resin. The characteristics of this capacitor are shown in Table 1 as Conventional Example-2.

実施例−1 あらかじめ粗面化しその上に耐電圧25V相当の誘電体
皮膜を形成させたアルミニウム箔を陽極(試料面積3m
mXIOmm)とし、これに過硫酸アンモニウム0.0
5モル/lの水溶液に浸漬したあと、ピロール単量体3
モル/lを含む7セトニトリル溶液に10分間浸漬し、
化学酸化重合導電性高分子膜を形成した。さらに該電極
をビロール単量体0.02モル/J2、支持電解質とし
て0.05モル/j2のトルエンスルホン酸テトラブチ
ルアンモニウムを含む7セトニトリル溶液中でステンレ
ス板を陰極(負極)として、0.5m A 、150分
間電解重合を行い、電解重合ポリピロールを上記化学酸
化重合導電性高分子膜上に積層し形成した。該電極体を
陰極(負極)としてIOw t%の7ジピン酸7ンモニ
ウムの水溶液中で1mA、30秒間、カーボン板を陽極
として電解した後乾燥し、電極体を巻回し円筒上の電極
構造に加工した。さらに、該電極体をピロール単量体0
,01モル/l、支持電解質として0.5モル/lのト
ルエンスルホン酸テトラブチルアンモニウムを含むアセ
トニトリル溶液中で、ステンレス板を陰極(負極)とし
て%  0.5mAs 10分間電解重合を行い再ドー
ピングさせ電極体を形成した。この表面にカーボン層を
形成し、銀ペーストを用いて対極の陰極リードを取り付
け、エポキシ樹脂により外装し、コンデンサを製作した
。このコンデンサの特性を第1表に実施例−1として示
す。
Example 1 An aluminum foil with a roughened surface and a dielectric film with a withstand voltage of 25 V formed thereon was used as an anode (sample area: 3 m).
mXIOmm), and ammonium persulfate 0.0
After immersion in a 5 mol/l aqueous solution, pyrrole monomer 3
7 mol/l immersion in a settonitrile solution for 10 minutes,
A conductive polymer film was formed by chemical oxidation polymerization. Further, the electrode was placed in a 7-cetonitrile solution containing 0.02 mol/J2 of virol monomer and 0.05 mol/J2 tetrabutylammonium toluenesulfonate as a supporting electrolyte, using a stainless steel plate as a cathode (negative electrode) for 0.5 m. A. Electrolytic polymerization was performed for 150 minutes to form an electrolytically polymerized polypyrrole layered on the chemically oxidized conductive polymer film. Using the electrode body as a cathode (negative electrode), electrolysis was performed at 1 mA for 30 seconds in an aqueous solution of 7 ammonium dipic acid with IOwt% using a carbon plate as an anode, and then dried, and the electrode body was wound and processed into a cylindrical electrode structure. did. Furthermore, the electrode body contains pyrrole monomer 0
In an acetonitrile solution containing 0.01 mol/l and 0.5 mol/l of tetrabutylammonium toluenesulfonate as a supporting electrolyte, electropolymerization was carried out for 10 minutes using a stainless steel plate as a cathode (negative electrode) for redoping. An electrode body was formed. A carbon layer was formed on this surface, a counter cathode lead was attached using silver paste, and the capacitor was packaged with epoxy resin. The characteristics of this capacitor are shown in Table 1 as Example-1.

なお、第1表の良品率はショート品を不良として求めた
もので、電気的特性は良品を測定し得た試料数100ケ
の値を示す。
Note that the non-defective product rate in Table 1 was determined by considering short-circuited products as defective, and the electrical characteristics show the values for 100 samples in which non-defective products were measured.

以上第1表に示すとおり本発明による実施例は良品率、
各特性においても良好な結果であった。
As shown in Table 1 above, the examples according to the present invention have a good product rate,
Good results were obtained in each characteristic.

特に良品率、漏れ電流においては著しい効果を示す。ま
た、電極体を所定のコンデンサ素子に加工時、前処理と
して脱ドープまたはドーパント含有量を減少させ、電極
体を加工しやすくし、かつ加工後回ドープする本発明法
はコンデンサの構造において、単板、積層、巻回しいず
れの電極構造においても同様な効果があり、また他の皮
膜形成性金属を用いた場合にも本発明法は効果的であり
、かつ本実施例に限らず、他の導電性高分子を用いても
同様な効果か得られた。さらに、脱ドープあるいはドー
パント含有量を減少させる処理においては実施例で用い
た7ジビン酸アンモニウムの水溶液に限らず、安息香酸
7ンモニウム、セバシン酸アルミニウムなどのカルボン
酸アンモニウム水溶液、フルコール溶液においてもその
効果は確認された。また、電流密度、電解時間を種々変
えて評価したがいずれの条件においてもその効果は確認
されたが、電流密度して0.2〜6mA/cIliが望
ましく、電解時間として10〜240秒が望ましい。
In particular, it shows remarkable effects in terms of non-defective product rate and leakage current. In addition, when processing an electrode body into a predetermined capacitor element, the method of the present invention, in which the electrode body is dedoped or the dopant content is reduced as a pretreatment to make the electrode body easier to process, and the electrode body is doped after processing, can be used to Similar effects can be obtained with plate, laminated, or wound electrode structures, and the method of the present invention is also effective when using other film-forming metals. Similar effects were obtained using conductive polymers. Furthermore, in the process of dedoping or reducing the dopant content, the effect is not limited to the aqueous solution of ammonium 7-dibate used in the examples, but also an aqueous solution of ammonium carboxylates such as 7-ammonium benzoate and aluminum sebacate, and a Flucol solution. has been confirmed. In addition, we evaluated various current densities and electrolysis times, and the effect was confirmed under all conditions, but a current density of 0.2 to 6 mA/cIli is desirable, and an electrolysis time of 10 to 240 seconds is desirable. .

発明の効果 以上のように、本発明の固体電解コンデンサの製造方法
は、製造歩留の向上、漏れ電流の安定、信頼性向上に大
きく寄与し、工業的ならびに実用的価値大なるものであ
る。
Effects of the Invention As described above, the method for manufacturing a solid electrolytic capacitor of the present invention greatly contributes to improving manufacturing yield, stabilizing leakage current, and improving reliability, and has great industrial and practical value.

Claims (1)

【特許請求の範囲】[Claims]  あらかじめ粗面化した皮膜形成性金属箔に誘電体皮膜
を形成し、この誘電体皮膜上にピロール、チオフェン、
アニリンまたはフランなどの化学酸化重合導電性高分子
膜を形成した後、電解重合することにより該化学酸化重
合導電性高分子膜上にドーパントをドーピングさせなが
ら、電解重合導電性高分子膜を形成する工程と、その後
カルボン酸塩の溶液中で該電極体を陰極として電解する
ことにより、脱ドープあるいはドーパント含有量を低下
させたあと各形状の電極に加工し、再度ドーパントをド
ーピングさせながら電解重合導電性高分子膜を形成する
工程を経て、電極体を形成することを特徴とする固体電
解コンデンサの製造方法。
A dielectric film is formed on a film-forming metal foil that has been roughened in advance, and pyrrole, thiophene,
After forming a chemically oxidized conductive polymer film of aniline or furan, etc., electropolymerization is performed to form an electrolytically polymerized conductive polymer film while doping a dopant onto the chemically oxidized conductive polymer film. After that, the electrode body is electrolyzed in a carboxylate solution as a cathode to dedope or reduce the dopant content, and then processed into electrodes of various shapes, and electrolytically polymerized conductive while doping the dopant again. 1. A method for manufacturing a solid electrolytic capacitor, which comprises forming an electrode body through a step of forming a polymer film.
JP20719189A 1989-08-10 1989-08-10 Manufacture of solid electrolytic capacitor Pending JPH0371618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20719189A JPH0371618A (en) 1989-08-10 1989-08-10 Manufacture of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20719189A JPH0371618A (en) 1989-08-10 1989-08-10 Manufacture of solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH0371618A true JPH0371618A (en) 1991-03-27

Family

ID=16535757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20719189A Pending JPH0371618A (en) 1989-08-10 1989-08-10 Manufacture of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH0371618A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002322295A (en) * 2001-04-25 2002-11-08 Chemiprokasei Kaisha Ltd Film of polypyrroles, method for producing the same and thermoelectric material comprising the same
JP6411689B1 (en) * 2018-03-29 2018-10-24 ニッポン高度紙工業株式会社 Separator for solid electrolytic capacitor or hybrid electrolytic capacitor and solid electrolytic capacitor or hybrid electrolytic capacitor.

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002322295A (en) * 2001-04-25 2002-11-08 Chemiprokasei Kaisha Ltd Film of polypyrroles, method for producing the same and thermoelectric material comprising the same
JP6411689B1 (en) * 2018-03-29 2018-10-24 ニッポン高度紙工業株式会社 Separator for solid electrolytic capacitor or hybrid electrolytic capacitor and solid electrolytic capacitor or hybrid electrolytic capacitor.
WO2019188659A1 (en) * 2018-03-29 2019-10-03 ニッポン高度紙工業株式会社 Separator for aluminum electrolytic capacitors, and aluminum electrolytic capacitor
JP2019176073A (en) * 2018-03-29 2019-10-10 ニッポン高度紙工業株式会社 Separator for solid or hybrid electrolytic capacitor, and solid or hybrid electrolytic capacitor

Similar Documents

Publication Publication Date Title
JP5484995B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4776338B2 (en) Conductive polymer dopant solution, conductive polymer oxidant / dopant, conductive composition, solid electrolytic capacitor and method for producing the same
US6343005B1 (en) Solid electrolytic capacitors and method for manufacturing the same
JPH0371618A (en) Manufacture of solid electrolytic capacitor
KR20000053593A (en) Method for producing a solid electrolytic capacitor
JPH10321471A (en) Solid electrolytic capacitor and its manufacture
JP2605596B2 (en) Conductive polymer film and method for producing the same, conductive polymer compound solution, and solid electrolytic capacitor and method for producing the same
JP2762779B2 (en) Capacitor and manufacturing method thereof
JPH0371617A (en) Manufacture of solid electrolytic capacitor
JPH0682592B2 (en) Method for manufacturing solid electrolytic capacitor
JPH1060234A (en) Electroconductive polymer and its production and solid electrolytic capacitor using the same
JPH0258818A (en) Manufacture of solid electrolytic capacitor
JP3030054B2 (en) Method for manufacturing solid electrolytic capacitor
JP3242432B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0669082A (en) Manufacture of solid electrolytic capacitor
JP2701798B2 (en) Heat-resistant conductive polymer, method for producing the same, and solid electrolytic capacitor using the conductive polymer
JP3076873B2 (en) Supporting electrolyte composition for manufacturing solid electrolytic capacitors
JP2007046033A (en) Method for producing conductive polymer membrane, conductive polymer film and method for forming coated membrane
JP3170015B2 (en) Method for manufacturing solid electrolytic capacitor
JP2902429B2 (en) Solid electrolytic capacitors
JP3568382B2 (en) Organic solid electrolytic capacitor and method of manufacturing the same
JP2764938B2 (en) Method for manufacturing solid electrolytic capacitor
JP2922521B2 (en) Solid electrolytic capacitors
JPH0258817A (en) Manufacture of solid electrolytic capacitor
JPH09148193A (en) Manufacture of solid electrolytic capacitor