JPH0371068B2 - - Google Patents

Info

Publication number
JPH0371068B2
JPH0371068B2 JP59281384A JP28138484A JPH0371068B2 JP H0371068 B2 JPH0371068 B2 JP H0371068B2 JP 59281384 A JP59281384 A JP 59281384A JP 28138484 A JP28138484 A JP 28138484A JP H0371068 B2 JPH0371068 B2 JP H0371068B2
Authority
JP
Japan
Prior art keywords
coil
circuit
voltage
detection
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59281384A
Other languages
Japanese (ja)
Other versions
JPS61149859A (en
Inventor
Shiro Nakagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP59281384A priority Critical patent/JPS61149859A/en
Publication of JPS61149859A publication Critical patent/JPS61149859A/en
Publication of JPH0371068B2 publication Critical patent/JPH0371068B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、磁性体または導電体の存在、分量、
濃度または距離等を磁気的に検知する磁気的検知
装置、特に、磁性キヤリアと絶縁性トナーとを含
む電子写真現像材を対象としたトナー濃度検知装
置として好適な磁気的検知装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to the presence, amount,
The present invention relates to a magnetic detection device that magnetically detects density, distance, etc., and particularly to a magnetic detection device suitable as a toner concentration detection device for electrophotographic developing materials containing a magnetic carrier and an insulating toner.

従来の技術 電子写真現像材は、電子写真もしくは静電記録
等の現像に用いられるものであるが、磁性キヤリ
アに対するトナーの混合比率が低下すると、現像
画像の濃度が薄くなり、反対に混合比率が高くな
ると、画像の濃度が濃くなりすぎると共に、カブ
リが増える不都合を生じる。従つて、適正な色調
の画像を連続して得るためには、現像材中のトナ
ー濃度を検出し、その濃度を適正な一定レベルに
保つ必要がある。その手段として、従来より種々
の検知装置が提案されているが、その内の一つ
に、差動トランスを使用し、その駆動コイルを交
流駆動源で駆動すると共に、駆動コイルに結合さ
れた検知コイル及び基準コイルの差動出力より濃
度を検知する差動トランス型の磁気的検知装置が
知られている(例えば特開昭59−10814号)。
BACKGROUND ART Electrophotographic developing materials are used for developing electrophotography or electrostatic recording, but when the mixing ratio of toner to magnetic carrier decreases, the density of the developed image becomes thinner, and conversely, the mixing ratio decreases. If it becomes too high, the density of the image becomes too high and fogging increases. Therefore, in order to continuously obtain images of appropriate color tone, it is necessary to detect the toner concentration in the developing material and maintain the concentration at an appropriate constant level. As a means of achieving this, various detection devices have been proposed in the past. One of them uses a differential transformer, the drive coil of which is driven by an AC drive source, and a detection device coupled to the drive coil. A differential transformer type magnetic detection device is known that detects concentration from differential outputs of a coil and a reference coil (for example, Japanese Patent Laid-Open No. 10814/1983).

第6図はトナー濃度検知装置として用いられて
いた従来の磁気的検知装置の電気回路図である。
図において、1は発振回路等によつて構成される
交流駆動源、2は差動トランスである。差動トラ
ンス2は交流駆動源1によつて駆動される駆動コ
イルN1と、この駆動コイルN1に結合されトナー
濃度に応じて出力電圧E1が変化する検知コイル
N21と、駆動コイルN1に結合されているが、出力
電圧E2がトナー濃度の影響を受けない基準コイ
ルN22とを具備する。
FIG. 6 is an electrical circuit diagram of a conventional magnetic detection device used as a toner concentration detection device.
In the figure, 1 is an AC drive source constituted by an oscillation circuit, etc., and 2 is a differential transformer. The differential transformer 2 includes a drive coil N 1 driven by an AC drive source 1 and a detection coil coupled to the drive coil N 1 whose output voltage E 1 changes depending on the toner concentration.
N 21 and a reference coil N 22 coupled to the drive coil N 1 but whose output voltage E 2 is independent of toner concentration.

そして検知コイルN21の出力電圧E1と基準コイ
ルN22の出力電圧E2の差動出力E0(=E1−E2)を
信号処理回路3に入力し、差動出力E0の位相弁
別或いは電圧弁別等の手段によつてトナー濃度を
検知する。
Then, the differential output E 0 (=E 1 - E 2 ) of the output voltage E 1 of the detection coil N 21 and the output voltage E 2 of the reference coil N 22 is input to the signal processing circuit 3, and the phase of the differential output E 0 is input to the signal processing circuit 3. The toner concentration is detected by means such as discrimination or voltage discrimination.

