JPH0371428A - Device for orienting magnetic recording medium and method for orienting treatment - Google Patents

Device for orienting magnetic recording medium and method for orienting treatment

Info

Publication number
JPH0371428A
JPH0371428A JP20694789A JP20694789A JPH0371428A JP H0371428 A JPH0371428 A JP H0371428A JP 20694789 A JP20694789 A JP 20694789A JP 20694789 A JP20694789 A JP 20694789A JP H0371428 A JPH0371428 A JP H0371428A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
recording medium
orientation
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20694789A
Other languages
Japanese (ja)
Inventor
Takehiko Shoji
武彦 庄子
Masami Akiyama
秋山 正巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP20694789A priority Critical patent/JPH0371428A/en
Publication of JPH0371428A publication Critical patent/JPH0371428A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To orient magnetic particles by inversion of magnetization by making the intensity of magnetic field higher than the coercive force of the magnetic particles and using specified magnets to produce the magnetic field. CONSTITUTION:The intensity of magnetic field of counter magnets is made higher than the coercive force of the magnetic particles of the magnetic record ing medium. Magnets M1, M2 which produce the magnetic field have the ratio l/w, wherein l is the effective length and (w) is the effective width, larger than 4/3. By disposing the magnets M1, M2 with facing N-N or S-S poles, the produced counter magnetic field easily orients the magnetic particles in the magnetic recording medium. By this method, method of applying magnetic field such as AC magnetic field or pulse magnetic field which cost a lot are not required. Thereby, orientation treatment of magnetic particles using inver sion of magnetization can be performed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁気記録媒体の配向処理装置及び配向処理方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an alignment processing apparatus and an alignment processing method for a magnetic recording medium.

〔発明の背景〕[Background of the invention]

オーディオあるいはビデオテープレコーダ等を始めとす
る各種機器に用いられる磁気記録媒体は、ポリエステル
フィルム等の非磁性支持体上に磁性塗料を塗布した後、
磁気特性を高める為、磁性塗膜中の磁性粒子を特定方向
に配向させる配向処理が行われる。すなわち、例えば針
状の磁性粒子をバインダと共に分散した磁性塗料を非磁
性支持体上に所定の厚さに塗布し、この塗布された塗料
が未だ乾燥固化せず、この塗膜中の針状磁性粒子が動き
得る時点で、磁性塗料が塗られた支持体を磁場中に走行
させて磁性塗膜中の針状磁性粒子を磁場方向に配向させ
る。このようにすることによって配向方向の角型比を増
大し、磁気記録媒体の感度向上を図っている。
Magnetic recording media used in various devices such as audio or video tape recorders are made by coating magnetic paint on a non-magnetic support such as polyester film.
In order to improve the magnetic properties, orientation treatment is performed to orient the magnetic particles in the magnetic coating in a specific direction. That is, for example, when a magnetic paint in which acicular magnetic particles are dispersed together with a binder is applied to a predetermined thickness on a non-magnetic support, the applied paint has not yet dried and solidified, and the acicular magnetic particles in the coating film are Once the particles are able to move, the support coated with magnetic coating is run through a magnetic field to orient the acicular magnetic particles in the magnetic coating in the direction of the magnetic field. By doing so, the squareness ratio in the alignment direction is increased, and the sensitivity of the magnetic recording medium is improved.

従来、この配向処理は、永久磁石又は直流電磁石による
直流磁場を印加する方法が採られている。
Conventionally, this orientation process has been carried out by applying a DC magnetic field using a permanent magnet or a DC electromagnet.

ところで、この方法において、その配向度を高めるべく
印加磁場を強めても、その配向度はさほど高められるも
のではなく、むしろ磁場をある程度以上高めると、磁性
塗膜の表面平滑性が劣化してくるという欠点があると言
われている。
By the way, in this method, even if the applied magnetic field is strengthened in order to increase the degree of orientation, the degree of orientation cannot be increased that much.In fact, if the magnetic field is increased beyond a certain level, the surface smoothness of the magnetic coating will deteriorate. It is said that there is a drawback.

