JPS61149859A - Magnetic detecting device - Google Patents

Magnetic detecting device

Info

Publication number
JPS61149859A
JPS61149859A JP59281384A JP28138484A JPS61149859A JP S61149859 A JPS61149859 A JP S61149859A JP 59281384 A JP59281384 A JP 59281384A JP 28138484 A JP28138484 A JP 28138484A JP S61149859 A JPS61149859 A JP S61149859A
Authority
JP
Japan
Prior art keywords
coil
voltage
circuit
output
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59281384A
Other languages
Japanese (ja)
Other versions
JPH0371068B2 (en
Inventor
Shiro Nakagawa
士郎 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP59281384A priority Critical patent/JPS61149859A/en
Publication of JPS61149859A publication Critical patent/JPS61149859A/en
Publication of JPH0371068B2 publication Critical patent/JPH0371068B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables

Abstract

PURPOSE:To adjust variance in operation density due to variance of the manufacture of a differential transformer easily and securely by adding part of the driving voltage of a driving coil to a differential output. CONSTITUTION:The differential transformer 2 is equipped with the driving coil N1 which is driven by an AC driving source 1, a detection coil N21 whose output voltage E1 varies with toner density, and a reference coil N22 which is not influenced by the toner density. The driving voltage Vin is divided by a resistance voltage dividing circuit VR and added to the differential output E0 between the output voltage E1 of the detection coil N21 and the output voltage E2 of the refernce coil N22 at one terminal side of the reference coil N22, so that E0=E2-E1+Vin1. This output is inputted to a signal processing circuit 3 and a phase or voltage discriminating means detects the toner density.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、磁性体または導電体の存在、分量。[Detailed description of the invention] Industrial applications The present invention relates to the presence and amount of a magnetic material or a conductive material.

濃度または距離等を磁気的に検知する磁気的検知装置、
特に、磁性キャリアと絶縁性トナーとを含む電子写真現
像材を対象としたトナー濃度検知装置として好適な磁気
的検知装置に関する。
A magnetic detection device that magnetically detects concentration or distance, etc.
In particular, the present invention relates to a magnetic detection device suitable as a toner concentration detection device for electrophotographic developing materials containing magnetic carriers and insulating toner.

従来の技術 電子写真現像材は、電子写真もしくは静電記録等の現像
に用いられるものであるが、磁性キャリアに対するトナ
ーの混合比率が低下すると、現像画像の濃度が薄くなり
、反対に混合比率が高くなると、画像の濃度が濃くなり
すぎると共に、カプリが増える不都合を生じる。従って
、適正な色調の画像を連続して得るためには、現像材中
のトナー濃度を検出し、その濃度を適正な一定のレベル
に保つ必要がある。その手段として、従来より種々の検
知装置が提案されているが、その内の一つに、差動トラ
ンスを使用し、その駆動コイルを交流駆動源で駆動する
と共に、駆動コイルに結合された検知コイル及び基準コ
イルの差動出力より濃度を検知する差動トランス型の磁
気的検知装置が知られている(例えば特開昭59−10
814号)。
Conventional electrophotographic developing materials are used for developing electrophotography or electrostatic recording, but when the mixing ratio of toner to magnetic carrier decreases, the density of the developed image becomes thinner, and conversely, the mixing ratio decreases. If it becomes too high, the density of the image becomes too high and capri increases. Therefore, in order to continuously obtain images of appropriate color tone, it is necessary to detect the toner concentration in the developing material and maintain the concentration at an appropriate constant level. As a means of achieving this, various detection devices have been proposed in the past. One of them uses a differential transformer, the drive coil of which is driven by an AC drive source, and a detection device coupled to the drive coil. A differential transformer type magnetic detection device is known that detects concentration from differential outputs of a coil and a reference coil (for example, Japanese Patent Laid-Open No. 59-10
No. 814).

第6図はトナー濃度検知装置として用いられていた従来
の磁気的検知装置の電気回路図である。
FIG. 6 is an electrical circuit diagram of a conventional magnetic detection device used as a toner concentration detection device.

図において、lは発振回路等によって構成される交流駆
動源、2は差動トランスである。差動トランス2は交流
駆動源1によって駆動される駆動コイルNl  と、こ
の駆動コイルN、に結合されトナー濃度に応じて出力電
圧E1が変化する検知コイルN21と、駆動コイルN1
 に結合されているが、出力電圧E2がトナー濃度の影
響を受けない基準コイルN22とを具備する。
In the figure, 1 is an AC drive source constituted by an oscillation circuit, etc., and 2 is a differential transformer. The differential transformer 2 includes a drive coil Nl driven by the AC drive source 1, a detection coil N21 coupled to the drive coil N and whose output voltage E1 changes depending on the toner concentration, and a drive coil N1.
a reference coil N22 coupled to the reference coil N22, but whose output voltage E2 is not affected by toner concentration.

そして検知コイルN21の出力電圧E1 と基準コイル
N27の出力電圧E2の差動出力E。
And a differential output E between the output voltage E1 of the detection coil N21 and the output voltage E2 of the reference coil N27.

(−E+ −E2 )を信号処理回路3に入力し、差動
出力Eoの位相弁別或いは電圧弁別等の手段によってト
ナー濃度を検知する。
(-E+ -E2) is input to the signal processing circuit 3, and the toner concentration is detected by means such as phase discrimination or voltage discrimination of the differential output Eo.

次に、信号処理回路3を位相弁別回路とした場合の作用
について、第7図の波形図を参照して説明する。交流駆
動源1かも与えられる駆動コイルN1の端子間電圧Vi
nを、第7図(a)に示すような波形とすると、基準コ
イルN22には、駆動コイルN1 との間の巻数比に依
存した第7図(b)に示すような一定の電圧E2が発生
している。電圧E2は駆動コイルN1に印加される駆動
電圧Vinと略同相となる。一方、検知コイルN21に
は、第7図(C)に示すように、駆動コイルN1との巻
数比及びトナー濃度に依存した電圧E1が発生している
。この電圧E+ は、基準コイルN22に対して差動結
線されているので、駆動コイルN1の端子間電圧Vin
及び基準コイルN21の電圧E1に対して180°(電
気角)の位相差を持つ。
Next, the operation when the signal processing circuit 3 is a phase discrimination circuit will be explained with reference to the waveform diagram of FIG. 7. The voltage Vi between the terminals of the drive coil N1 which is also supplied with the AC drive source 1
If n has a waveform as shown in FIG. 7(a), a constant voltage E2 as shown in FIG. 7(b) will be applied to the reference coil N22 depending on the turns ratio between it and the drive coil N1. It has occurred. The voltage E2 is approximately in phase with the drive voltage Vin applied to the drive coil N1. On the other hand, as shown in FIG. 7(C), a voltage E1 is generated in the detection coil N21, which depends on the turns ratio with respect to the drive coil N1 and the toner concentration. Since this voltage E+ is differentially connected to the reference coil N22, the voltage Vin between the terminals of the drive coil N1
and has a phase difference of 180° (electrical angle) with respect to the voltage E1 of the reference coil N21.

ここで、トナー濃度が正常値を示すとき、検知コイルN
21の出力電圧E1が基準コイルN22の出力電圧E?
より小さくなるように設定されているとすると、差動出
力Eoは、 Eo =E2−E1 >0 となり、第7図(d)に示すように、交流駆動源1の駆
動電圧Vinと同相の差動出力EOIを発生する。
Here, when the toner concentration shows a normal value, the detection coil N
21 is the output voltage E1 of the reference coil N22?
Assuming that the differential output Eo is set to be smaller, the differential output Eo becomes Eo = E2 - E1 > 0, and as shown in FIG. 7(d), the difference in phase with the drive voltage Vin of the AC drive source 1 Generates dynamic output EOI.

次にトナーが不足してくると、磁性キャリア濃度が相対
的に高くなるので、検知コイルN21に発生する出力電
圧E1が高くなり、予め定められたトナー濃度を越える
と、基準コイルN27の出力電圧E2より検知コイルN
21に発生する出力電圧E1が高くなり、差動出力Eo
は、 Eo =E2−E+ <0 となり、交流駆動源lの駆動電圧Vinに対する位相が
逆転する。従って、ある定められたトナー濃度の時に位
相逆転が起るように、検知コイルN21及び基準コイル
N22を設計しておき、信号処理回路3において位相弁
別することにより、信号処理回路3から第7図(e)に
示すような出力電圧V outを出力し、トナー濃度を
検知できる。
Next, when toner becomes insufficient, the magnetic carrier concentration becomes relatively high, so the output voltage E1 generated in the detection coil N21 increases, and when the toner concentration exceeds the predetermined toner concentration, the output voltage of the reference coil N27 increases. Detection coil N from E2
The output voltage E1 generated at 21 becomes higher, and the differential output Eo
Eo =E2-E+ <0, and the phase of the AC drive source l with respect to the drive voltage Vin is reversed. Therefore, the detection coil N21 and the reference coil N22 are designed so that a phase reversal occurs at a certain determined toner concentration, and by performing phase discrimination in the signal processing circuit 3, the signal processing circuit 3 as shown in FIG. The toner concentration can be detected by outputting an output voltage V out as shown in (e).

発明が解決しようとする問題点 ところで、この種の差動トランス形磁気的検知装置の重
要な特性として1作動濃度と微分感度がある。88図は
作動濃度及び微分感度を説明する図で、作動濃度は出力
電圧V outが設定値Vdになる場合のトナー濃度T
C+ ($)であり、微分感度は作動濃度の変化に対す
る出力電圧V outの変化の度合(ΔVout/ΔT
G)を表わす特性である。
Problems to be Solved by the Invention By the way, important characteristics of this type of differential transformer type magnetic sensing device include the 1 working concentration and the differential sensitivity. Figure 88 is a diagram explaining the working density and differential sensitivity, where the working density is the toner density T when the output voltage V out becomes the set value Vd.
C+ ($), and the differential sensitivity is the degree of change in output voltage V out with respect to change in working concentration (ΔVout/ΔT
G).

この内、作動濃度は原理的には、トナーが存在しないと
きの検知コイルN21の電圧E1 と基準コイルN22
の電圧E2の差、即ち検知コイルN21と基準コイルN
22の巻数比により決定される。しかし、これらのコイ
ルN21、N22の巻方やセンタコアの位置により、同
一巻数比であっても差動出力及び作動濃度にバラツキを
生じてしまう、特に、作動トランスが高感度であるため
、量産時に前記特性に大幅なバラツキを生じ、製品の歩
留まりを下げる要因となっていた。
Of these, the operating concentration is, in principle, the voltage E1 of the detection coil N21 when no toner is present and the voltage E1 of the reference coil N22.
The difference in voltage E2 between the detection coil N21 and the reference coil N
It is determined by a turns ratio of 22. However, depending on the winding method of these coils N21 and N22 and the position of the center core, there will be variations in the differential output and operating concentration even if the turns ratio is the same.In particular, since the operating transformer is highly sensitive, it will be difficult during mass production. Significant variations in the properties have occurred, which has been a factor in lowering the yield of products.

作動濃度及び微分感度の調整手段として、第9図に示す
ように、2組の差動トランス21.22を用意し、主た
る差動トランス21にはコア23を矢印a方向に粗動さ
せる粗調用の調整機構を設け、他の差動トランス22に
はコア24を矢印す方向に微動させる微調用の調整機構
を設けたものが知られているが、2組の差動トランス2
1.22が必要であるため、全体の形状が大型化すると
同時にコスト高になる難点がある。
As a means for adjusting the working concentration and differential sensitivity, two sets of differential transformers 21 and 22 are prepared as shown in FIG. It is known that the other differential transformer 22 is provided with an adjustment mechanism for fine adjustment to slightly move the core 24 in the direction indicated by the arrow.
1.22 is required, which has the disadvantage of increasing the overall size and cost.

別の調整手段として、第1O図に示すように。Another adjustment means is as shown in FIG. 1O.

基準コイルN22または検知コイルN21の端子間の何
れか一方もしくは両方に電圧可変回路VR,、VR2を
設けることも考えられるが、電圧可変回路VR,、VR
2の付加により差動出力EOの位相が変化し、処理回路
3が位相弁別方式を取る場合には、微分感度が大幅に低
下してしまう。
It is also possible to provide a voltage variable circuit VR, , VR2 between the terminals of the reference coil N22 or the detection coil N21 or both, but the voltage variable circuits VR, , VR
2 changes the phase of the differential output EO, and if the processing circuit 3 adopts a phase discrimination method, the differential sensitivity will drop significantly.

電圧可変回路による位相変化を押える手段として、第1
1図に示すように、コイル出力にバッファ回路Bl 、
B2 を接続し、このバッファ回路B+、B: の後(
Fiニ電11: +i(変回路VR3を接続する回路構
成が考えられるが、バッファ回路B1、B2が必要にな
るため、大幅なコストアップを招く。
As a means of suppressing the phase change caused by the voltage variable circuit, the first
As shown in Figure 1, a buffer circuit Bl is connected to the coil output.
B2 is connected, and after this buffer circuit B+, B: (
Fi Niden 11: +i (A circuit configuration in which the transformer circuit VR3 is connected is conceivable, but buffer circuits B1 and B2 are required, resulting in a significant increase in cost.

問題点を解決するための手段 上記問題点を解決するため、本発明は、交流で励振され
る駆動コイルと、該駆動コイルに結合される検知コイル
及び基準コイルとを具備し、前記検知コイルの出力と前
記基準コイルの出力との差動出力を検知信号とする磁気
的検知装置において、前記駆動コイル駆動電圧の一部を
前記差動出力に加算する回路を有することを特徴とする
Means for Solving the Problems In order to solve the above problems, the present invention includes a drive coil excited with alternating current, a detection coil and a reference coil coupled to the drive coil, and a detection coil and a reference coil coupled to the drive coil. The magnetic detection device uses a differential output between an output and the output of the reference coil as a detection signal, and is characterized by having a circuit that adds a part of the drive coil drive voltage to the differential output.