次に、信号処理回路3を位相弁別回路とした場
合の作用について、第7図の波形図を参照して説
明する。交流駆動源1から与えられる駆動コイル
N1の端子間電圧Vinを、第7図aに示すような波
形とすると、基準コイルN22には、駆動コイルN1
との間の巻数比に依存した第7図bに示すような
一定の電圧E2が発生している。電圧E2は駆動コ
イルN1に印加される駆動電圧Vinと略同相とな
る。一方、検知コイルN21には、第7図cに示す
ように、駆動コイルN1との巻数比及びトナー濃
度に依存した電圧E1が発生している。この電圧
E1は、基準コイルN22に対して差動結線されてい
るので、駆動コイルN1の端子間電圧Vin及び基準
コイルN21の電圧E1に対して180°(電気角)の位相
差を持つ。
Next, the operation when the signal processing circuit 3 is a phase discrimination circuit will be explained with reference to the waveform diagram of FIG. 7. Drive coil given from AC drive source 1
If the voltage Vin between the terminals of N 1 has a waveform as shown in FIG. 7a, the reference coil N 22 has a drive coil N 1
A constant voltage E 2 is generated, as shown in FIG. 7b, depending on the turns ratio between . The voltage E 2 is approximately in phase with the drive voltage Vin applied to the drive coil N 1 . On the other hand, as shown in FIG. 7c, a voltage E1 is generated in the detection coil N21 , which depends on the turns ratio with respect to the drive coil N1 and the toner concentration. this voltage
Since E 1 is differentially connected to the reference coil N 22 , it has a phase difference of 180° (electrical angle) with respect to the terminal voltage Vin of the drive coil N 1 and the voltage E 1 of the reference coil N 21 . have

ここで、トナー濃度が正常値を示すとき、検知
コイルN21の出力電圧E1が基準コイルN22の出力
電圧E2より小さくなるように設定されていると
すると、差動出力E0は、 E0=E2−E1>0 となり、第7図dに示すように、交流駆動源1の
駆動電圧Vinと同相の差動出力E01を発生する。
Here, if the output voltage E 1 of the detection coil N 21 is set to be smaller than the output voltage E 2 of the reference coil N 22 when the toner concentration shows a normal value, the differential output E 0 is E 0 =E 2 −E 1 >0, and as shown in FIG. 7d, a differential output E 01 that is in phase with the drive voltage Vin of the AC drive source 1 is generated.

次にトナーが不足してくると、磁性キヤリア濃
度が相対的に高くなるので、検知コイルN21に発
生する出力電圧E1が高くなり、予め定められた
トナー濃度を越えると、基準コイルN22の出力電
圧E2より検知コイルN21に発生する出力電圧E1
高くなり、差動出力E0は、 E0=E2−E1<0 となり、交流駆動源1の駆動電圧Vinに対する位
相が逆転する。従つて、ある定められたトナー濃
度の次に位相逆転が起るように、検知コイルN21
及び基準コイルN22を設計しておき、信号処理回
路3において位相弁別することにより、信号処理
回路3から第7図eに示すような出力電圧Vout
を出力し、トナー濃度を検知できる。
Next, when toner becomes insufficient, the magnetic carrier concentration becomes relatively high, so the output voltage E1 generated in the detection coil N21 increases, and when the toner concentration exceeds the predetermined toner concentration, the output voltage E1 generated in the detection coil N21 increases. The output voltage E 1 generated in the detection coil N 21 becomes higher than the output voltage E 2 of is reversed. Therefore, the sensing coil N 21 is arranged such that a phase reversal occurs after a certain defined toner concentration
By designing a reference coil N22 and phase discrimination in the signal processing circuit 3, the output voltage Vout from the signal processing circuit 3 as shown in FIG. 7e is obtained.
can be output and the toner density can be detected.

発明が解決しようとする問題点 ところで、この種の差動トランス形磁気的検知
装置の重要な特性として、作動濃度と微分感度が
ある。第8図は作動濃度及び微分感度を説明する
図で、作動濃度は出力電圧Voutが設定値Vdにな
る場合のトナー濃度TC1(%)であり、微分感度
は作動濃度の変化に対する出力電圧Voutの変化
の度合(ΔVout/ΔTC)を表わす特性である。
Problems to be Solved by the Invention By the way, important characteristics of this type of differential transformer type magnetic sensing device include the operating concentration and differential sensitivity. Figure 8 is a diagram explaining the working density and differential sensitivity, where the working density is the toner concentration TC 1 (%) when the output voltage Vout becomes the set value Vd, and the differential sensitivity is the output voltage Vout with respect to the change in the working density. This is a characteristic that represents the degree of change (ΔVout/ΔTC).

この内、作動濃度は原理的には、トナーが存在
しないときの検知コイルN21の電圧E1と基準コイ
ルN22の電圧E2の差、即ち検知コイルN21と基準
コイルN22の巻数比により決定される。しかし、
これらのコイルN21,N22の巻方やセンタコアの
位置により、同一巻数比であつても差動出力及び
作動濃度にバラツキを生じてしまう。特に、作動
トランスが高感度であるため、量産時に前記特性
に大幅なバラツキを生じ、製品の歩留まりを下げ
る要因となつていた。
Of these, the working concentration is, in principle, the difference between the voltage E 1 of the detection coil N 21 and the voltage E 2 of the reference coil N 22 when no toner is present, that is, the turns ratio of the detection coil N 21 and the reference coil N 22 . Determined by but,
Depending on the winding method of these coils N 21 and N 22 and the position of the center core, variations will occur in the differential output and operating concentration even if the turns ratio is the same. In particular, since the operating transformer is highly sensitive, large variations in the characteristics occur during mass production, which is a factor that lowers the yield of the product.

作動濃度及び微分感度の調整手段として、第9
図に示すように、2組の差動トランス21,22
を用意し、主たる差動トランス21にはコア23
を矢印a方向に粗動させる粗調用の調整機構を設
け、他の差動トランス22にはコア24を矢印b
方向に微動させる微調用の調整機構を設けたもの
が知られているが、2組の差動トランス21,2
2が必要であるため、全体の形状が大型化するの
同時にコスト高になる難点がある。
As a means for adjusting the working concentration and differential sensitivity, the ninth
As shown in the figure, two sets of differential transformers 21 and 22
A core 23 is prepared for the main differential transformer 21.
A coarse adjustment adjustment mechanism is provided to coarsely move the core 24 in the direction of the arrow a, and the other differential transformers 22 have the core 24 moved in the direction of the arrow b.
A device equipped with an adjustment mechanism for fine adjustment in the direction is known, but two sets of differential transformers 21, 2
2 is required, which has the disadvantage of increasing the overall size and cost at the same time.

別の調整手段として、第10図に示すように、
基準コイルN22または検知コイルN21の端子間の
何れか一方もしくは両方に電圧可変回路VR1
VR2を設けることも考えられるが、電圧可変回路
VR1,VR2の付加による差動出力E0の位相が変化
し、処理回路3が位相弁別方式を取る場合には、
微分感度が大幅に低下してしまう。
As another adjustment means, as shown in FIG.
A voltage variable circuit VR 1 is connected between the terminals of the reference coil N 22 or the detection coil N 21 or both.
It is possible to provide VR 2 , but a voltage variable circuit
When the phase of the differential output E 0 changes due to the addition of VR 1 and VR 2 and the processing circuit 3 adopts the phase discrimination method,
Differential sensitivity will drop significantly.

電圧可変回路による位相変化を押える手段とし
て、第11図に示すように、コイル出力にバツフ
ア回路B1,B2を接続し、このバツフア回路B1
B2の後段に電圧可変回路VR3を接続する回路構
成が考えられるが、バツフア回路B1,B2が必要
になるため、大幅なコストアツプを招く。
As a means to suppress the phase change caused by the voltage variable circuit, as shown in FIG. 11, buffer circuits B 1 and B 2 are connected to the coil output.
A circuit configuration in which the voltage variable circuit VR 3 is connected after B 2 is conceivable, but this would require buffer circuits B 1 and B 2 , resulting in a significant increase in cost.

問題点を解決するための手段 上記問題点を解決するため、本発明は、交流で
励振される駆動コイルと、該駆動コイルに結合さ
れる検知コイル及び基準コイルとを具備し、前記
検知コイルの出力と前記基準コイルの出力との差
動出力を検知信号とする磁気的検知装置におい
て、前記駆動コイル駆動電圧の一部を前記差動出
力に加算する回路を有することを特徴とする。
Means for Solving the Problems In order to solve the above problems, the present invention includes a drive coil excited with alternating current, a detection coil and a reference coil coupled to the drive coil, and a detection coil and a reference coil coupled to the drive coil. The magnetic detection device uses a differential output between an output and the output of the reference coil as a detection signal, and is characterized by having a circuit that adds a part of the drive coil drive voltage to the differential output.

実施例 第1図は本発明に係る磁気的検知装置の電気回
路接続図である。図において、第6図と同一の参
照符号は同一性ある構成部分を示している。4は
交流駆動源1から駆動コイルN1に印加される駆
動電圧Vinの一部を、検知コイルN21及び基準コ
イルN22の差動出力E0に加算する電圧加算回路で
ある。この実施例では、駆動コイルN1の端子間
に、可変抵抗器で成る抵抗分圧回路VRを接続す
ると共に、この抵抗分圧回路VRを構成する可変
抵抗器の可変端子と基準コイルN22の一端との間
にコンデンサC1を接続した回路構成となつてい
る。電圧加算回路4は検知コイルN21側に接続し
てもよい。
Embodiment FIG. 1 is an electrical circuit connection diagram of a magnetic sensing device according to the present invention. In the figure, the same reference numerals as in FIG. 6 indicate the same components. 4 is a voltage adding circuit that adds a part of the drive voltage Vin applied from the AC drive source 1 to the drive coil N 1 to the differential output E 0 of the detection coil N 21 and the reference coil N 22 . In this embodiment, a resistive voltage divider circuit VR consisting of a variable resistor is connected between the terminals of the drive coil N1 , and the variable terminal of the variable resistor constituting the resistive voltage divider circuit VR and the reference coil N22 are connected. The circuit configuration is such that a capacitor C1 is connected between one end and the other end. The voltage addition circuit 4 may be connected to the detection coil N21 side.

上述の回路構成において、駆動電圧Vinは抵抗
分圧回路VRの抵抗分割比に応じて分圧され、そ
の分圧電圧VinがコンデンサC1を通して、基準コ
イルN22の一端側で差動出力E0に加算され、差動
出力E0は、 E0=E2−E1+Vin1 となる。従つて、位相逆転を生じさせるのに必要
な検知コイルN21の出力電圧E1が加算電圧Vin1
対応して変化するから、作動濃度も加算電圧
Vin1に対応して変化することとなる。
In the above circuit configuration, the drive voltage Vin is divided according to the resistance division ratio of the resistor voltage divider circuit VR, and the divided voltage Vin is passed through the capacitor C 1 to the differential output E 0 at one end of the reference coil N 22 . The differential output E 0 is E 0 =E 2 −E 1 +Vin 1 . Therefore, since the output voltage E 1 of the detection coil N 21 required to cause phase reversal changes corresponding to the additional voltage Vin 1 , the working concentration also changes depending on the additional voltage.
It will change corresponding to Vin 1 .

しかもこの実施例では、可変抵抗器で成る抵抗
分圧回路VRによつて駆動電圧Vinを分圧する構
成を採つているので、加算電圧Vin1を自由に調
整することができ、作動濃度を自由に調整するこ
とが可能である。また、加算電圧Vin1の位相は、
可変抵抗回路VRの可変端子の位置によつて、駆
動電圧Vinに対して同相にも、反対に180°の位相
差を持たせることも可能であるから、駆動電圧
Vinに対して、差動出力E0の位相がどちら側にズ
レた場合でも容易に可変調整することができる。
Moreover, this embodiment adopts a configuration in which the drive voltage Vin is divided by a resistive voltage divider circuit VR consisting of a variable resistor, so that the additional voltage Vin 1 can be freely adjusted, and the operating concentration can be freely adjusted. It is possible to adjust. Also, the phase of the added voltage Vin 1 is
Depending on the position of the variable terminal of the variable resistance circuit VR, it is possible to have it in phase with the drive voltage Vin or to have a phase difference of 180°, so the drive voltage
No matter which side the phase of the differential output E 0 deviates from Vin, it can be easily variably adjusted.

更にこの実施例では、コンデンサC1を通して
加算する回路構成であるため、駆動コイルN1
と検知コイルN21、基準コイルN21側の直流バイ
アス回路を相互に分離できる。なお、コンデンサ
C1は駆動コイルN1側と検知コイルN21及び基準コ
イルN22側との結合をあまり密にしないような
値、例えば1〜50PF程度の値に選定する。
Furthermore, in this embodiment, since the circuit configuration is such that addition is performed through the capacitor C 1 , the DC bias circuits on the drive coil N 1 side, the detection coil N 21 , and the reference coil N 21 side can be separated from each other. In addition, the capacitor
C 1 is selected to a value that does not make the coupling between the drive coil N 1 side and the detection coil N 21 and reference coil N 22 sides too tight, for example, a value of about 1 to 50 PF.

第2図は本発明に係る磁気的検知装置の別の実
施例における電気回路接続図である。図におい
て、第1図と同一の参照符号は同一性ある構成部
分を示している。この実施例の特徴は、前記電圧
加算回路4の他に、検知コイルN21及び基準コイ
ルN22側に、これらのコイルN21,N22のインダク
タンスLと共に共振回路を構成するコンデンサ
C2を接続したことである。この場合の共振回路
の共振周波数f0は良く知られているように、 f0=1/2π√.2 となる。また、共振回路は、一般に第3図に示す
ような共振特性と、第4図に示すような位相特性
を持つ。そこで、この実施例では、共振回路を構
成するコンデンサC2の温度特性もしくは容量値
の選定または交流駆動源1の周波数の調整等によ
つて、第3図に示した共振特性及び第4図に示し
た位相特性を変え、系全体の温度変動による差動
出力E0の位相変化や電圧値変化を吸収して、温
度補償を行なう。
FIG. 2 is an electrical circuit connection diagram in another embodiment of the magnetic sensing device according to the present invention. In the figure, the same reference numerals as in FIG. 1 indicate the same components. The feature of this embodiment is that, in addition to the voltage adding circuit 4, a capacitor is provided on the detection coil N 21 and reference coil N 22 side, which together with the inductance L of these coils N 21 and N 22 constitutes a resonant circuit.
This is because C 2 was connected. As is well known, the resonant frequency f 0 of the resonant circuit in this case is f 0 =1/ 2π√.2 . Further, a resonant circuit generally has resonance characteristics as shown in FIG. 3 and phase characteristics as shown in FIG. 4. Therefore, in this embodiment, the resonance characteristics shown in FIG . 3 and FIG. Temperature compensation is performed by changing the phase characteristics shown to absorb phase changes and voltage value changes in the differential output E 0 due to temperature fluctuations in the entire system.

上述のような共振回路を備える場合、コンデン
サC2の値が比較的大きくなるため、駆動コイル
N1側から前述の電圧加算回路4を通してコンデ
ンサC2に至る回路の時定数が大きくなり、差動
出力E0の位相にズレを発生し、微分感度が低下
する等の問題が懸念される。しかし、本発明にお
いては、電圧加算回路4を構成するコンデンサ
C1が、例えば1〜50PF程度の小容量値となるよ
うに選定されるので、駆動コイルN1側から電圧
加算回路4を通してコンデンサC2に至る回路の
時定数が、コンデンサC1によつて支配され、位
相のズレは殆んど問題とならない。従つて、本発
明によれば、共振回路を付加して温度特性を向上
させた場合でも、微分感度を低下させることな
く、作動濃度を可変調整することが可能である。
When equipped with a resonant circuit as described above, the value of capacitor C2 is relatively large, so the drive coil
There is concern that the time constant of the circuit from the N1 side to the capacitor C2 through the voltage addition circuit 4 described above becomes large, causing a phase shift in the differential output E0 , and problems such as a decrease in differential sensitivity. However, in the present invention, the capacitor constituting the voltage adding circuit 4
Since C 1 is selected to have a small capacitance value of, for example, 1 to 50 PF, the time constant of the circuit from the drive coil N 1 side to the capacitor C 2 through the voltage addition circuit 4 is determined by the capacitor C 1 . is controlled, and the phase shift is hardly a problem. Therefore, according to the present invention, even when a resonant circuit is added to improve the temperature characteristics, it is possible to variably adjust the working concentration without reducing the differential sensitivity.

第5図は本発明に係る磁気的検知装置を構成す
る差動トランスの具体例を示す断面図である。こ
の実施例では、例えば壷形コア等のように、磁路
の一方が開いている一対のコア5,6を背中合せ
に組合せ、コア5,6の中脚部51,61に駆動
コイルN1を連続して巻装すると共に、中脚部5
1には検知コイルN21を、また中脚部61には基
準コイルN22をそれぞれ巻装してある。コア5の
開磁路側の前面に位置する非磁性ケース7の面板
71の表面側は、トナー8の接触するトナー検知
面として利用される。
FIG. 5 is a sectional view showing a specific example of a differential transformer constituting the magnetic sensing device according to the present invention. In this embodiment, a pair of cores 5 and 6 with one side of the magnetic path open, such as a pot-shaped core, are combined back to back, and a drive coil N 1 is connected to the middle legs 51 and 61 of the cores 5 and 6. While continuously winding, the middle leg portion 5
1 is wound with a detection coil N 21 , and the middle leg 61 is wound with a reference coil N 22 . The surface side of the face plate 71 of the non-magnetic case 7 located on the front surface of the core 5 on the open magnetic path side is used as a toner detection surface that the toner 8 comes into contact with.

9は基準コイルN22の開磁路の一部に移動調整
可能に設けた導電体である。この実施例では、非
磁性ケース7の側面板72に、黄銅、アルミニユ
ウム等の導電性材料で成るネジ状の導電体9をネ
ジ結合させ、この導電体9を、基準コイルN22
構成するコア5の単面前方に形成される開磁路側
において、矢印イの如く、コア5の端面に対して
平行に進退調整できるように取付けてある。
Reference numeral 9 denotes a conductor that is movably provided in a part of the open magnetic path of the reference coil N22 . In this embodiment, a screw-shaped conductor 9 made of a conductive material such as brass or aluminum is screwed to the side plate 72 of the non-magnetic case 7, and this conductor 9 is connected to the core constituting the reference coil N22 . On the open magnetic path side formed in front of a single surface of the core 5, it is attached so that it can be adjusted to advance and retreat parallel to the end surface of the core 5, as shown by arrow A.

上述のような導電体9を設けると、駆動コイル
N1を駆動した場合、基準コイルN22に生じる磁束
によつて導電体9に渦電流が発生し、この渦電流
効果によつて基準コイルN22に生じる出力電圧E2
が変化する。従つて、導電体9の移動調整によつ
て基準コイルN22に生じる出力電圧E2を可変調整
し、それにより、この出力電圧E2と検知コイル
N21に生じる出力電圧E1との差動出力E0を調整
し、作動濃度を調整することが可能となる。従つ
て、この実施例においては、導電体9による作動
濃度調整と、前述の電圧加算回路4による作動濃
度調整の、2種類の作動濃度調整機能を持つこと
となる。このような2種類の作動濃度調整機構を
持つと、電圧加算回路4による作動濃度調整は、
専ら、作動トランスの製造上のバラツキ吸収手段
とし、導電体9による作動濃度調整は当該磁気的
検知装置を組込んだ機器側から要求される特性に
応じて、ユーザ側で作動濃度を調整する手段とし
て利用でき、作動濃度調整の融通性が非常に高く
なる。
When the conductor 9 as described above is provided, the drive coil
When N 1 is driven, an eddy current is generated in the conductor 9 due to the magnetic flux generated in the reference coil N 22 , and an output voltage E 2 is generated in the reference coil N 22 due to this eddy current effect.
changes. Therefore, by adjusting the movement of the conductor 9, the output voltage E 2 generated at the reference coil N 22 is variably adjusted, and thereby this output voltage E 2 and the detection coil
By adjusting the differential output E 0 with the output voltage E 1 generated at N 21 , it is possible to adjust the working concentration. Therefore, this embodiment has two types of working concentration adjustment functions: the working concentration adjustment by the conductor 9 and the working concentration adjustment by the voltage adding circuit 4 described above. With such two types of working concentration adjustment mechanisms, the working concentration adjustment by the voltage adding circuit 4 is as follows:
This is used exclusively as a means for absorbing manufacturing variations in the operating transformer, and the adjustment of the operating concentration using the conductor 9 is a means for the user to adjust the operating concentration according to the characteristics required by the device in which the magnetic sensing device is installed. This allows for great flexibility in adjusting the working concentration.

しかも、実施例に示したように、導電体9を基
準コイルN22の開磁路側で進退させるだけの簡単
な構成であるので、ユーザ側で作動濃度を簡単か
つ確実に調整でき、コスト的に安価で安定に動作
する磁気的検知装置を提供できる。
Moreover, as shown in the embodiment, the configuration is simple, simply moving the conductor 9 forward and backward on the open magnetic path side of the reference coil N22 , so the user can easily and reliably adjust the operating concentration, reducing costs. A magnetic detection device that is inexpensive and operates stably can be provided.

なお、前記導電体9はその移動調整によつて基
準コイルN22の出力電圧E2を可変調整できれば良
いのであつて、図示するようなネジ結合に限ら
ず、種々の構造を取ることができる。
It should be noted that the conductor 9 only needs to be able to variably adjust the output voltage E 2 of the reference coil N 22 by adjusting its movement, and it is not limited to the screw connection as shown in the drawings, but can have various structures.

また、導電体9を、フエライト等の磁性体によ
つて置換することもできる。導電体9の代りに磁
性体を用いた場合には、基準コイルN22の磁路の
磁気的効率及びその出力電圧E2が、この磁性体
の進退調整によつて調整されるので、導電体を用
いた場合と同様に、検知レベルを調整することが
できる。
Further, the conductor 9 can also be replaced with a magnetic material such as ferrite. When a magnetic body is used instead of the conductor 9, the magnetic efficiency of the magnetic path of the reference coil N22 and its output voltage E2 are adjusted by adjusting the advance and retreat of this magnetic body. The detection level can be adjusted in the same way as when using .

更に、上記実施例では説明の具体化のため、ト
ナー濃度を検知する磁気的検知装置を例にとつて
説明したが、これに限らず、磁性体の存在、分
量、濃度または距離等、磁性体検知一般に広く利
用でき、更に磁性体に限らず、導電体検知にも利
用することができる。導電体検知の場合には、導
電体の渦電流損に伴なつて検知コイルの出力電圧
が低下し、差動出力が変化するので、それを利用
することとなる。
Further, in order to make the explanation more concrete, the above embodiments have been explained using a magnetic detection device that detects toner concentration as an example, but the present invention is not limited to this, and the presence, amount, concentration, distance, etc. of a magnetic material, etc. It can be widely used for detection in general, and can also be used for detecting not only magnetic materials but also conductive materials. In the case of conductor detection, the output voltage of the detection coil decreases with the eddy current loss of the conductor, and the differential output changes, so this is utilized.

本発明の効果 以上述べたように、本発明は、交流で励振され
る駆動コイルと、該駆動コイルに結合される検知
コイル及び基準コイルとを具備し、前記検知コイ
ルの出力と前記基準コイルの出力との差動出力を
検知信号とする磁気的検知装置において、前記駆
動コイル駆動電圧の一部を前記差動出力に加算す
る回路を有することを特徴とするから、駆動コイ
ル側から基準コイルまたは検知コイル側に、例え
ば可変抵抗器や小容量値のコンデンサ等による電
圧加算回路を備えるだけの簡単な構成で、差動ト
ランスの製造上のバラツキによる差動濃度のバラ
ツキを、簡単かつ確実に調整し得る小型かつ安価
な磁気的検知装置を提供することができる。
Effects of the Present Invention As described above, the present invention includes a drive coil excited with alternating current, a detection coil and a reference coil coupled to the drive coil, and the output of the detection coil and the reference coil are connected to each other. A magnetic detection device that uses a differential output with an output as a detection signal is characterized by having a circuit that adds a part of the drive coil drive voltage to the differential output. With a simple configuration that requires only a voltage adding circuit such as a variable resistor or a capacitor with a small capacitance on the detection coil side, variations in differential concentration due to manufacturing variations in differential transformers can be easily and reliably adjusted. Therefore, it is possible to provide a compact and inexpensive magnetic sensing device that can be used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る磁気的検知装置の電気回
路図、第2図は本発明に係る磁気的検知装置の別
の実施例における電気回路図、第3図は同じくそ
の共振特性図、第4図は同じく位相特性図、第5
図は本発明に係る磁気的検知装置を構成する差動
トランスの断面図、第6図は従来の磁気的検知装
置の電気回路図、第7図は従来の磁気的検知装置
の回路作用を説明するための波形図、第8図はト
ナー濃度と出力電圧との関係を示す図、第9図〜
第11図は従来の磁気的検知装置における差動ト
ランスの結線図である。 1……交流駆動源、2……差動トランス、3…
…信号処理回路、4……電圧加算回路、N1……
駆動コイル、N21……検知コイル、N22……基準
コイル、VR……抵抗分圧回路、C1……コンデン
サ。
FIG. 1 is an electric circuit diagram of a magnetic sensing device according to the present invention, FIG. 2 is an electric circuit diagram of another embodiment of the magnetic sensing device according to the present invention, and FIG. 3 is a resonance characteristic diagram thereof. Figure 4 is also a phase characteristic diagram, and Figure 5
The figure is a sectional view of a differential transformer constituting the magnetic sensing device according to the present invention, FIG. 6 is an electric circuit diagram of a conventional magnetic sensing device, and FIG. 7 explains the circuit operation of the conventional magnetic sensing device. Figure 8 is a diagram showing the relationship between toner concentration and output voltage, Figures 9~
FIG. 11 is a wiring diagram of a differential transformer in a conventional magnetic sensing device. 1...AC drive source, 2...Differential transformer, 3...
...Signal processing circuit, 4...Voltage addition circuit, N 1 ...
Drive coil, N21 ...detection coil, N22 ...reference coil, VR...resistance voltage divider circuit, C1 ...capacitor.

Claims (1)

【特許請求の範囲】 1 交流で励振される駆動コイルと、該駆動コイ
ルに結合される検知コイル及び基準コイルとを具
備し、前記検知コイルの出力と前記基準コイルの
出力との差動出力を検知信号とする磁気的検知装
置において、前記駆動コイル駆動電圧の一部を前
記差動出力に加算する回路を有することを特徴と
する磁気的検知装置。 2 前記回路は、前記駆動コイル両端間に接続さ
れた抵抗分圧回路と、この抵抗分圧回路から前記
基準コイルまたは検知コイルの何れか一方に接続
されたコンデンサ回路とより構成されることを特
徴とする特許請求の範囲第1項に記載の磁気的検
知装置。 3 前記抵抗分圧回路は、可変抵抗回路であるこ
とを特徴とする特許請求の範囲第2項に記載の磁
気的検知装置。 4 前記検知コイル及び前記基準コイル側に共振
回路を有することを特徴とする特許請求の範囲第
1項、第2項または第3項に記載の磁気的検知装
置。
[Claims] 1. A drive coil excited by alternating current, a detection coil and a reference coil coupled to the drive coil, and a differential output between the output of the detection coil and the output of the reference coil. What is claimed is: 1. A magnetic detection device that uses a detection signal as a detection signal, comprising a circuit that adds a part of the drive coil drive voltage to the differential output. 2. The circuit is characterized by comprising a resistive voltage divider circuit connected between both ends of the drive coil, and a capacitor circuit connected from the resistive voltage divider circuit to either the reference coil or the detection coil. A magnetic sensing device according to claim 1. 3. The magnetic sensing device according to claim 2, wherein the resistance voltage divider circuit is a variable resistance circuit. 4. The magnetic sensing device according to claim 1, 2, or 3, characterized in that it has a resonant circuit on the side of the detection coil and the reference coil.
JP59281384A 1984-12-24 1984-12-24 Magnetic detecting device Granted JPS61149859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59281384A JPS61149859A (en) 1984-12-24 1984-12-24 Magnetic detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59281384A JPS61149859A (en) 1984-12-24 1984-12-24 Magnetic detecting device

Publications (2)

Publication Number Publication Date
JPS61149859A JPS61149859A (en) 1986-07-08
JPH0371068B2 true JPH0371068B2 (en) 1991-11-11

Family

ID=17638384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59281384A Granted JPS61149859A (en) 1984-12-24 1984-12-24 Magnetic detecting device

Country Status (1)

Country Link
JP (1) JPS61149859A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0633484Y2 (en) * 1987-05-19 1994-08-31 ティーディーケイ株式会社 Toner concentration detector
JPH01210979A (en) * 1988-02-19 1989-08-24 Hitachi Metals Ltd Developing device
JPH0789151B2 (en) * 1990-07-31 1995-09-27 西松建設株式会社 M type deep rebar probe
FR2810738A1 (en) * 2000-06-26 2001-12-28 Jean Pierre Martin Device for forming electromagnetic image of body relative to reference body using magnetic flux induced by open magnetic circuits
JP2002357517A (en) * 2001-03-27 2002-12-13 Hitachi Chem Co Ltd Passive sampler for voc collection
JP6069158B2 (en) * 2013-09-30 2017-02-01 京セラドキュメントソリューションズ株式会社 Toner sensor and image forming apparatus

Also Published As

Publication number Publication date
JPS61149859A (en) 1986-07-08

Similar Documents

Publication Publication Date Title
EP0211142B1 (en) Device for measuring displacement
US7821256B2 (en) Linear and rotational inductive position sensor
JPH10513549A (en) DC and AC current sensors with sub-loop operated current transformers
US5682097A (en) Electromagnetic actuator with movable coil and position sensor for drive coil
JPH0371067B2 (en)
WO1984000425A1 (en) Toner level sensor
JPH0371068B2 (en)
US2856581A (en) Magnetometer
JP2579413Y2 (en) Magnetic sensing device
JP2001165910A (en) Magnetic sensor
JPH0428058Y2 (en)
JP2501429B2 (en) Magnetic detection device
EP4127738A1 (en) Current transducer
JPH10104934A (en) Magnetic sensor
JPH07248676A (en) Toner density detecting device
JP2000131406A (en) Differential transformer, magnetic sensor and magnetic detector
AU753651B2 (en) Induction sensor
JP4071585B2 (en) Toner density detection device and image forming apparatus using the same
JPS62164068A (en) Control method for developer toner concentration
JPS62215863A (en) Magnetic detector
EP0292130B1 (en) Toner concentration detection
JPH0624732Y2 (en) Differential transformer
JPH0355895Y2 (en)
JPH05172781A (en) Differential amplification type toner sensor
JP2894754B2 (en) Toner density sensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees