JPH0370805A - Controlling method of compound generating plant - Google Patents

Controlling method of compound generating plant

Info

Publication number
JPH0370805A
JPH0370805A JP20563689A JP20563689A JPH0370805A JP H0370805 A JPH0370805 A JP H0370805A JP 20563689 A JP20563689 A JP 20563689A JP 20563689 A JP20563689 A JP 20563689A JP H0370805 A JPH0370805 A JP H0370805A
Authority
JP
Japan
Prior art keywords
output
steam turbine
load
gas turbine
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20563689A
Other languages
Japanese (ja)
Other versions
JP2692974B2 (en
Inventor
Kazue Nagata
永田 一衛
Hitoshi Tanabe
田辺 仁志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1205636A priority Critical patent/JP2692974B2/en
Publication of JPH0370805A publication Critical patent/JPH0370805A/en
Application granted granted Critical
Publication of JP2692974B2 publication Critical patent/JP2692974B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Landscapes

  • Control Of Turbines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To eliminate a gas turbine trip caused by rough burning by either reducing the steam turbine output to an output, which is lower than an ordinary output, or making run-back, when a load dump takes place. CONSTITUTION:If a load dump contact 14 of a load dump detecting circuit 17 is turned on, when a load dump takes place, a relay 26 is excited, and its auxiliary contact 26a is turned off, while another auxiliary contact 26b is turned on. Owing to this switching, automatic selection is made from governing ratio of 1/R1, 16a, to another governing ratio of 1/R2, 16b. As a result, a steam turbine control valve 13 is operated at a high governing ratio only when the load dump takes place. Therefore, the output of a steam turbine 6 is suppressed to a governing ratio which is lower than an ordinary one, and, as a result, a gas turbine 3 is continuously operated at an high output. Accordingly, stabler, low-load operation of the gas turbine 3 can be obtained, thereby increasing the possibility of continuous, isolated operation of the turbine within the plant.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、ガスタービン(−軸型、多軸型を問わない)
と、その排ガスで蒸気発生をする排熱回収ボイラ(HR
8Gと呼ぶ)と、その蒸気発電する蒸気タービンとより
構成される複合発電プラントの負荷遮断時の制御方法に
関するものである。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a gas turbine (regardless of whether it is a -shaft type or a multi-shaft type).
and an exhaust heat recovery boiler (HR) that generates steam from the exhaust gas.
The present invention relates to a control method during load shedding of a combined power generation plant comprised of a steam turbine (referred to as 8G) and a steam turbine that generates steam power.

(従来の技術) 特に、石炭ガス等のように低流量時の燃焼安全性の悪い
燃料を使用したガスタービンを備えた複合発電プラント
においては、例えば石炭ガス化燃料の如きはガスの発熱
量が低く、低流量すなわちガスタービンの極低出力時の
燃焼安定性は非常に悪く、負荷遮断発生から所内単独運
転へ移行したとき、すなわち、所内負荷相当迄ガバナー
により急激に出力を低減した時等は、燃焼不安定となっ
て失火し、ガスタービントリップの可能性がある。
(Prior art) In particular, in a combined cycle power plant equipped with a gas turbine that uses fuel such as coal gas, which has poor combustion safety at low flow rates, the calorific value of gas such as coal gasified fuel is Combustion stability is very poor at low flow rates, i.e., extremely low output of the gas turbine. , combustion may become unstable and a misfire may occur, potentially causing a gas turbine trip.

従来のガスタービンの燃料は、LNG、灯油等の発熱量
の高い燃料であったが、近年の石炭ガス化燃料または高
炉排ガス等は、1000Kcal/ Kgと低発熱量で
あるため、負荷遮断発生時のガスタービンの運転継続に
は問題がある。
Conventional gas turbine fuels have been fuels with a high calorific value such as LNG and kerosene, but in recent years coal gasified fuel or blast furnace exhaust gas has a low calorific value of 1000 Kcal/Kg, so when a load shedding occurs There are problems with continued operation of gas turbines.

この目的のため、負荷遮断発生により、石炭ガス燃料か
ら高発熱量の液体燃料への自動的な燃料切替をして、ガ
スタービンの安定燃焼及び運転継続を達成しようとする
ことも特開昭58−119933号公報で公表されてい
る。
For this purpose, Japanese Patent Application Laid-Open No. 58 (1982) has also attempted to achieve stable combustion and continuous operation of the gas turbine by automatically switching the fuel from coal gas fuel to liquid fuel with a high calorific value when load interruption occurs. It is published in Publication No.-119933.

この従来システムのシステム構成例を第5図に示す石炭
ガスを使用した複合発電プラントを例に説明する。すな
わち、第5図において、石炭燃料は石炭ガス化設備1で
ガス化して精製される。この精製ガスはガスタービン燃
料制御弁2でガスタービン3へのガス燃料流量が調節さ
れ、ガスタービン発電機4の出力が制御される。ガスタ
ービン3の排ガスは、HR8G5に入って蒸気を発生さ
せる。HR8G5へは、石炭ガス化設備の生成ガスの冷
却により発生する蒸気も分流し、これらHR8G5でつ
くられた蒸気は、蒸気タービン制御弁13を介して、蒸
気タービン6に送って仕事をさせ、蒸気タービン発電機
8で電力を発生する。
An example of the system configuration of this conventional system will be explained using a combined power generation plant using coal and gas shown in FIG. 5 as an example. That is, in FIG. 5, coal fuel is gasified and refined in coal gasification equipment 1. The gas turbine fuel control valve 2 adjusts the gas fuel flow rate of this purified gas to the gas turbine 3, and the output of the gas turbine generator 4 is controlled. The exhaust gas from the gas turbine 3 enters the HR8G5 to generate steam. The steam generated by cooling the generated gas of the coal gasification equipment is also diverted to the HR8G5, and the steam produced by the HR8G5 is sent to the steam turbine 6 via the steam turbine control valve 13 to do work and generate steam. A turbine generator 8 generates electric power.

石炭ガス化発電プラントの場合、上記のように石炭ガス
の冷却による蒸気発生が伴なうため、通常の複合発電に
比較してガスタービン−3の出力と蒸気タービン6の出
力の比率が1対1と、蒸気タービン出力の全体出力に占
める割合が大きいという特徴を有する。なお、通常のN
G焚き複合発電の如きは、ガスタービン出カニ蒸気ター
ビン出力は2対1の割合である。また、さらに、前述の
如く、石炭ガス化発電プラントの場合はガスタービンの
燃料である石炭ガスの発熱量が非常に低く、低流量での
ガスタービンにおける燃焼安定性が悪いという特徴も有
する。
In the case of a coal gasification power plant, as mentioned above, steam generation is accompanied by cooling the coal gas, so the ratio of the output of the gas turbine 3 to the output of the steam turbine 6 is 1:1 compared to normal combined cycle power generation. 1, the steam turbine output accounts for a large proportion of the overall output. In addition, normal N
In G-fired combined power generation, the ratio of gas turbine output to steam turbine output is 2:1. Furthermore, as mentioned above, coal gasification power plants have a feature that the calorific value of coal gas, which is the fuel for the gas turbine, is very low, and the combustion stability in the gas turbine is poor at low flow rates.

さて、蒸気タービン発電機8と、ガスタービン発電機4
で発生した電力は、それぞれ遮断器10゜9を介して昇
圧トランス11により昇圧され、電力系統りと系統遮断
器12を介して、接続している。又、このプラントの所
内電力はガスタービンと蒸気タービンのそれぞれの出力
の一部を使用している。一般に所内電力量は全発電出力
の約10%程度である。
Now, the steam turbine generator 8 and the gas turbine generator 4
The electric power generated in each case is boosted by a step-up transformer 11 via a circuit breaker 10.9, and connected to the power grid via a system breaker 12. In addition, the in-house electric power of this plant uses a portion of the output of each of the gas turbine and steam turbine. Generally, the amount of electricity in a station is about 10% of the total power generation output.

第5図のようなシステムにおける運転中において、系統
しゃ断器12の目新又は解放または遠方しゃ断により、
本複合発電プラントが系統6から切り離されると、今ま
で電力系統りに送電していた電力と、所内負荷系統L′
との負荷アンバランスが生じ、所内系統L′の周波数は
瞬時(約1〜2秒)に上昇し、ガスタービン3と蒸気タ
ービン6のガバナーが動作し、ガスタービン燃料制御弁
2と蒸気タービン制御弁13とが、連続的に絞り込まれ
る。この動作はガスタービン出力と蒸気タービン出力の
合計値が所内負荷に見合うところまで継続される。
During operation in a system such as that shown in FIG.
When this combined cycle power generation plant is disconnected from grid 6, the power that was previously transmitted to the power grid and the in-house load grid L'
As a result, the frequency of the station system L' increases instantaneously (about 1 to 2 seconds), the governors of the gas turbine 3 and steam turbine 6 operate, and the gas turbine fuel control valve 2 and steam turbine control Valve 13 is continuously throttled. This operation continues until the sum of the gas turbine output and the steam turbine output matches the station load.

この運転は、所内電力需要のみの負荷を供給しながら、
低出力の運転を継続することから、所内単独運転といい
、電力系統側の事故時のプラント側の有する重要な機能
として、はとんどの従来火力プラントが有しているもの
である。
This operation supplies the load only for the in-house power demand, while
Because it continues to operate at low output, it is called in-plant isolated operation, and is an important function that most conventional thermal power plants have in the event of an accident on the power system side.

(発明が解決しようとする課題) しかして、この所内単独運転時には、単純に計算して、
100%定格負荷運転中の負荷しゃ断の場合には、ガス
タービン:蒸気タービンの出力比率は、1対1の場合は
、所内負荷約lO%のため、ガスタービン、蒸気タービ
ン共に5%出力の運転を行うことによって始めて所内負
荷をガスタービンの発生電力がバランスし、所内周波数
も整定して所内単独運転となる。しかし、5%のガスタ
ービン出力は、ガスタービン出力定格の10%に相当し
、燃焼の不安定性が大きく、ガスタービン失火トリップ
の可能性が高い。ガスタービン3がトリップすれば、H
R865の蒸気発生は阻害され、引き続き蒸気タービン
6のトリップで、所内全停という重大な事態となってし
まう。
(Problem to be solved by the invention) However, during this isolated operation within the station, by simply calculating,
In the case of load interruption during 100% rated load operation, if the gas turbine:steam turbine output ratio is 1:1, the station load is approximately 10%, so both the gas turbine and the steam turbine must be operated at 5% output. By doing this, the power generated by the gas turbine balances the on-site load, the on-site frequency is also stabilized, and on-site independent operation is achieved. However, 5% gas turbine output corresponds to 10% of the gas turbine output rating, resulting in significant combustion instability and a high probability of gas turbine misfire trips. If gas turbine 3 trips, H
The steam generation of R865 is inhibited, and the steam turbine 6 subsequently trips, resulting in a serious situation where the entire station is shut down.

本発明の目的は、低発熱量の燃料を使用した複合発電プ
ラントにおいて、低燃料流量時のガスタービンの不安定
燃料により生ずるガスタービントリップを防止し、ガス
タービンの運転継続を達成するとともに、所内単独運転
を成功させる負荷しゃ断時における複合発電プラントの
制御方法を提供するものである。
The purpose of the present invention is to prevent gas turbine tripping caused by unstable fuel in the gas turbine at low fuel flow rates in a combined cycle power plant that uses fuel with a low calorific value, to achieve continuous operation of the gas turbine, and to The present invention provides a method for controlling a combined power generation plant during load interruption to achieve successful islanding.

[発明の構成] (課題を解決するための手段) 本発明の複合発電プラントの制御方法は、石炭ガス、高
炉排ガスなどの発熱量の低い燃料を使用したガスタービ
ン、排熱回収ボイラおよび蒸気タービンから構成された
複合発電プラントにおいて、負荷遮断発生時に蒸気ター
ビン出力を通常のガバナにより絞り込まれる負荷よりも
低い出力まで絞り込むまたはランバックさせることを特
徴とするものである。
[Structure of the Invention] (Means for Solving the Problems) The method for controlling a combined cycle power plant of the present invention is a method for controlling a combined cycle power plant of the present invention, which uses a gas turbine, an exhaust heat recovery boiler, and a steam turbine that use fuel with a low calorific value such as coal gas and blast furnace exhaust gas. A combined power generation plant constructed of the following is characterized in that when a load shedding occurs, the steam turbine output is throttled or run back to an output lower than the load throttled by a normal governor.

(作 用) 本発明においては、負荷遮断発生により蒸気タービンの
ガバナによる絞り込みを大きくして蒸気タービンの出力
低減効果を大にするかまたは強制的に蒸気タービンをト
リップさせる。
(Function) In the present invention, when a load cutoff occurs, the governor of the steam turbine increases the restriction to increase the output reduction effect of the steam turbine, or the steam turbine is forcibly tripped.

これによって結果的にガスタービン出力を高く保ったよ
うにし、ガスタービンの燃焼安定性を高め、ガスタービ
ンを運転継続させて所内単独運転を成功させる。
As a result, the gas turbine output is kept high, the combustion stability of the gas turbine is improved, and the gas turbine continues to operate, thereby achieving successful isolated operation within the station.

(実施例) 以下、本発明を第1図、第2図、第3図及び第4図に示
す実施例を参照して説明する。本発明の複合発電プラン
トの制御方法が施行される複合発電プラントの制御シス
テムは、第5図のものと同様であり、その蒸気タービン
6の蒸気タービン制御装置及びその負荷遮断検出回路に
特徴を存するものである。
(Example) The present invention will be described below with reference to examples shown in FIGS. 1, 2, 3, and 4. The control system of a combined cycle power plant in which the control method for a combined cycle power plant of the present invention is implemented is similar to that shown in FIG. It is something.

したがって、第1図に示す本発明の実施例としては、蒸
気タービン6の蒸気タービン制御弁13に作動指令を発
する蒸気タービン制御装置25と負荷遮断検出回路17
との関係作用図について説明する。第1図において、蒸
気タービン制御装置25は、速度設定S。と蒸気タービ
ン6の速度S、とを加算器1−58で加算して偏差△f
を算出し、この偏差△fと負荷設定り。とを加算器15
bで加算して蒸気タービン制御弁13に対する制御信号
S2をつくっている。
Therefore, the embodiment of the present invention shown in FIG.
The relationship diagram will be explained. In FIG. 1, the steam turbine controller 25 has a speed setting S. and the speed S of the steam turbine 6 are added by an adder 1-58 to obtain the deviation △f.
Calculate this deviation △f and load setting. and adder 15
The control signal S2 for the steam turbine control valve 13 is created by adding the signals at step b.

本発明の新制御方法を施行するには、加算器15aと加
算器15bとの間の偏差△fの回路に、1/R1調定率
16aと1/R2調定率16bとを設け、この画調定率
16a、16bとを接点26a、26bの切換によって
選択的に切換えるように構成したものである。そして第
1図に示す実施例においては、二つの調定率16a、1
6bを切換えるに、負荷遮断検出回路17によって行わ
せている。すなわち、負荷遮断が発生すると、負荷遮断
検出回路17の接点14が閉じてリレー26が動作する
と、調定率切換回路の接点26aが開いて接点26bが
閉じ、偏差△fは1/R2調定率16bを経て加算器1
5bに入力することになる。
In order to carry out the new control method of the present invention, a 1/R1 adjustment rate 16a and a 1/R2 adjustment rate 16b are provided in the circuit for the deviation Δf between the adder 15a and the adder 15b, and The fixed ratios 16a and 16b are configured to be selectively switched by switching contacts 26a and 26b. In the embodiment shown in FIG. 1, two adjustment rates 16a, 1
6b is switched by the load cutoff detection circuit 17. That is, when a load shedding occurs, the contact 14 of the load shedding detection circuit 17 closes and the relay 26 operates, the contact 26a of the regulation rate switching circuit opens and the contact 26b closes, and the deviation △f becomes 1/R2 regulation rate 16b. Adder 1 via
5b.

ここで、蒸気タービン制御装置25の1/R4調定率1
6aは、通常の調定率の5%(R0=0.05)で、5
%回転数偏差発生で蒸気タービン6の出力を無負荷まで
絞り込む機能を有する。
Here, 1/R4 regulation rate 1 of the steam turbine control device 25
6a is 5% of the normal adjustment rate (R0 = 0.05), 5
It has a function of reducing the output of the steam turbine 6 to no load when a % rotation speed deviation occurs.

これに対し、負荷遮断発生時はさらに大きい1/R2調
定率16bの2%(R2=0.02)を自動的に選択す
ることになり、2%の回転数偏差で蒸気タービン6の出
力を無負荷まで絞り込むようにし、蒸気タービン出力の
低減を図り、結果的にガスタービン3の出力分を増加し
てガスタービンの安定運転を図るようにしたものである
On the other hand, when a load interruption occurs, an even larger 1/R2 regulation ratio 16b of 2% (R2 = 0.02) is automatically selected, and the output of the steam turbine 6 is adjusted with a rotational speed deviation of 2%. The output of the steam turbine is reduced by reducing the load to no load, and as a result, the output of the gas turbine 3 is increased to ensure stable operation of the gas turbine.

次に第1図に示す実施例により本発明の複合発電プラン
トの制御方法を説明する。通常運転時は速度設定S。と
速度S1とが系統に併列していて偏差△fは零で、負荷
設定り。の変化によって蒸気タービンの制御弁13が開
閉され、蒸気タービン6の出力が増減することになる。
Next, a method of controlling a combined cycle power plant according to the present invention will be explained using the embodiment shown in FIG. During normal operation, speed is set to S. and speed S1 are parallel to the system, the deviation △f is zero, and the load is set. The control valve 13 of the steam turbine is opened or closed by the change in the steam turbine 6, and the output of the steam turbine 6 is increased or decreased.

この状態では通常の調定率16aは1/Rに選択されて
いる。
In this state, the normal adjustment rate 16a is selected to be 1/R.

一般にその電力系統に接続された発電機は同じ調定率に
設定され、5%程度がよく使用される値である。この設
定の場合の周波数(回転数上昇)と蒸気タービン制御弁
13の動き、すなわち蒸気タービン6の出力変化割合を
図示したものが第2図である。
Generally, generators connected to the power system are set to the same regulation rate, and a value of about 5% is often used. FIG. 2 illustrates the frequency (increase in rotational speed) and the movement of the steam turbine control valve 13, that is, the rate of change in the output of the steam turbine 6 in this setting.

すなわち第2図において、100%負荷設定で1/R調
定率16aの5%の場合は、偏差△f。
That is, in FIG. 2, when the 1/R adjustment rate 16a is 5% at 100% load setting, the deviation Δf.

の回転数偏差発生で蒸気タービン6の出力を出力Plま
で負荷を絞り込むことを示している。これに対し、負荷
遮断検出回路17のリレー26の補助接点26a、26
bの切換によって1/R調定率16aから1/R2調定
率16bへ切換える。
It is shown that the load is reduced to the output of the steam turbine 6 to the output Pl when a rotational speed deviation occurs. On the other hand, the auxiliary contacts 26a, 26 of the relay 26 of the load cutoff detection circuit 17
By switching b, the 1/R adjustment rate 16a is switched to the 1/R2 adjustment rate 16b.

この1/R2調定率16bは第2図に示すように2%調
定率のため、同じ偏差△f、の回転数偏差で出力P2ま
で蒸気タービン6の出力を低減することができる。
Since this 1/R2 regulation rate 16b is a 2% regulation rate as shown in FIG. 2, the output of the steam turbine 6 can be reduced to the output P2 with the same rotation speed deviation Δf.

したがって、第1図において、負荷遮断発生時に負荷遮
断検出回路17の負荷遮断接点14がオンすることによ
り、リレー26が例示してその補動接点26aがオフし
、補助接点26bがオンする。この両補助接点26a、
26bの切換により、1/R1の調定率16aから1/
R2の調定率16bに自動的に選択される。この調定率
の切換は、負荷遮断発生時のみ高い調定率で蒸気タービ
ン制御弁13を動作させることになり、蒸気タービン6
の出力は通常の1/R1の調定率(0,5)の時よりも
整定値が低い調定率(0,2)に押えられ、結果的にガ
スタービン3の出力は高い出力で運転継続することが可
能となる。
Therefore, in FIG. 1, when a load shedding occurs, the load shedding contact 14 of the load shedding detection circuit 17 is turned on, the relay 26 is exemplified, its auxiliary contact 26a is turned off, and its auxiliary contact 26b is turned on. Both auxiliary contacts 26a,
By switching 26b, the adjustment rate 16a of 1/R1 is changed to 1/R1.
The adjustment rate 16b of R2 is automatically selected. This regulation rate switching operates the steam turbine control valve 13 at a high regulation rate only when a load cutoff occurs, and the steam turbine control valve 13 is operated at a high regulation rate only when load interruption occurs.
The output of the gas turbine 3 is suppressed to the regulation rate (0,2), which has a lower setting value than the normal regulation rate (0,5) of 1/R1, and as a result, the output of the gas turbine 3 continues to operate at a high output. becomes possible.

このように本発明の制御方法によれば、蒸気タービン6
の出力削減が大きく、その分だけガスタービン3の出力
は高くとれるため、ガスタービン3の燃料流量も多い。
As described above, according to the control method of the present invention, the steam turbine 6
Since the output reduction is large and the output of the gas turbine 3 can be increased accordingly, the fuel flow rate of the gas turbine 3 is also large.

したがって、より安定したガスタービンの低負荷運転が
可能となり、所内単独運転継続の可能性が増大する。
Therefore, more stable low-load operation of the gas turbine is possible, and the possibility of continuing independent operation within the plant increases.

第1図に示す実施例はリレー26の補助接点26a、2
6bで1/R1調定率16aと1/R2調定率16とを
切換えるのであるが、この回路はディジタル回路の設定
値切換回路でも実現可能である。また第1図においては
、ガバナの調定率の変更に着目した手法であるが、最終
目的は蒸気タービン6の出力を可能な限り低(して運転
すればよいため、ガバナを使用せずに例えばある最低出
力に強制的に制御するように蒸気タービン制御弁13の
開度設定をランバックさせる手法でもよい。
The embodiment shown in FIG.
6b switches between the 1/R1 adjustment rate 16a and the 1/R2 adjustment rate 16, but this circuit can also be realized by a set value switching circuit of a digital circuit. In addition, in Fig. 1, the method focuses on changing the regulation rate of the governor, but the ultimate purpose is to operate the steam turbine 6 with the output as low as possible (for example, without using a governor). Alternatively, the opening degree setting of the steam turbine control valve 13 may be run back so as to forcefully control the output to a certain minimum output.

次に第3図に示す本発明の他の実施例について説明する
。本実施例では、蒸気タービン制御装置25の加算器1
5a、15bの間に1/R調定率16aのみを設け、加
算器15bと蒸気タービン制御弁13との間に低値優先
回路23を設け、予め設定しである最低出力信号発生器
22の信号と偏差△fとの低値優先制御して最低出力信
号を蒸気タービン制御弁13に与えて蒸気タービン6の
出力を急激に減少させるものである。
Next, another embodiment of the present invention shown in FIG. 3 will be described. In this embodiment, the adder 1 of the steam turbine control device 25
Only a 1/R adjustment rate 16a is provided between 5a and 15b, and a low value priority circuit 23 is provided between the adder 15b and the steam turbine control valve 13, and a preset minimum output signal generator 22 signal is provided. The lowest output signal is given to the steam turbine control valve 13 to rapidly reduce the output of the steam turbine 6 by giving priority to the lowest value of the deviation Δf.

すなわち、負荷遮断検出回路17の負荷遮断発生接点↑
4がオンすると、リレー26の補助接点26aがオンし
て最低出力信号発生器22の信号を低値優先回路23に
入力する。したがって、蒸気タービン制御弁13は低値
優先回路23の信号により制御され、蒸気タービン6の
出力を急激に減少させるものである。またこの負荷低減
の手法は、第3図のように低値優先回路23を使用せず
に、負荷設定り。をランバックさせることでも対応でき
る。すなわち、結果的に蒸気タービン制御弁13を通常
のガバ制御でなく、ガバナで設定される蒸気タービン制
御弁13の開度よりも低い開度に設定できる方法であれ
ばよいことになる。
In other words, the load shedding occurrence contact of the load shedding detection circuit 17↑
4 turns on, the auxiliary contact 26a of the relay 26 turns on and inputs the signal from the lowest output signal generator 22 to the low value priority circuit 23. Therefore, the steam turbine control valve 13 is controlled by the signal from the low value priority circuit 23, and rapidly reduces the output of the steam turbine 6. Moreover, this load reduction method does not use the low value priority circuit 23 as shown in FIG. 3, but instead sets the load. This can also be handled by running back. That is, as a result, any method that can set the steam turbine control valve 13 to an opening degree lower than the opening degree of the steam turbine control valve 13 set by the governor is sufficient instead of the usual governor control.

次に第4図に示す他の実施例について説明する。Next, another embodiment shown in FIG. 4 will be described.

この実施例は負荷遮断発生時に強制的に蒸気タービン6
をトリップさせる方法を示している。すなわち、蒸気タ
ービン6の蒸気タービン制御弁13と直列に蒸気止弁2
1を設け、このトリップ用電磁弁18を負荷遮断検出回
路17と蒸気タービントリップ回路27とで制御するよ
うにしである。
In this embodiment, when a load interruption occurs, the steam turbine 6 is forced to
shows how to trip. That is, the steam stop valve 2 is connected in series with the steam turbine control valve 13 of the steam turbine 6.
1 is provided, and this trip electromagnetic valve 18 is controlled by a load cutoff detection circuit 17 and a steam turbine trip circuit 27.

第4図において、負荷遮断検出回路17のリレー26の
接点26cは、蒸気タービントリップ回路27に入力さ
れている。この蒸気タービントリップ回路27には、ト
リップリレー19を励磁させる他の蒸気タービントリッ
プの原因接点20があり、これらの接点と並列に負荷遮
断発生接点26cが挿入されている。
In FIG. 4, the contact 26c of the relay 26 of the load interruption detection circuit 17 is input to the steam turbine trip circuit 27. This steam turbine trip circuit 27 has another steam turbine trip causing contact 20 that excites the trip relay 19, and a load interruption generation contact 26c is inserted in parallel with these contacts.

この負荷遮断発生接点26cによりトリップリレー19
が励磁し、トリップ用電磁弁18を励磁させ、蒸気止弁
21の油筒への供給油をドレンさせ、蒸気止弁21を瞬
時に全閉として蒸気タービン6をトリップさせる。蒸気
タービン6がトリップすれば、所内負荷全部をガスター
ビン3で負うことになり、結果的にガスタービン3.蒸
気タービン6で半分ずつ分担している場合は、ガスター
ビン3単独で所内単独運転時はガスタービン、蒸気ター
ビン共存の場合よりも2倍のガスタービン3の出力を出
すことができ、ガスタービン3の安定燃焼に大きく寄与
する。
Trip relay 19 is activated by this load cutoff generation contact 26c.
is excited, the trip electromagnetic valve 18 is excited, the oil supplied to the oil cylinder of the steam stop valve 21 is drained, the steam stop valve 21 is instantly fully closed, and the steam turbine 6 is tripped. If the steam turbine 6 trips, the entire station load will be borne by the gas turbine 3, and as a result, the gas turbine 3. When the steam turbines 6 share half the power, the output of the gas turbine 3 can be twice as much as when the gas turbine 3 is operated independently in the plant compared to the case where the gas turbine and the steam turbine coexist. greatly contributes to the stable combustion of

[発明の効果] 以上のように本発明においては、負荷遮断発生時に蒸気
タービンの出力を通常の制御における整定出力よりもさ
らに低い出力まで下げてやるか、または強制的に蒸気タ
ービンをトリップさせることにより、結果として所内負
荷をになうガスタービン出力を冬目にすることにより、
ガスタービンの燃料流量はその分だけ多くなり、ガスタ
ービンの安定燃焼によりガスタービンの運転継続が可能
になり、結果的に所内単独運転を成功させることにより
、所内全停という重大事故を防止することができる。
[Effects of the Invention] As described above, in the present invention, when a load interruption occurs, the output of the steam turbine is lowered to an output lower than the set output in normal control, or the steam turbine is forcibly tripped. As a result, by reducing the gas turbine output, which reduces the plant load,
The fuel flow rate of the gas turbine increases accordingly, and the stable combustion of the gas turbine allows the gas turbine to continue operating.As a result, by achieving successful isolated operation within the station, it is possible to prevent serious accidents that would result in a complete shutdown of the station. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の複合発電プラントの制御方法を説明す
るための蒸気タービン制御装置の一実施例を示す制御系
統図、第2図はその蒸気タービン出力と偏差との関係を
示す特性図、第3及び第4図はそれぞれ本発明の他の実
施例を示す蒸気タービン制御装置の制御系統図、第5図
は複合プラントを説明するための概略構成図である。 3・・・蒸気タービン制御弁 4・・・負荷遮断発生接点 5a、15b・・・加算器 6a、16b・・・調定率 7・・・負荷遮断検出回路 9・・・トリップリレー 8・・・トリップ用電磁弁 0・・・蒸気タービントリップ原因接点1・・・蒸気止
弁 2・・・最低出力信号発生器 3・・・低値優先回路 5・・・蒸気タービン制御装置 6・・・リレー 7・・・蒸気タービントリップ回路 1・・・石炭ガス化設備 3・・・ガスタービン 5・・・排熱回収ボイラ(HR3G) 6・・・蒸気タービン (8733)代理人 弁理士 猪 股 祥(ほか 1名) 第1図 第3図 第2図
FIG. 1 is a control system diagram showing an embodiment of a steam turbine control device for explaining the control method for a combined cycle power plant of the present invention, and FIG. 2 is a characteristic diagram showing the relationship between the steam turbine output and deviation. 3 and 4 are control system diagrams of a steam turbine control device showing other embodiments of the present invention, respectively, and FIG. 5 is a schematic configuration diagram for explaining a composite plant. 3...Steam turbine control valve 4...Load cutoff occurrence contacts 5a, 15b...Adders 6a, 16b...Adjustment rate 7...Load cutoff detection circuit 9...Trip relay 8... Trip solenoid valve 0...Steam turbine trip cause contact 1...Steam stop valve 2...Minimum output signal generator 3...Low value priority circuit 5...Steam turbine control device 6...Relay 7...Steam turbine trip circuit 1...Coal gasification equipment 3...Gas turbine 5...Exhaust heat recovery boiler (HR3G) 6...Steam turbine (8733) Agent Patent attorney Sho Inomata ( (and 1 other person) Figure 1 Figure 3 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 石炭ガス、高炉排ガスなどの発熱量の低い燃料を使用し
たガスタービン、排熱回収ボイラおよび蒸気タービンか
ら構成された複合発電プラントにおいて、負荷遮断発生
時に蒸気タービン出力を通常のガバナにより絞り込まれ
る負荷よりも低い出力まで絞り込むまたはランバックさ
せることを特徴とする複合発電プラントの制御方法。
In a combined power generation plant consisting of a gas turbine that uses fuel with a low calorific value such as coal gas or blast furnace exhaust gas, an exhaust heat recovery boiler, and a steam turbine, when a load shedding occurs, the steam turbine output is lower than the load that is throttled by a normal governor. A method for controlling a combined power generation plant, characterized in that the output is reduced to a low output or runback.
JP1205636A 1989-08-10 1989-08-10 Control method for combined cycle power plant Expired - Lifetime JP2692974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1205636A JP2692974B2 (en) 1989-08-10 1989-08-10 Control method for combined cycle power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1205636A JP2692974B2 (en) 1989-08-10 1989-08-10 Control method for combined cycle power plant

Publications (2)

Publication Number Publication Date
JPH0370805A true JPH0370805A (en) 1991-03-26
JP2692974B2 JP2692974B2 (en) 1997-12-17

Family

ID=16510174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1205636A Expired - Lifetime JP2692974B2 (en) 1989-08-10 1989-08-10 Control method for combined cycle power plant

Country Status (1)

Country Link
JP (1) JP2692974B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6141952A (en) * 1997-10-06 2000-11-07 Asea Brown Boveri Ag Method of operating a combined-cycle power plant
JP2012246889A (en) * 2011-05-31 2012-12-13 Hitachi Ltd Turbine control device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS541742A (en) * 1977-06-03 1979-01-08 Hitachi Ltd Controller of complex generating plant
JPS5564106A (en) * 1978-11-02 1980-05-14 Ishikawajima Harima Heavy Ind Co Ltd Control system for composite gasification power plant

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS541742A (en) * 1977-06-03 1979-01-08 Hitachi Ltd Controller of complex generating plant
JPS5564106A (en) * 1978-11-02 1980-05-14 Ishikawajima Harima Heavy Ind Co Ltd Control system for composite gasification power plant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6141952A (en) * 1997-10-06 2000-11-07 Asea Brown Boveri Ag Method of operating a combined-cycle power plant
JP2012246889A (en) * 2011-05-31 2012-12-13 Hitachi Ltd Turbine control device

Also Published As

Publication number Publication date
JP2692974B2 (en) 1997-12-17

Similar Documents

Publication Publication Date Title
JP2004027848A (en) Gas turbine controller
US6810675B2 (en) Method for operating a combined-cycle power station
JP3828738B2 (en) Gas turbine fuel control system
JPH0370805A (en) Controlling method of compound generating plant
JPH08246814A (en) Combined cycle generation plant using refuse incinerator
JP3116815B2 (en) Control method of combined cycle plant
JP4256688B2 (en) Speed controller for combined cycle power plant
Response Guidelines for enhancing power plant response to partial load rejections
US7430868B2 (en) Method of operating a thermal power plant
JP4560481B2 (en) Steam turbine plant
JP3144440B2 (en) Multi-shaft combined cycle power plant
JPH0374525A (en) Gas turbine control method
JP2749123B2 (en) Power plant control method and device
JP2000303855A (en) Control device for gasification combined power generation plant
JPH0241261B2 (en)
JP2612023B2 (en) Gas turbine control device
JPS6390606A (en) Governor free control device for combined plant
Vedwal et al. Island Mode Operation (IMO) for Gas Combined SPP Plants
JP3747257B2 (en) Power generation control device
JP2000204906A (en) Overload preventing device for transmission line capacity in thermal power plant
JP2004060615A (en) Control device for gas turbine plant and operation control method for gas turbine plant
Si et al. Research on Electric Boiler Auxiliary Thermal Power Unit Operation in Isolated Grid
JP3502877B2 (en) Turbine operation method during isolated operation
JP3844929B2 (en) Burner number control device
JPH0539901A (en) Method and device for automatically controlling boiler