そこで、このような配向処理の改善方法が種々提案され
ている。
Therefore, various methods for improving such alignment processing have been proposed.

例えば、特公昭41−30722号公報には、永久磁石
又は直流電磁石による主配向装置の近傍に、この上配向
磁界に交流補助磁界を重畳させる補助磁界装置を配置す
るものが示されている。
For example, Japanese Patent Publication No. 41-30722 discloses a device in which an auxiliary magnetic field device is arranged near a main orientation device using permanent magnets or DC electromagnets to superimpose an AC auxiliary magnetic field on the upper orientation magnetic field.

又、特開昭54−98205号公報に示されているよう
に、直流磁場による主配向方向と直角方向に交?R磁界
や機械的振動を重畳させて粒子を配列させ易くする方法
が示されている。
Also, as shown in Japanese Patent Application Laid-Open No. 54-98205, the direction of orientation perpendicular to the main orientation direction caused by the DC magnetic field? A method has been shown in which an R magnetic field or mechanical vibration is superimposed to facilitate the alignment of particles.

さらに、特開昭54−88101号公報には磁気ディス
クの配向工程に、直流磁場に加えて交流磁場を与えて粒
子に振動を付加して配向させ易くした場合の効果が開示
されている。
Further, Japanese Patent Application Laid-open No. 54-88101 discloses the effect of applying an alternating current magnetic field in addition to a direct current magnetic field in the magnetic disk orientation process to add vibration to the particles to facilitate orientation.

しかしながら、これら何れの方法も含めて従来の磁場配
向はずべて直流磁場による配向であって、交流磁場は補
助的な弱い磁界として与えられ、単に配向時に粒子が動
き易くする振動を与えるものに過ぎない。
However, all conventional magnetic field orientation methods, including all of these methods, are directed using a direct current magnetic field, and the alternating current magnetic field is given as an auxiliary weak magnetic field, and merely provides vibrations that make particles easier to move during orientation. do not have.

そして、このように補助的に交流磁場を与えたとしても
、基本的にはその配向を直@磁場によって行うものは、
この配向磁場の強さが磁性粒子の保磁力Hc以下の小さ
い範囲であっても、ある程度の配向の効果は生じてくる
とはいうものの、前述したように高い角型比を得んとし
てその配向磁場を例えば磁性粒子の保磁力Hc以上に高
めても十分高い角型比は得られず、むしろ前述したよう
に塗膜の表面性が劣化してくる。
Even if an alternating current magnetic field is applied as an auxiliary like this, basically the orientation is performed directly by the magnetic field.
Even if the strength of this orientation magnetic field is in a small range below the coercive force Hc of the magnetic particles, a certain degree of orientation effect will occur. Even if the magnetic field is increased to, for example, more than the coercive force Hc of the magnetic particles, a sufficiently high squareness ratio cannot be obtained, and rather the surface properties of the coating film deteriorate as described above.

特に、磁性塗料として分散性の悪い磁性粒子や、凝集性
の大きな磁性粒子を用いる場合、さらに磁性塗料中の磁
性粒子のバインダに対する含有比率が大きくなる場合に
おいては、良好な配向かされ難<、角型比を高めること
ができない。
In particular, when magnetic particles with poor dispersibility or magnetic particles with high cohesion are used as a magnetic paint, or when the content ratio of magnetic particles to binder in the magnetic paint becomes large, it is difficult to achieve good orientation. It is not possible to increase the squareness ratio.

そして、このように補助的に交流磁場を印加するかしな
いかにかかわらず、実質的にその配向を直流磁場によっ
て行う場合、十分高い角型比が得られないのは、直流磁
場配向での配向のメカニズムに粒子の磁化反転が殆ど関
与していないことによるものであるとの意見が出されだ
した。
Regardless of whether or not an alternating current magnetic field is applied auxiliary, if the orientation is actually performed by a direct current magnetic field, a sufficiently high squareness ratio cannot be obtained because of the orientation in the direct current magnetic field. Opinions have begun to emerge that this is due to the fact that particle magnetization reversal is hardly involved in the mechanism.

すなわち、従来、磁性塗料が塗布された磁気記録媒体は
、その塗膜が未だ乾燥されずに磁性粒子が動き得る状態
のうちに、これに主として直流磁場を与える磁場発生手
段の中を移行させながらその磁場配向を行うのが一般的
であるが、この場合、磁気記録媒体の磁性粒子に与えら
れる直流磁場は磁場発生手段内に入り込む時点から急峻
な立ち上がりをもって直ちにvL磁場発生手段よって設
定される所要の磁場すなわち配向の為の所要の強さl4
orに立ち上がるものではなく、磁場発生手段に近づく
につれ、磁場発生手段による磁場の影響を受けていくと
いうある程度の傾斜をもった立ち上がりを示す。従って
、この場合、その配向磁場Horを、磁性粒子の保磁力
Hcより大に選んでも、磁性粒子は、たとえ短時間では
あっても、磁性粒子の保磁力Hc以下の磁場を受ける状
態を必ず経ること乙こなる。この状態では磁化の反転は
勿輪生しないが、粒子自体が回転を始める。この場合、
配向磁場I(の方向に傾いて自発磁化の方向が存在する
磁性粒子に関しては、90°未溝の比較的小さい同転角
度φで配向磁場Hの方向に配向させることができるが、
自発磁化の方向が配向磁場Hの方向に対しいわば逆らう
方向である場合は、最大180°に及ぶ大きな角度φを
もって回転して配向磁場Hの方向に配向させることにな
る。従って、この場合は、その配向が完了するまでには
大きな動きを必要とする為に、配向に長時間を要するの
みならず、配向処理時間、すなわち磁場印加を長時間行
っても、粒子同士がこれらの大きな回転によって相互に
引掛かり合ってしまい、これらがその配向を完了しない
途中の状態で停止してしまいがちとなる。この現象は、
特に前述したように分散性の悪い磁性粒子や凝集性の大
きな磁性粒子を用いる場合、あるいは磁性塗料中のバイ
ンダに対する磁性粒子の含有比率が大きくなる場合より
顕著となる。
In other words, conventionally, magnetic recording media coated with magnetic paint are processed by moving the magnetic particles through a magnetic field generating means that mainly applies a DC magnetic field while the coating film is not yet dry and the magnetic particles can move. In this case, the DC magnetic field applied to the magnetic particles of the magnetic recording medium has a steep rise from the time it enters the magnetic field generating means, and is immediately set by the vL magnetic field generating means. the magnetic field, i.e. the required strength for orientation l4
It does not rise in a straight line, but rather shows a rise with a certain degree of slope, in which the closer it gets to the magnetic field generating means, the more it is influenced by the magnetic field from the magnetic field generating means. Therefore, in this case, even if the orientation magnetic field Hor is selected to be larger than the coercive force Hc of the magnetic particles, the magnetic particles will always undergo a state where they are subjected to a magnetic field that is less than the coercive force Hc of the magnetic particles, even if it is only for a short time. That's it. In this state, reversal of magnetization does not occur, but the particles themselves begin to rotate. in this case,
Regarding magnetic particles whose direction of spontaneous magnetization is tilted in the direction of the orienting magnetic field I, they can be oriented in the direction of the orienting magnetic field H with a relatively small rotation angle φ of 90°.
If the direction of spontaneous magnetization is so to speak in the opposite direction to the direction of the alignment magnetic field H, it will be rotated by a large angle φ of up to 180° to align it in the direction of the alignment magnetic field H. Therefore, in this case, since a large movement is required to complete the orientation, not only does it take a long time to complete the orientation, but even if the orientation processing time, that is, the application of a magnetic field is continued for a long time, the particles will not be able to interact with each other. Their large rotations tend to cause them to become caught in each other, causing them to stop midway through their orientation. This phenomenon is
This is particularly noticeable when using magnetic particles with poor dispersibility or magnetic particles with high cohesion as described above, or when the content ratio of magnetic particles to binder in the magnetic paint becomes large.

このように、直流磁場配向を考えると、配向過程での個
々の粒子の動きに無理が多く、かつ、それが時には粒子
同士の絡み合いを生じ、配向の逆効果となり、その配向
磁場を強磁場としても配向の向上はさほど期持できない
ばかりか表面平滑性の劣化を招来するとの意見が出され
、このことを克服する為に、例えば特開昭56−117
336号公報において、配向方向と平行に磁性粒子の保
磁力以上の交流磁場を印加して配向処理することを特徴
とする磁気記録媒体の!!遣方法が提案されており、又
、特開昭56−119938号公報において、配向方向
と平行に磁性粒子の保磁力以上のパルス磁場を印加する
第1の工程、直流磁場を印加する第2の工程とによって
配向処理することを特徴とする磁気記録媒体の製造方法
が提案されている。
In this way, when considering direct current magnetic field orientation, the movement of individual particles during the orientation process is often unreasonable, and this sometimes causes entanglement between particles, which has the opposite effect on orientation, and the orientation magnetic field is used as a strong magnetic field. Some people have argued that not only is it not very promising to improve the orientation, but it also leads to deterioration of surface smoothness.
No. 336 discloses a magnetic recording medium characterized in that orientation treatment is performed by applying an alternating magnetic field parallel to the orientation direction and having a magnitude greater than the coercive force of the magnetic particles! ! In addition, in JP-A-56-119938, a first step of applying a pulsed magnetic field that is greater than the coercive force of the magnetic particles in parallel to the orientation direction, and a second step of applying a DC magnetic field. A method of manufacturing a magnetic recording medium has been proposed, which is characterized by performing an orientation treatment by steps.

しかしながら、交流磁場やパルス磁場の印加手段の採用
は、それだけコストがかさむ。
However, the use of means for applying an alternating magnetic field or a pulsed magnetic field increases costs accordingly.

〔発明の開示〕[Disclosure of the invention]

本発明の第1の目的は、磁化反転を利用した磁1′/L
粒子の配向処理が行える技術を提供することである。
The first object of the present invention is to
An object of the present invention is to provide a technology that can perform particle orientation processing.

本発明の第2の目的は、例えば交流磁場やパルス磁場の
印加手段を用いずとも磁化反転を利用した磁性粒子の配
向処理が行える技術を提供することである。
A second object of the present invention is to provide a technique that allows orientation processing of magnetic particles using magnetization reversal without using, for example, means for applying an alternating magnetic field or a pulsed magnetic field.

L配本発明の目的は、N−N対向磁界又はSS対向磁界
により磁気記録媒体の磁性粒子を配向処理する装置であ
って、前記磁界の磁場強度が磁気記録媒体の磁性粒子の
保磁力より大きなものであり、かつ、前記磁界を形成す
る磁石が、磁気記録媒体走行方向に対して垂直方向の実
効長さlと磁気記録媒体走行方向の実効幅Wとの比l/
wが4/3より大きなものであることを特徴とする磁気
記録媒体の配向処理装置によって達成される。
An object of the present invention is to provide an apparatus for orienting magnetic particles of a magnetic recording medium using an N-N opposing magnetic field or an SS opposing magnetic field, wherein the magnetic field strength of the magnetic field is greater than the coercive force of the magnetic particles of the magnetic recording medium. and the magnet that forms the magnetic field has a ratio of an effective length l in a direction perpendicular to the magnetic recording medium running direction to an effective width W in the magnetic recording medium running direction l/
This is achieved by a magnetic recording medium alignment processing apparatus characterized in that w is larger than 4/3.

又、磁気記録媒体の磁性粒子の保磁力より大きな磁場強
度を有し、かつ、その実効長さlと実効幅Wとの比1 
/ wが4/3より大きなN−N対向磁石又はS−3対
向磁石の間を、非磁性支持体上に磁性層を設けた磁気記
録媒体を走行させることを特徴とする磁気記録媒体の配
向処理方法によって達成される。
In addition, the magnetic field strength is greater than the coercive force of the magnetic particles of the magnetic recording medium, and the ratio of the effective length l to the effective width W is 1.
Orientation of a magnetic recording medium characterized by running a magnetic recording medium provided with a magnetic layer on a non-magnetic support between N-N opposing magnets or S-3 opposing magnets with /w greater than 4/3. This is achieved through a processing method.

尚、N−N対向磁界又はS−3対向磁界の最大磁場強度
B may≧磁気記録媒体の磁性粒子の保磁力Hcで、
磁石の実効長さlと実効幅Wとの比C/W≧4/3であ
ればよいが、Bmax≧2Hcで、1、 / w≧2で
あることがより望ましい。
In addition, the maximum magnetic field strength B of the N-N opposing magnetic field or the S-3 opposing magnetic field may ≥ coercive force Hc of the magnetic particles of the magnetic recording medium,
It is sufficient if the ratio C/W of the effective length l to the effective width W of the magnet is 4/3, but it is more desirable that Bmax≧2Hc and 1/w≧2.

すなわち、N−N対向磁石又はS−3対向磁石により形
成される磁場は、第1図に示す如く、磁石M、及びMt
の両端付近で最大で、磁石MM2から離れるにしたがっ
て徐々に弱まる。
That is, the magnetic field formed by the N-N opposing magnets or the S-3 opposing magnets, as shown in FIG.
It is maximum near both ends of , and gradually weakens as it moves away from magnet MM2.

今、仮に、磁石M、、M、が直方体形状(長さl、幅W
)であるとした場合に、磁石M+ 、Mzの幅Wの外側
に形成されるもれ磁場(その範囲をイで示す)aは磁石
の幅Wに比べてa>wであり、磁性粒子の配向において
は磁石幅W内にある磁場よりも配向に大きな影響を与え
ると考えられる。
Now, suppose that the magnets M, , M are rectangular parallelepipeds (length l, width W
), the leakage magnetic field (the range is indicated by A) a formed outside the width W of the magnets M+ and Mz is a>w compared to the width W of the magnet, and the magnetic particle It is thought that the magnetic field has a greater influence on the orientation than the magnetic field within the magnet width W.

従って、もれ磁場aを大きくすることは配向度の向上に
つながると考えられる。そして、もれ磁場aを大きくす
るのは磁石の長さlを大きくすることで実現できる。
Therefore, it is considered that increasing the leakage magnetic field a leads to an improvement in the degree of orientation. The leakage magnetic field a can be increased by increasing the length l of the magnet.

もし、第1図で対向磁場の最大強度Bmaxが磁気記録
媒体の磁性粒子の保磁力Hc以下であれば、■の領域で
配向された磁性粒子は■の反対方向の磁場により最大1
80°に及ぶ大回転をして■の磁場の方向に再配向する
。この場合、■の磁場での配向は全く無駄となる。
In Fig. 1, if the maximum strength Bmax of the opposing magnetic field is less than the coercive force Hc of the magnetic particles of the magnetic recording medium, the magnetic particles oriented in the region of
It makes a large rotation of 80 degrees and reorients itself in the direction of the magnetic field. In this case, the orientation in the magnetic field (2) is completely useless.

しかしながら、Baaに≧Hcの場合乙こは、■の磁場
のB −Hcのところ(第1図中Hcで示したところ)
で磁性粒子の磁化の方向の反転が起こり、この後の■の
磁場は■の磁場で配向された磁性粒子の配向状態をさら
に高める方向に働く。
However, if Baa is ≧Hc, then the magnetic field is at B - Hc (indicated by Hc in Figure 1).
The direction of magnetization of the magnetic particles is reversed, and the subsequent magnetic field (2) acts in a direction that further enhances the orientation state of the magnetic particles oriented by the magnetic field (2).

従って、■の磁場での配向状態が乱さ和る区間(第1図
中斜線で示す部分)が短い程、配向度は向上すると考え
られる。すなわち、磁場強度BmaX≧保磁力HCで、
かつ、磁石の幅Wが狭い程、配向度は向上すると考えら
れる。
Therefore, it is considered that the shorter the section (the shaded area in FIG. 1) in which the orientation state in the magnetic field (2) is disturbed, the better the degree of orientation will be. That is, magnetic field strength BmaX≧coercive force HC,
Moreover, it is considered that the narrower the width W of the magnet, the higher the degree of orientation.

上記のような考え方に基づいて、走行速度Vで磁気記録
媒体を、磁場強度Bmax、長さl、幅Wの一対の磁石
M、とM2との間を走行させ、磁性粒子の配向性の検討
を行ったところ、面内長手方向の配向に最適なIf−N
又はS−5対向磁石としてはB ll1ax≧Hcであ
ることが、より望ましくはB max≧2Hcであるこ
とが、かつ、磁石の長さlと幅Wとの比l / w≧4
/3であることが、より望ましくはl / w≧2であ
ることが判った。
Based on the above idea, a magnetic recording medium is run at a running speed V between a pair of magnets M and M2 with a magnetic field strength Bmax, a length l, and a width W, and the orientation of the magnetic particles is examined. As a result, the optimal If-N for orientation in the in-plane longitudinal direction
Alternatively, for the S-5 facing magnet, Bll1ax≧Hc, more preferably Bmax≧2Hc, and the ratio of the length l to the width W of the magnet is l/w≧4.
/3, and more preferably l/w≧2.

尚、磁石M、、Mzが直方体形状である場合には磁石の
長さlと幅Wがその幾何学的寸法と同じであるから問題
ないものの、磁石MI、Mzが直方体形状でない場合に
は、この直方体形状でない磁石の磁界に相当する直方体
形状の磁石を考え、この磁石の幾何学的寸法の長さlと
幅Wでもって計算すれば良い。
Note that if the magnets M, Mz are rectangular parallelepipeds, there is no problem since the length l and width W of the magnets are the same as their geometric dimensions, but if the magnets MI, Mz are not rectangular parallelepipeds, then It is sufficient to consider a rectangular parallelepiped-shaped magnet corresponding to the magnetic field of this non-rectangular parallelepiped-shaped magnet, and calculate using the length l and width W of the geometric dimensions of this magnet.

又、N−N対向磁石(又はS−8対向磁石)は1個でな
く、2個以上が組み合わされても良く、そのような場合
には例えばN−N対向磁石、N−N対向磁石又はS−5
対向磁石、S−3対向磁石といったように同質なものが
並ぶのではなく、NN対向磁石とS−3対向磁石とが交
互に並べられているものが望ましい。
Moreover, the number of N-N opposing magnets (or S-8 opposing magnets) is not limited to one, but two or more may be combined. In such a case, for example, N-N opposing magnets, N-N opposing magnets, or S-5
It is preferable that NN opposing magnets and S-3 opposing magnets are arranged alternately, rather than arranging homogeneous opposing magnets such as opposing magnets and S-3 opposing magnets.

〔実施例) 直方体の磁石(幅W−’3cm、、@場強度Bmax=
磁気記録媒体の磁性粒子の保磁力Hc(680エルステ
ツド)の2倍)を使用した一対のN−N対向磁石の間を
、走行速度が50m/l1in及び200m/minで
もって磁気テープを走行させ、磁気記録媒体の面内長手
方向の配向処理を行った。
[Example] Rectangular parallelepiped magnet (width W-'3 cm, @field strength Bmax=
A magnetic tape is run between a pair of N-N opposing magnets using a coercive force Hc (twice the coercive force Hc (680 oersted) of magnetic particles of a magnetic recording medium) at running speeds of 50 m/l 1 inch and 200 m/min, The magnetic recording medium was subjected to orientation treatment in the in-plane longitudinal direction.

そして、磁石の長さ忍を変化させた場合におけるl /
 wの値と得られた磁気テープのOR比(長手方向につ
いての角型比とその直交方向についての角型比の比)と
の関係を調べたところ、第2図のグラフに示す通りであ
り、磁石の長さiと幅Wとの比7!/w≧4/3であれ
ば、より望ましくは1/w≧2であればOR比が大きく
、磁気記録媒体の面内長手方向の配向度の良いことが判
る。
And when the length of the magnet is changed, l/
When we investigated the relationship between the value of w and the OR ratio (the ratio of the squareness ratio in the longitudinal direction to the squareness ratio in the orthogonal direction) of the obtained magnetic tape, we found that it was as shown in the graph of Figure 2. , the ratio of magnet length i to width W is 7! If /w≧4/3, more preferably 1/w≧2, the OR ratio will be large, indicating that the degree of orientation in the in-plane longitudinal direction of the magnetic recording medium is good.

又、直方体の磁石(幅w m 3 Ca1、長さe=6
c柑)を使用した一対のN−N対向磁石の間を、走行速
度が50m/sin及び200+w/a+inでもって
磁気テープを走行させ、磁気記録媒体の面内長手方向の
配向処理を行った。
Also, a rectangular parallelepiped magnet (width w m 3 Ca1, length e = 6
A magnetic tape was run between a pair of N-N opposing magnets using a magnetic recording medium at a running speed of 50 m/sin and 200+w/a+in to perform orientation treatment in the in-plane longitudinal direction of the magnetic recording medium.

そして、磁石の磁場強度Bmaxを変化させた場合にお
けるBIIax/Hcの値と得られた磁気テープのOR
比との関係を調べたところ、第3図のグラフに示す通り
であり、Bmax≧Hcであれば、より望ましくはB 
max≧2Hcであれば、OR比が大きく、磁気記録媒
体の面内長手方向の配向度の良いことが判る。
Then, the OR of the value of BIIax/Hc and the obtained magnetic tape when the magnetic field strength Bmax of the magnet is changed.
When we investigated the relationship between the
If max≧2Hc, the OR ratio is large and it can be seen that the degree of orientation in the in-plane longitudinal direction of the magnetic recording medium is good.

すなわち、対向磁界の磁場強度が磁気記録媒体の磁性粒
子の保磁力より大きなものであり、かつ、前記磁界を形
成する磁石が、その実効長さlと実効幅Wとの比1/w
が4/3より大きなものであれば、このような磁石をN
−N対向又はS−3対向とすれば、これにより形成され
る対向磁界によって磁気記録媒体の磁性粒子を配向度高
く配向でき、しかもコストが嵩む交流磁場やパルス磁場
の印加手段を採用しなくても済み、低コストで、磁化反
転を利用した磁性粒子の配向処理が行える。
That is, the magnetic field strength of the opposing magnetic field is larger than the coercive force of the magnetic particles of the magnetic recording medium, and the magnet forming the magnetic field has a ratio of effective length l to effective width W of 1/w.
is larger than 4/3, then such a magnet is
-N facing or S-3 facing allows the magnetic particles of the magnetic recording medium to be highly oriented by the opposing magnetic fields formed thereby, and it is not necessary to use expensive alternating magnetic field or pulsed magnetic field application means. It is possible to perform orientation processing of magnetic particles using magnetization reversal at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の装置により磁化反転を利用した磁性粒
子の配向処理が行えることを示す説明図、第2図及び第
3図は第1図に示す配向処理装置で磁気テープを配向処
理した場合における長手方向についての角型比とその直
交方向についての角型比の比を示すグラフである。 M、、M、・・・磁石、l・・・長さ、W・・・幅。
FIG. 1 is an explanatory diagram showing that the apparatus of the present invention can perform orientation processing of magnetic particles using magnetization reversal, and FIGS. 2 and 3 show orientation processing of magnetic tape using the orientation processing apparatus shown in FIG. 1. It is a graph which shows the ratio of the squareness ratio about the longitudinal direction and the squareness ratio about the orthogonal direction in case. M,,M...Magnet, l...Length, W...Width.

Claims (2)

【特許請求の範囲】[Claims] (1)N−N対向磁界又はS−S対向磁界により磁気記
録媒体の磁性粒子を配向処理する装置であって、前記磁
界の磁場強度が磁気記録媒体の磁性粒子の保磁力より大
きなものであり、かつ、前記磁界を形成する磁石が、磁
気記録媒体走行方向に対して垂直方向の実効長さlと磁
気記録媒体走行方向の実効幅wとの比l/wが4/3よ
り大きなものであることを特徴とする磁気記録媒体の配
向処理装置。
(1) An apparatus for orienting magnetic particles of a magnetic recording medium using an N-N opposing magnetic field or an S-S opposing magnetic field, wherein the field strength of the magnetic field is greater than the coercive force of the magnetic particles of the magnetic recording medium. , and the magnet that forms the magnetic field has a ratio l/w of an effective length l in a direction perpendicular to the running direction of the magnetic recording medium to an effective width w in the running direction of the magnetic recording medium, which is larger than 4/3. An apparatus for aligning a magnetic recording medium, characterized in that:
(2)磁気記録媒体の磁性粒子の保磁力より大きな磁場
強度を有し、かつ、その実効長さlと実効幅wとの比l
/wが4/3より大きなN−N対向磁石又はS−S対向
磁石の間を、非磁性支持体上に磁性層を設けた磁気記録
媒体を走行させることを特徴とする磁気記録媒体の配向
処理方法。
(2) It has a magnetic field strength greater than the coercive force of the magnetic particles of the magnetic recording medium, and the ratio l of its effective length l to effective width w
Orientation of a magnetic recording medium characterized by running a magnetic recording medium provided with a magnetic layer on a non-magnetic support between N-N opposing magnets or S-S opposing magnets with /w greater than 4/3. Processing method.
JP20694789A 1989-08-11 1989-08-11 Device for orienting magnetic recording medium and method for orienting treatment Pending JPH0371428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20694789A JPH0371428A (en) 1989-08-11 1989-08-11 Device for orienting magnetic recording medium and method for orienting treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20694789A JPH0371428A (en) 1989-08-11 1989-08-11 Device for orienting magnetic recording medium and method for orienting treatment

Publications (1)

Publication Number Publication Date
JPH0371428A true JPH0371428A (en) 1991-03-27

Family

ID=16531665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20694789A Pending JPH0371428A (en) 1989-08-11 1989-08-11 Device for orienting magnetic recording medium and method for orienting treatment

Country Status (1)

Country Link
JP (1) JPH0371428A (en)

Similar Documents

Publication Publication Date Title
JPH0371428A (en) Device for orienting magnetic recording medium and method for orienting treatment
JPH0156452B2 (en)
EP0726563B1 (en) A magnetic medium capable of supporting longitudinal and perpendicular recording, and method of making same
JPS6343811B2 (en)
JPH06309661A (en) Orienting method of magnetic recording medium
JP3158294B2 (en) Manufacturing method of magnetic recording medium
JPH0371430A (en) Production of magnetic recording medium
JPH0294024A (en) Production of perpendicularly magnetized coated film medium
JPH0247012B2 (en)
JP3856060B2 (en) Magnetic recording method and magnetic head
JPS58143401A (en) Magnetic recording and reproducing device
JPH0370854B2 (en)
JPH0371429A (en) Device for orienting magnetic recording medium and method for orienting treatment
JPH0349025A (en) Magnetic recording medium
JP2843342B2 (en) Manufacturing method of magnetic recording medium
JPH0969229A (en) Method and apparatus for manufacturing magnetic recording medium
JPH039535B2 (en)
JPS6063728A (en) Manufacture of magnetic disk
JPH0296924A (en) Manufacture of perpendicular magnetic recording medium
JPH0489621A (en) Production of perpendicular magnetic recording medium
JPS61246924A (en) Production of vertical magnetic coated film medium
JPH02218018A (en) Vertically orienting device
JPS63167423A (en) Orientation processing method for magnetic field
JPS63298715A (en) Manufacture of magnetic record coating film medium
JPH01185835A (en) Manufacture of magnetic recording medium