実施例 第1図は本発明に係る磁気的検知装置の電気回路接続図
である0図において、第6図と同一の参照符号は同一性
ある構成部分を示している。4は交流駆動源lから駆動
コイルN1に印加される駆動電圧Winの一部を、検知
コイルN21及び基準コイルN22の差動出力EOに加
算する電圧加算回路である。この実施例では、駆動コイ
ルN1の端子′間に、可変抵抗器で成る抵抗分圧回路V
Rを接続すると共に、この抵抗分圧回路VRを構成する
可変抵抗器の可変端子と基準コイルN22の一端との間
にコンデンサCIを接続した回路構成となっている。電
圧加算回路4は検知コイルN21側に接続してもよい。
Embodiment FIG. 1 is an electrical circuit connection diagram of a magnetic sensing device according to the present invention. In FIG. 0, the same reference numerals as in FIG. 6 indicate the same components. 4 is a voltage adding circuit that adds a part of the drive voltage Win applied from the AC drive source 1 to the drive coil N1 to the differential output EO of the detection coil N21 and the reference coil N22. In this embodiment, a resistive voltage divider circuit V consisting of a variable resistor is connected between the terminals of the drive coil N1.
The circuit configuration is such that a capacitor CI is connected between the variable terminal of the variable resistor constituting the resistance voltage divider circuit VR and one end of the reference coil N22. The voltage addition circuit 4 may be connected to the detection coil N21 side.

上述の回路構成において、駆動電圧Vinは抵抗分圧回
路VRの抵抗分割比に応じて分圧され、その分圧電圧V
inlがコンデンサCI を通して、基準コイルN22
の一端側で差動出力EOに加算され、差動出力EDは。
In the above circuit configuration, the drive voltage Vin is divided according to the resistance division ratio of the resistance voltage divider circuit VR, and the divided voltage V
inl is connected to the reference coil N22 through the capacitor CI.
is added to the differential output EO at one end of the differential output ED.

Eo =E2−E1 +Vin+ となる。従って1位相逆転を生じさせるのに必要な検知
コイルN21の出力電圧Elが加算電圧Vin+ に対
応して変化するから1作動源度も加算電圧Vin1 に
対応して変化することとなる。
Eo=E2-E1+Vin+. Therefore, since the output voltage El of the detection coil N21 required to cause one phase reversal changes in accordance with the added voltage Vin+, the 1 actuation source also changes in accordance with the added voltage Vin1.

しかもこの実施例では、可変抵抗器で成る抵抗分圧回路
VRによって駆動電圧Vinを分圧する構成を採ってい
るので、加算電圧Vinl を自由に調整することがで
き、作動濃度を自由に調整することが可能である。また
、加算電圧V irHの位相は、可変抵抗回路VRの可
変端子の位置によって、駆動電圧Vinに対して同相に
も、反対に180°の位相差を持たせることも可能であ
るから、駆動電圧Vinに対して、差動出力Eoの位相
がどちら側にズした場合でも容易に可変調整することが
できる。
Furthermore, this embodiment adopts a configuration in which the driving voltage Vin is divided by a resistive voltage dividing circuit VR made up of a variable resistor, so that the additional voltage Vinl can be freely adjusted, and the operating concentration can be freely adjusted. is possible. Furthermore, depending on the position of the variable terminal of the variable resistance circuit VR, the phase of the added voltage V irH can be in phase with the drive voltage Vin or have a phase difference of 180°, so the drive voltage No matter which side the phase of the differential output Eo shifts with respect to Vin, variable adjustment can be easily performed.

更にこの実施例では、コンデンサC1を通して加算する
回路構成であるため、駆動コイルN1側と検知コイルN
21、基準コイルN22側の直流バイアス回路を相互に
分離できる。なお、コンデンサCIは駆動コイルN1側
と検知コイルN21及び基準コイルN22側との結合を
あまり密にしないような値、例えば1〜50PF程度の
値に選定する。
Furthermore, in this embodiment, since the circuit configuration is such that addition is performed through the capacitor C1, the drive coil N1 side and the detection coil N1 side are connected to each other.
21. The DC bias circuits on the reference coil N22 side can be separated from each other. Note that the capacitor CI is selected to a value that does not make the coupling between the drive coil N1 side and the detection coil N21 and reference coil N22 sides too tight, for example, a value of about 1 to 50 PF.

第2図は本発明に係る磁気的検知装置の別の実施例にお
ける電気回路接続図である0図において、第1図と同一
の参照符号は同一性ある構成部分を示している。この実
施例の特徴は、前記電圧加算回路4の他に、検知コイル
N21及び基準コイルN22側に、これらのコイルN2
+、N27のインタフタンスLと共に共振回路を構成す
るコンデンサC2を接続したことである。この場合の共
振回路の共振周波数fOは良く知られているように、f
o=1/2grゴT丁でツー となる、また、共振回路は、一般に第3図に示すような
共振特性と、第4図に示すような位相特性を持つ、そこ
で、この実施例では、共振回路を構成するコンデンサC
2の温度特性もしくは容量値の選定または交流駆動源l
の周波数の調整等によって、第3図に示した共振特性及
び第4図に示した位相特性を変え、系全体の温度変動に
よる差動出力EOの位相変化や電圧値変化を吸収して、
温度補償を行なう。
FIG. 2 is an electrical circuit connection diagram of another embodiment of the magnetic sensing device according to the present invention. In FIG. 0, the same reference numerals as in FIG. 1 indicate the same components. The feature of this embodiment is that in addition to the voltage adding circuit 4, these coils N2 are provided on the detection coil N21 and reference coil N22 sides.
This is because the capacitor C2, which forms a resonant circuit, is connected together with the interface L of + and N27. As is well known, the resonant frequency fO of the resonant circuit in this case is f
o = 1/2gr and Td, and a resonant circuit generally has resonance characteristics as shown in Fig. 3 and phase characteristics as shown in Fig. 4. Therefore, in this embodiment, Capacitor C forming the resonant circuit
2. Selection of temperature characteristics or capacitance value or AC drive source l
By adjusting the frequency, etc., the resonance characteristics shown in Fig. 3 and the phase characteristics shown in Fig. 4 are changed, and the phase change and voltage value change of the differential output EO due to temperature fluctuation of the entire system are absorbed.
Perform temperature compensation.

上述のような共振回路を備える場合、コンデンサC2の
値が比較的大きくなるため、駆動コイルNl側から前述
の電圧加算回路4を通してコンデンサC2に至る回路の
時定数が大きくなり、差動出力Eoの位相にズレを発生
し、微分感度が低下する等の問題か懸念される。しかし
1本発明においては、電圧加算回路4を構成するコンデ
ンサC1が、例えば1〜50PF程度の小容量値となる
ように選定されるので、駆動コイルN、側から電圧加算
回路4を通してコンデンサC2に至る回路の時定数が、
コンデンサCIによって支配され、位相のズレは殆ど問
題とならない。従って、本発明によれば、共振回路を付
加して温度特性を向上させた場合でも、微分感度を低下
させることなく、作動濃度を可変調整することが可能で
ある。
When a resonant circuit as described above is provided, the value of the capacitor C2 becomes relatively large, so the time constant of the circuit from the drive coil Nl side to the capacitor C2 via the voltage addition circuit 4 described above becomes large, and the differential output Eo becomes There are concerns that this may cause a phase shift and a decrease in differential sensitivity. However, in the present invention, since the capacitor C1 constituting the voltage adding circuit 4 is selected to have a small capacitance value of, for example, about 1 to 50 PF, the voltage adding circuit 4 is connected to the capacitor C2 from the drive coil N side. The time constant of the circuit leading to
It is dominated by the capacitor CI, and phase shift poses almost no problem. Therefore, according to the present invention, even when a resonant circuit is added to improve the temperature characteristics, it is possible to variably adjust the working concentration without reducing the differential sensitivity.

第5図は本発明に係る磁気的検知装置を構成する差動ト
ランスの具体例を示す断面図である。この実施例では、
例えば壷形コア等のように、磁路の一方が開いている一
対のコア5,6を背中合せに組合せ、コア5.6の中脚
部51.61に駆動コイルN1を連続ルて巻装すると共
に、中脚部51には検知コイルN21を、また中脚部6
1には基準コイルN22をそれぞれ巻装しである。コア
5の開磁路側の前面に位置する非磁性ケース7の面板7
1の表面側は、トナー8の接触するトナー検知面として
利用される。
FIG. 5 is a sectional view showing a specific example of a differential transformer constituting the magnetic sensing device according to the present invention. In this example,
For example, a pair of cores 5 and 6 with one side of the magnetic path open, such as a pot-shaped core, are combined back to back, and a drive coil N1 is continuously wound around the middle leg portion 51.61 of the core 5.6. At the same time, a detection coil N21 is attached to the middle leg portion 51, and a detection coil N21 is attached to the middle leg portion 6.
1 is wound with a reference coil N22, respectively. Face plate 7 of non-magnetic case 7 located at the front of core 5 on the open magnetic path side
The surface side of the toner 1 is used as a toner detection surface that the toner 8 comes into contact with.

9は基準コイルN72の開磁路の一部に移動調整可能に
設けた導電体である。この実施例では、非磁性ケース7
の側面板72に、黄銅、アルミニュウム等の導電性材料
で成るネジ状の導電体9をネジ結合させ、この導電体9
を、基準コイルN22を構成するコア5の端面前方に形
成される開磁路側において、矢印(イ)の如く、コア5
の端面に対して平行に進退調整できるように取付けであ
る。
Reference numeral 9 denotes a conductor movably provided in a part of the open magnetic path of the reference coil N72. In this embodiment, the non-magnetic case 7
A screw-shaped conductor 9 made of a conductive material such as brass or aluminum is screwed to the side plate 72 of the
On the open magnetic path side formed in front of the end face of the core 5 constituting the reference coil N22, as shown by the arrow (A), the core 5
It is installed so that it can be adjusted forward and backward parallel to the end face of the

上述のような導電体9を設けると、駆動コイルN1を駆
動した場合、基準コイルN22に生じる磁束によって導
電体9に渦電流が発生し、この渦電流効果によって基準
コイルN22に生じる出力電圧E2が変化する。従って
、導電体9の移動調整によって基準コイルN22に生じ
る出力電圧E?を可変調整し、それにより、この出力電
圧E2と検知コイルN21に生じる出力電圧E1 との
差動出力EOを調整し、作動濃度を調整することが可能
となる。従って、この実施例においては、導電体9によ
る作動濃度調整と、前述の電圧加9回路4による作動濃
度調整の、2種類の作動濃度調整機能を持つこととなる
。このような2種類の作動濃度調整機構を持つと、電圧
加算回路4による作動濃度調整は、専ら、差動トランス
の製造上のバラツキ吸収手段とし、導電体9による作動
濃度調整は当該磁気的検知装置を組込んだ機器側から要
求される特性に応じて、ユーザ側で作動濃度を調整する
手段として利用でき、作動濃度調整の融通性が非常に高
くなる。
When the conductor 9 as described above is provided, when the drive coil N1 is driven, an eddy current is generated in the conductor 9 due to the magnetic flux generated in the reference coil N22, and the output voltage E2 generated in the reference coil N22 is increased due to this eddy current effect. Change. Therefore, the output voltage E? produced in the reference coil N22 by adjusting the movement of the conductor 9? It becomes possible to variably adjust the differential output EO between this output voltage E2 and the output voltage E1 generated at the detection coil N21, thereby adjusting the operating concentration. Therefore, this embodiment has two types of working concentration adjustment functions: one using the conductor 9 and the other using the voltage application circuit 4 described above. With such two types of working concentration adjustment mechanisms, the working concentration adjustment by the voltage adding circuit 4 is exclusively used as a means for absorbing manufacturing variations in the differential transformer, and the working concentration adjustment by the conductor 9 is performed by the magnetic detection. It can be used as a means for the user to adjust the working concentration according to the characteristics required by the equipment in which the device is installed, and the flexibility in adjusting the working concentration is extremely high.

しかも、実施例に示したように、導電体9を基準コイル
N22の開磁路側で進退させるだけの簡単な構成である
ので、ユーザ側で作動濃度を簡単かつ確実に調整でき、
コスト的に安価で安定に動作する磁気的検知装置を提供
できる。
Moreover, as shown in the embodiment, since the configuration is simple, simply moving the conductor 9 forward and backward on the open magnetic path side of the reference coil N22, the user can easily and reliably adjust the operating concentration.
A magnetic detection device that is inexpensive and operates stably can be provided.

なお、前記導電体9はその移動調整によって基準コイル
N22の出力電圧E?をfff変調整できれば良いので
あって1図示するようなネジ結合に限らず、種々の構造
を取ることができる。
The conductor 9 adjusts its movement to adjust the output voltage E? of the reference coil N22. It is only necessary to be able to adjust fff, and it is not limited to a screw connection as shown in the figure, but various structures can be used.

また、導電体9を、フェライト等の磁性体によって置換
することもできる。導電体9の代りに磁性体を用いた場
合には、基準コイルN22の磁路の磁気的効率及びその
出力電圧E2が、この磁性体の進退調整によって調整さ
れるので、導電体を用いた場合と同様に、検知レベルを
調整することができる。
Further, the conductor 9 can also be replaced with a magnetic material such as ferrite. When a magnetic body is used instead of the conductor 9, the magnetic efficiency of the magnetic path of the reference coil N22 and its output voltage E2 are adjusted by adjusting the advance and retreat of this magnetic body. Similarly, the detection level can be adjusted.

更に、上記実施例では説明の具体化のため、トナー濃度
を検知する磁気的検知装置を例にとって説明したが、こ
れに限らず、磁性体の存在、分量、濃度または距離等、
磁性体検知一般に広く利用でき、更に磁性体に限らず、
導電体検知にも利用することができる。導電体検知の場
合には、導電体の渦電流損に伴なって検知コイルの出力
電圧が低ドし、差動出力が変化するので、それを利用す
ることとなる。
Furthermore, in order to make the explanation more concrete, the above embodiments have been explained using a magnetic detection device that detects toner concentration as an example, but the present invention is not limited to this, and the presence, amount, concentration, distance, etc. of a magnetic substance, etc.
Can be widely used for detecting magnetic substances in general, and is not limited to magnetic substances.
It can also be used to detect conductors. In the case of conductor detection, the output voltage of the detection coil decreases due to the eddy current loss of the conductor, and the differential output changes, so this is utilized.

本発明の効果 以上述べたように、本発明は、交流で励振される駆動コ
イルと、該駆動コイルに結合される検知コイル及び基準
コイルとを具備し、前記検知コイルの出力と前記基準コ
イルの出力との差動出力を検知信号とする磁気的検知装
置において、前記駆動コイル駆動″屯圧の一部を前記差
動出力に加算する回路を有することを特徴とするから、
駆動コイル側から基へりコイルまたは検知コイル側に、
例えば可変抵抗器や小容量イダ1のコンデンサ等による
電圧加算回路を備えるだけの簡単な構成で、差動トラン
スの製造上のバラツキによる作動濃度の/<ラツキを、
簡単かつ確実に調整し得る小型かつ安価な磁気的検知装
置を提供することができる。
Effects of the Present Invention As described above, the present invention includes a drive coil excited with alternating current, a detection coil and a reference coil coupled to the drive coil, and the output of the detection coil and the reference coil. A magnetic detection device that uses a differential output as a detection signal is characterized by having a circuit that adds a part of the driving coil drive pressure to the differential output,
From the drive coil side to the base coil or detection coil side,
For example, with a simple configuration that includes a voltage addition circuit using a variable resistor, a small capacitance Ida 1 capacitor, etc., it is possible to eliminate /< irregularities in the operating concentration due to manufacturing variations in differential transformers.
A compact and inexpensive magnetic sensing device that can be easily and reliably adjusted can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る磁気的検知装置の電気回路図、f
s2図は本発明に係る磁気的検知装置の別の実施例にお
ける電気回路図、第3図は同じくその共振特性図、第4
図は同じく位相特性図、第5図は本発明に係る磁気的検
知装置を構成する差動トランスの断面図、第6図は従来
の磁気的検知装置の電気回路図、第7図は従来の磁気的
検知装置の回路作用を説明するための波形図、第8図は
トナー濃度と出力電圧との関係を示す図。 第9図〜第11図は従来の磁気的検知装置における差動
トランスの結線図である。 1−・−交流駆動M  2・拳・差動トランス3・・・
信号処理回路 4・φ・電圧加算回路N、  ・・・駆
動コイル N21 ”−Φ検知コイルN72・会・基準
コイル VR・・・抵抗分圧回路C1・・・コンデンサ 第1図 R 第2図 第3図 1し皮廖文 □ 第7図 第8図 第9図 第10図 第11図 B+
FIG. 1 is an electric circuit diagram of a magnetic sensing device according to the present invention, f
Figure s2 is an electric circuit diagram of another embodiment of the magnetic sensing device according to the present invention, Figure 3 is a resonance characteristic diagram thereof, and Figure 4 is a diagram of its resonance characteristics.
5 is a cross-sectional view of a differential transformer constituting the magnetic sensing device according to the present invention, FIG. 6 is an electric circuit diagram of a conventional magnetic sensing device, and FIG. 7 is a diagram of a conventional magnetic sensing device. FIG. 8 is a waveform diagram for explaining the circuit action of the magnetic detection device, and FIG. 8 is a diagram showing the relationship between toner concentration and output voltage. 9 to 11 are wiring diagrams of a differential transformer in a conventional magnetic sensing device. 1-・-AC drive M 2・Fist・Differential transformer 3...
Signal processing circuit 4・φ・Voltage addition circuit N, ... Drive coil N21 ''-φ detection coil N72・Reference coil VR...Resistor voltage divider circuit C1...Capacitor Fig. 1 R Fig. 2 3 Figure 1 Shipi Liaowen □ Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 B+

Claims (4)

【特許請求の範囲】[Claims] (1)交流で励振される駆動コイルと、該駆動コイルに
結合される検知コイル及び基準コイルとを具備し、前記
検知コイルの出力と前記基準コイルの出力との差動出力
を検知信号とする磁気的検知装置において、前記駆動コ
イル駆動電圧の一部を前記差動出力に加算する回路を有
することを特徴とする磁気的検知装置。
(1) A drive coil excited by alternating current, a detection coil and a reference coil coupled to the drive coil, and a differential output between the output of the detection coil and the output of the reference coil is used as a detection signal. What is claimed is: 1. A magnetic sensing device comprising: a circuit for adding a part of the drive coil drive voltage to the differential output.
(2)前記回路は、前記駆動コイル両端間に接続された
抵抗分圧回路と、この抵抗分圧回路から前記基準コイル
または検知コイルの何れか一方に接続されたコンデサ回
路とより構成されることを特徴とする特許請求の範囲第
1項に記載の磁気的検知装置。
(2) The circuit includes a resistive voltage divider circuit connected between both ends of the drive coil, and a capacitor circuit connected from the resistive voltage divider circuit to either the reference coil or the detection coil. A magnetic sensing device according to claim 1, characterized in that:
(3)前記抵抗分圧回路は、可変抵抗回路であることを
特徴とする特許請求の範囲第2項に記載の磁気的検知装
置。
(3) The magnetic sensing device according to claim 2, wherein the resistance voltage divider circuit is a variable resistance circuit.
(4)前記検知コイル及び前記基準コイル側に共振回路
を有することを特徴とする特許請求の範囲第1項、第2
項または第3項に記載の磁気的検知装置。
(4) Claims 1 and 2 include a resonant circuit on the detection coil and reference coil sides.
The magnetic sensing device according to item 1 or 3.
JP59281384A 1984-12-24 1984-12-24 Magnetic detecting device Granted JPS61149859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59281384A JPS61149859A (en) 1984-12-24 1984-12-24 Magnetic detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59281384A JPS61149859A (en) 1984-12-24 1984-12-24 Magnetic detecting device

Publications (2)

Publication Number Publication Date
JPS61149859A true JPS61149859A (en) 1986-07-08
JPH0371068B2 JPH0371068B2 (en) 1991-11-11

Family

ID=17638384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59281384A Granted JPS61149859A (en) 1984-12-24 1984-12-24 Magnetic detecting device

Country Status (1)

Country Link
JP (1) JPS61149859A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63187160U (en) * 1987-05-19 1988-11-30
JPH01210979A (en) * 1988-02-19 1989-08-24 Hitachi Metals Ltd Developing device
JPH0486588A (en) * 1990-07-31 1992-03-19 Nishimatsu Constr Co Ltd M type deep steel reinforcement prober
FR2810738A1 (en) * 2000-06-26 2001-12-28 Jean Pierre Martin Device for forming electromagnetic image of body relative to reference body using magnetic flux induced by open magnetic circuits
JP2002357517A (en) * 2001-03-27 2002-12-13 Hitachi Chem Co Ltd Passive sampler for voc collection
JP2015068774A (en) * 2013-09-30 2015-04-13 京セラドキュメントソリューションズ株式会社 Toner sensor and image forming apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63187160U (en) * 1987-05-19 1988-11-30
JPH0633484Y2 (en) * 1987-05-19 1994-08-31 ティーディーケイ株式会社 Toner concentration detector
JPH01210979A (en) * 1988-02-19 1989-08-24 Hitachi Metals Ltd Developing device
JPH0486588A (en) * 1990-07-31 1992-03-19 Nishimatsu Constr Co Ltd M type deep steel reinforcement prober
FR2810738A1 (en) * 2000-06-26 2001-12-28 Jean Pierre Martin Device for forming electromagnetic image of body relative to reference body using magnetic flux induced by open magnetic circuits
JP2002357517A (en) * 2001-03-27 2002-12-13 Hitachi Chem Co Ltd Passive sampler for voc collection
JP2015068774A (en) * 2013-09-30 2015-04-13 京セラドキュメントソリューションズ株式会社 Toner sensor and image forming apparatus

Also Published As

Publication number Publication date
JPH0371068B2 (en) 1991-11-11

Similar Documents

Publication Publication Date Title
EP0211142B1 (en) Device for measuring displacement
US5469053A (en) E/U core linear variable differential transformer for precise displacement measurement
JPS61149858A (en) Magnetic detecting device
JPS61149859A (en) Magnetic detecting device
JPH0428058Y2 (en)
JPH03282277A (en) Magnetic detection element
JPH07248676A (en) Toner density detecting device
EP1057136B1 (en) Induction sensor
JPS58221172A (en) Electric current detector
US6057683A (en) Induction sensor having conductive concentrator with measuring gap
JPH0194280A (en) Magnetic sensor for detecting magnetic material
JPS59206755A (en) Detector of powder
JPH0624732Y2 (en) Differential transformer
EP0292130B1 (en) Toner concentration detection
JPS62215863A (en) Magnetic detector
JPH05172781A (en) Differential amplification type toner sensor
JPH0633483Y2 (en) Toner concentration detector
JPS62164067A (en) Control method for developer toner concentration
JP2514338B2 (en) Current detector
JPH0355895Y2 (en)
JPS646767A (en) Current detector
JPS61270654A (en) Sensor for toner
JPH04236301A (en) Displacement detector
JPH0526848A (en) Differential amplification type toner sensor
JP2894754B2 (en) Toner density sensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees