JPH0241261B2 - - Google Patents
Info
- Publication number
- JPH0241261B2 JPH0241261B2 JP57070328A JP7032882A JPH0241261B2 JP H0241261 B2 JPH0241261 B2 JP H0241261B2 JP 57070328 A JP57070328 A JP 57070328A JP 7032882 A JP7032882 A JP 7032882A JP H0241261 B2 JPH0241261 B2 JP H0241261B2
- Authority
- JP
- Japan
- Prior art keywords
- power generation
- plant
- power
- load
- turbine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000010248 power generation Methods 0.000 claims description 41
- 238000000034 method Methods 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 26
- 239000000446 fuel Substances 0.000 description 21
- 239000007789 gas Substances 0.000 description 15
- 230000005540 biological transmission Effects 0.000 description 9
- 238000002485 combustion reaction Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 230000007423 decrease Effects 0.000 description 5
- 238000011084 recovery Methods 0.000 description 5
- 239000003570 air Substances 0.000 description 4
- 239000000567 combustion gas Substances 0.000 description 4
- 230000005611 electricity Effects 0.000 description 4
- 239000008400 supply water Substances 0.000 description 3
- 230000004044 response Effects 0.000 description 2
- 238000013019 agitation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000002828 fuel tank Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
Landscapes
- Supply And Distribution Of Alternating Current (AREA)
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は系統事故発生時に発電プラントを所内
単独運転に移行させ、事故復旧後は系統に再併入
させる発電プラントの運転・制御方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for operating and controlling a power generation plant, which shifts the power generation plant to in-house isolated operation when a system accident occurs, and rejoins the system after the accident is restored.
最近の火力発電プラントにおいては、送電系統
に事故があつた場合に事故が復旧するまでの間、
系統から分離し且つボイラを消火することなく、
発電機の負荷を所内負荷だけをもつた状態で運転
を継続する機能を備えたものが多くなつてきてい
る。これは、系統事故復旧後、直ちに発電プラン
トを系統に併入し、負荷上昇して電力の早期安定
供給をはかるためであり、一般にはこのような機
能をFCB(Fast Cut Back)と呼んでいる。この
FCB運転の実施によつて、系統の復旧を待つて
迅速な供給力の回復、発電プラント再起動にあた
つての運転操作の簡略化など電力供給信頼性の向
上に大きく寄与しているが、運転面、設備面で更
に改善が望まれているのが現状況である。
In recent thermal power plants, when an accident occurs in the power transmission system, until the accident is restored,
without separating from the system and extinguishing the boiler.
Increasingly, generators are equipped with a function to continue operation with only the on-site load on the generator. This is to immediately join the power generation plant to the grid and increase the load to ensure an early and stable supply of electricity after the grid fault is restored.This function is generally referred to as FCB (Fast Cut Back). . this
Implementation of FCB operations has greatly contributed to improving the reliability of power supply, such as by quickly restoring supply capacity while waiting for grid restoration, and by simplifying operations when restarting power plants. The current situation is that further improvements are desired in terms of operation and equipment.
第1図はそのようなFCB運転を行う火力発電
プラントの従来例を示したもので、給水ポンプ1
によつて送り出される水は、高圧ヒータ2によつ
て加熱された後、節炭器3を経て高温高圧の水と
なつて蒸発器4へ送り込まれる。一方、燃料タン
ク5の燃料は燃料ポンプ6により、燃料調節弁7
を経て蒸発器4へ送られ、同時に、大気よりエア
フアン8によつて吸引され、エアヒータ9で加熱
されたのち、空気流量調節弁10を経てやはり蒸
発器4へ送り込まれる空気と一緒になつて燃焼
し、高温高圧の水を蒸発させる。火炉における燃
焼状態は、燃料調節弁7、空気流量調節弁10を
制御することにより安全状態が保たれる。この燃
料流量あるいは空気流量の制御は、図示せぬプラ
ント系括制御装置(以下、APCと言う)によつ
て行われる。蒸発器4で発生した蒸気は、過熱器
11によつて過熱され、高圧タービン12、中圧
タービン13、低圧タービン14を駆動し、ター
ビンに直結されている発電機15を回して電気を
発生させる。タービンの排気となつた低温、低圧
の蒸気は復水器16で凝縮されて水となり、復水
ポンプ17により低圧ヒータ18を経て給水ポン
プ1へ送られる。 Figure 1 shows a conventional example of a thermal power plant that performs such FCB operation.
The water sent out is heated by a high-pressure heater 2 and then passed through a economizer 3 to become high-temperature, high-pressure water and sent to an evaporator 4. On the other hand, the fuel in the fuel tank 5 is supplied to the fuel control valve 7 by the fuel pump 6.
At the same time, the air is sucked in from the atmosphere by an air fan 8, heated by an air heater 9, and then combined with air that is also sent to the evaporator 4 via an air flow control valve 10, where it is combusted. The water is then evaporated at high temperature and pressure. The combustion state in the furnace is maintained in a safe state by controlling the fuel control valve 7 and the air flow control valve 10. This control of the fuel flow rate or air flow rate is performed by a plant system control device (hereinafter referred to as APC) not shown. The steam generated in the evaporator 4 is superheated by a superheater 11, drives a high-pressure turbine 12, an intermediate-pressure turbine 13, and a low-pressure turbine 14, and turns a generator 15 directly connected to the turbines to generate electricity. . The low-temperature, low-pressure steam that has become the exhaust gas of the turbine is condensed into water in the condenser 16 and sent to the water supply pump 1 by the condensate pump 17 via the low-pressure heater 18 .
APCはプラント全体を統括制御するもので、
プラント運転時、目標発電量(負荷)が与えられ
ることにより、発電機15の負荷上昇/降下を制
御する。この場合、発電機15の負荷は高圧ター
ビン12に単位時間当りに流入する蒸気の流量に
よつてかわるが、この蒸気流量は高圧タービン1
2の入口にある蒸気加減弁によつてコントロール
される。APCはこの蒸気加減弁の開度を目標負
荷に対して調節・制御することによつて発電機1
5の負荷を制御することができる。また、APC
は前記蒸気加減弁を操作することにより変化する
蒸気流量に見合う分の給水流量燃料流量を変化さ
せ、蒸気圧力を然るべき値に制御する機能を有し
ている。即ち、タービンに流入する蒸気が増加す
れば、蒸発器4における蒸発量を増加させるため
に燃料投入量を増加させると共に、給水流量を増
加させる。また、燃料流量を増加させる場合に
は、火炉の燃焼を最適に保つため空気流量を増加
させなければならないが、この操作もAPCによ
つて行われる。 APC controls the entire plant.
During plant operation, the load increase/decrease of the generator 15 is controlled by giving the target power generation amount (load). In this case, the load on the generator 15 changes depending on the flow rate of steam flowing into the high-pressure turbine 12 per unit time;
It is controlled by a steam control valve at the inlet of 2. APC adjusts and controls the opening degree of this steam control valve to the target load.
5 loads can be controlled. Also, APC
has a function of controlling the steam pressure to an appropriate value by changing the water supply flow rate and fuel flow rate by an amount commensurate with the changing steam flow rate by operating the steam control valve. That is, when the amount of steam flowing into the turbine increases, the amount of fuel input is increased in order to increase the amount of evaporation in the evaporator 4, and the flow rate of water supply is also increased. Furthermore, when increasing the fuel flow rate, the air flow rate must be increased to maintain optimal combustion in the furnace, and this operation is also performed by the APC.
第2図は第1図の発電プラントにおける所内電
気系統をブロツク図的に示したものである。送電
系統20と発電所内は開閉所のしや断器21を介
してつながれている。発電機15で発生する電力
は主変圧器22、主しや断器23、所内送電系統
側母線24を経由して送電系統20に送られる。
所内用電力は所内母線25から供給されるが、こ
れは切換装置26を介して発電プラント起動時は
しや断器27、起動変圧器28を経て所内送電系
統側母線24から、また、プラント起動後は所内
変圧器29を通して発電機15から供給される。 FIG. 2 is a block diagram showing the in-house electrical system in the power generating plant shown in FIG. The power transmission system 20 and the inside of the power plant are connected via a switchyard disconnector 21. Electric power generated by the generator 15 is sent to the power transmission system 20 via the main transformer 22, the main disconnector 23, and the in-house power transmission system side bus 24.
Power for the station is supplied from the station bus 25, which is supplied from the station power transmission system side bus 24 via the switching device 26, through the disconnector 27, and the startup transformer 28 when starting the power plant. The rest is supplied from the generator 15 through the station transformer 29.
さて、系統事故により発電プラントが系統から
切離れる時は主しや断器23が開となるが、この
場合、発電機15の出力は瞬間的に起動変圧器2
8のもつ所内負荷まで低下する。APCはこの状
態を検知して、必要目標負荷に応じて燃料、空
気、給水などボイラ入力の急速な絞り込みを行つ
て所内単独運転に移行することになる。この絞り
込み動作は相互の協調をとりつつ急速に行うが失
敗した場合にはプラントのもつボイラ保護インタ
ロツクが動作し、ボイラ、タービンをトリツプさ
せ、プラントとして危険な状態に陥ることを回避
する。この一連の動作を第3図に示す。 Now, when the power generation plant is disconnected from the grid due to a grid fault, the main switch 23 opens, but in this case, the output of the generator 15 is instantaneously transferred to the starting transformer 2.
The in-house load is reduced to that of 8. The APC detects this condition and rapidly narrows down boiler inputs such as fuel, air, and water supply according to the required target load, and shifts to isolated operation within the plant. This narrowing operation is carried out rapidly while coordinating with each other, but in the event of failure, the boiler protection interlock of the plant is activated, tripping the boiler and turbine, and preventing the plant from falling into a dangerous state. This series of operations is shown in FIG.
先ず、1のステツプで系統事故が発生すると、
発電機負荷を所内負荷へ絞り込む動作が開始され
る。系統の事故が発電所内に波及することを防ぐ
ための送電線保護リレーの動作、主変しや断器開
の動作が発生すると共に、負荷急減に対してはタ
ービンの蒸気加減弁を急開し、高圧タービンへ流
入する蒸気量を抑える。また、中圧タービンへ供
給される蒸気は、中圧タービン入口の再熱蒸気阻
止弁(RSV)、中間阻止弁(ICV)を閉すること
によつてしや断され、タービンの速度上昇を抑え
るよう動作する。更に、ステツプ3では負荷急減
に伴つてボイラ入口を絞り込み、負荷に見合う発
生蒸気量となるようAPCが働く。火炉の燃焼に
関しては、蒸気量を小なくし且つボイラの圧力上
昇を抑えるため、燃料の投入量を減少させる。燃
料投入量減に伴いバーナ油圧が低下するため、バ
ーナを消火していき必要なバーナ本数のみをを残
す。また、燃料減により空気流量過剰となること
を防ぐため、空気の供給を絞り込む。以上の動作
によつて急減した発電機負荷(所内負荷のみ)に
対応した蒸気圧力を保持すると共に、火炉内の安
定燃焼が維持される。しかし、急激な過渡変化に
よつて上述のような制御動作では蒸気圧力制御が
追従できない場合は、圧力上昇を抑えるためボイ
ラ圧力逃し弁を危急的に操作する。一方、ボイラ
へ供給する給水については、やはり急減した発電
機負荷に見合う量迄絞り込む。ボイラへ水を供給
する給水ポンプは、一般の火力発電プラントで
は、モータ駆動の給水ペンプ(以下、M−BFP
と言う)1台とタービン駆動の給水ポンプ(以
下、T−BFPと言う)2台とを備え、通常の負
荷運転中においては2台のT−BFPで給水する。
T−BFPは一般には蒸気源として自プラントの
発生蒸気を使うので、プラントの起動時にはM−
BFPで給水する。M−BFPとT−BFPの切換え
は、通常発電機負荷20%前後で行つているが、
FCB発生時には発電機負荷は所内負荷のみ(定
格の5%程度)となるためT−BFPを停止し、
M−BFPを起動する操作を行い、最小の給水流
量を確保するように操作される。ステツプ3の動
作が正常に行われ、ステツプ4におけるボイラ保
護インタロツク動作を働かせる必要がない場合に
は、FCB成功として所内単独運転を続行し、系
統事故回復を待つ待機の状態(ステツプ5)に入
る。ステツプ4において、FCB発生時の制御動
作(ステツプ3)が不調に終り、再熱器(RH)
保護のために必要な量まで燃料を絞り込めなかつ
た場合、バーナ油圧を規定値以下まで下げること
ができなかつた場合、燃料量と空気量のバランス
がとれず安定燃焼を確保できなかつた場合、ボイ
ラの空焚きを防止するための最小給水流量を確保
できなかつた場合、そして更に、給水の絞り込
み、燃料の絞り込みが充分に行われなかつた結果
としてタービンへ供給される蒸気圧力が規定値を
越える迄に昇圧してしまつた場合等の状態になつ
た場合、FCB失敗としてボイラ、タービンをト
リツプし、プラントを停止した状態で系統事故の
回復を待つ。系統事故の回復が成ると、ステツプ
6でプラントの再起動に入る。FCBが成功して
所内単独運転で待機していた場合には、再起動操
作として、主変しや断器を投入し、系統への再併
入、負荷上昇を行う。一方、FCBが失敗した場
合は、再起動操作としてボイラの炉心パージから
始まつて給水ポンプの起動、ボイラの点火、ター
ビン起動、発電機の励磁等の一連のプラント立上
げ操作を事故発生後のプラント起動として再併入
操作の前に行う必要がある。 First, if a system accident occurs in step 1,
The operation to narrow down the generator load to the station load is started. In order to prevent system accidents from spreading within the power plant, power transmission line protection relays operate, main changes occur, and circuit breakers open, and in response to sudden load drops, turbine steam control valves are suddenly opened. , suppresses the amount of steam flowing into the high-pressure turbine. In addition, the steam supplied to the intermediate pressure turbine is cut off by closing the reheat steam check valve (RSV) and intermediate check valve (ICV) at the inlet of the intermediate pressure turbine, suppressing the increase in turbine speed. It works like that. Furthermore, in step 3, as the load suddenly decreases, APC works to narrow down the boiler inlet and make the amount of steam generated commensurate with the load. Regarding combustion in the furnace, the amount of fuel input is reduced in order to reduce the amount of steam and suppress the rise in pressure in the boiler. As the burner oil pressure decreases as the amount of fuel input decreases, the burners are extinguished, leaving only the required number of burners. Also, to prevent excessive air flow due to fuel loss, the air supply is restricted. Through the above operations, the steam pressure corresponding to the suddenly reduced generator load (in-house load only) is maintained, and stable combustion within the furnace is maintained. However, if the steam pressure control cannot follow the above-described control operations due to sudden transient changes, the boiler pressure relief valve is urgently operated to suppress the pressure rise. On the other hand, the amount of water supplied to the boiler will be reduced to an amount commensurate with the sharply reduced generator load. In general thermal power plants, the water pump that supplies water to the boiler is a motor-driven water pump (hereinafter referred to as M-BFP).
It is equipped with one turbine-driven water supply pump (hereinafter referred to as T-BFP) and two turbine-driven water supply pumps (hereinafter referred to as T-BFP), and water is supplied by two T-BFPs during normal load operation.
T-BFP generally uses the steam generated by its own plant as a steam source, so M-BFP is used when starting up the plant.
Supply water with BFP. Switching between M-BFP and T-BFP is normally done at around 20% generator load, but
When an FCB occurs, the generator load is only the station load (approximately 5% of the rated load), so the T-BFP is stopped.
The M-BFP is activated and operated to ensure the minimum water supply flow rate. If the operation in step 3 is performed normally and there is no need to activate the boiler protection interlock operation in step 4, the FCB continues to operate independently within the plant as a success, and enters a standby state (step 5) waiting for system accident recovery. . In step 4, the control operation when FCB occurs (step 3) ends in failure, and the reheater (RH)
If the fuel cannot be reduced to the amount required for protection, if the burner oil pressure cannot be lowered to below the specified value, if the balance between the amount of fuel and the amount of air cannot be achieved and stable combustion cannot be ensured, If it is not possible to secure the minimum water supply flow rate to prevent the boiler from running dry, and furthermore, if the supply water and fuel are not sufficiently throttled, the steam pressure supplied to the turbine will exceed the specified value. If the pressure rises to such an extent, the boiler and turbine will be tripped as an FCB failure, and the plant will be shut down while waiting for the system fault to recover. Once the system accident has been recovered, the plant will be restarted in step 6. If the FCB is successful and has been on standby in isolated operation within the station, the restart operation involves turning on a main switch or disconnecting circuit, rejoining the grid, and increasing the load. On the other hand, if the FCB fails, a series of plant start-up operations such as boiler core purge, feed water pump start-up, boiler ignition, turbine start-up, and generator excitation are carried out after the accident. This must be done as a plant start-up before re-intake operations.
以上、従来の火力発電プラントにおける系統事
故発生時のFCB運転について述べたが、この
FCB運転には、次のような問題がある。
Above, we have described FCB operation in the event of a system accident in a conventional thermal power plant.
FCB operation has the following problems.
(a) 高負荷運転からのFCBは、燃料絞り込み遅
れにより、再熱器保護インタロツクが作動して
FCB失敗し、ユニツトトリツプに至る場合が
ある。(a) When the FCB is operated under high load, the reheater protection interlock is activated due to a delay in fuel throttling.
FCB may fail and lead to a unit trip.
(b) 所内単独運転時間が長くなる上、蒸気温度が
変化し、タービンロータの熱応力が大きくな
る。(b) Not only will the isolated operation time within the station become longer, but the steam temperature will change, increasing thermal stress on the turbine rotor.
(c) 給水流量を急激に減少するため制御が困難と
なり、給水流量低により、プラントトリツプに
至る場合がある。(c) The rapid decrease in water supply flow rate makes control difficult, and low water supply flow rates may lead to plant trips.
(d) 事故後の復旧は社会的影響を考慮すると迅速
に行われなければならないので、特にFCB失
敗時には復旧操作などが必要となり、短時間に
再発電するために運転員に負坦がかかる。(d) Recovery after an accident must be carried out quickly considering the social impact, so recovery operations are required especially when an FCB fails, placing a burden on operators to regenerate power in a short time.
本発明は、系統事故発生時において、確実に所
内単独運転に移行できると共に、事故復旧後、迅
速且つ容易に系統へ再併入できる発電プラントの
運転・制御方法を提供することを目的とする。
An object of the present invention is to provide a method for operating and controlling a power generation plant that can reliably shift to in-plant isolated operation when a system accident occurs, and that can quickly and easily rejoin the system after the accident is restored.
このため、本発明は発電プラントを複数の発電
ユニツトで構成する。この発電ユニツトは圧縮
機、ガスタービン、発電機、スチームタービンの
各軸を互いに連結し、燃焼機から発生するガスで
ガスタービンを回転させ、その排熱を利用してス
チームタービンを回転させて発電を行う発電ユニ
ツトである。そして各発電ユニツトの各発電機か
ら発生する電力は共通の主変圧器、主しや断機を
経由して電力系統へ送電し、その電力系統に事故
が発生した場合は、前記主しや断機開放後、前記
発電ユニツトのうち、所内負荷に見合う値の電力
を発生するための発電ユニツトを残して他の発電
ユニツトはトリツプさせ、残りの発電ユニツトで
所内単独運転に移行させるようにしたことを特徴
とする。
For this reason, the present invention configures a power generation plant with a plurality of power generation units. This power generation unit connects the shafts of a compressor, gas turbine, generator, and steam turbine to each other. The gas generated from the combustion machine rotates the gas turbine, and the exhaust heat is used to rotate the steam turbine to generate electricity. This is a power generation unit that performs The power generated from each generator of each power generation unit is transmitted to the power grid via a common main transformer and main switch, and if an accident occurs in the power grid, the main After the machine is opened, among the power generation units, the power generation unit that generates the power corresponding to the station load is left, the other power generation units are tripped, and the remaining power generation units are shifted to the station independent operation. It is characterized by
以下、本発明を第4図および第5図に示す実施
例を参照して説明する。
The present invention will be described below with reference to the embodiments shown in FIGS. 4 and 5.
第4図は本発明の一実施例に係る発電プラント
の所内電気系統図を示したものである。図中、第
2図と同一符号は同一又は相当部分を示し、第2
図と異なる点は発電プラントをn台の発電ユニツ
トで構成し、各発電ユニツトの発電機40を各発
電ユニツト毎にもつ変圧機41、しや断機42を
経由し、主変圧機22および所内変圧機29に接
続した点である。 FIG. 4 shows an internal electrical system diagram of a power generation plant according to an embodiment of the present invention. In the figure, the same symbols as in Figure 2 indicate the same or corresponding parts, and
The difference from the diagram is that the power generation plant is composed of n power generation units, and the generator 40 of each power generation unit is connected to the main transformer 22 and the station via a transformer 41 and a shield switch 42. This is the point where it is connected to the transformer 29.
第5図はその発電ユニツトのシステム構成例を
示したもので、これは圧縮機50、ガスタービン
51、発電機40、スチームタービン52の各軸
を互いに連結し、燃焼器53から発生するガスで
ガスタービン51を回転させると同時に、その排
熱を利用してガスタービン排熱回収ボイラ54で
復水器55からの水を蒸気に変え、その蒸気でス
チームタービン52を回転させ、発電機40より
電力を発生させるシステムである。 FIG. 5 shows an example of the system configuration of the power generation unit, in which the shafts of the compressor 50, gas turbine 51, generator 40, and steam turbine 52 are connected to each other, and the gas generated from the combustor 53 is connected to each other. At the same time as the gas turbine 51 is rotated, the waste heat is used to convert the water from the condenser 55 into steam in the gas turbine exhaust heat recovery boiler 54, which rotates the steam turbine 52 and generates steam from the generator 40. It is a system that generates electricity.
このように、第5図に示す発電ユニツトをn台
用い、各発電ユニツトの発電機40を第4図に示
すように一括して所内送電系統側母線24に接続
し、一つの発電プラントを構成する。そして、そ
の所内送電系統母線24に事故が発生した場合
は、電力系統への電力供給は不能となり、すなわ
ち、電力供給することは不必要であるから、発電
プラント全体の出力を少なくしなければならな
い。そこで、たとえば、1台を残して他はトリツ
プさせ、その1台の発電出力を調節して所内負荷
分の負荷電力だけを出すようにする。例えば今、
発電プラントの定格容量を1000MWとし、発電ユ
ニツト8台で構成されているとすれば、定格負荷
運転時、各発電ユニツトが分坦する定格電力は
125MWとなり、結局各発電ユニツトの最大容量
は125MWあればよいことになる。このプラント
を定格1000MWで運転中、系統に事故が発生し、
所内単独運転へ移行する場合には、先ず主しや断
器23を開として系統から分離し、且つ8台の発
電ユニツトのうち7台はトリツプさせる。一方、
所内負荷は、通常発電プラント定格容量の5%程
度であり、50MWになるので、残る1台を
125MWから50MW迄負荷急激に追従させ、系統
事故の復旧まで所内負荷をもたすようにする。負
荷急激に対しては、第5図の燃焼器53で発生す
る燃焼ガスのガスタービン51への流入量を絞り
込む。そのために、ガスタービン入口のガス制御
弁をFCB発生で一気に絞り込み、またそれに応
じて、圧縮機50から燃焼53に供給する空気流
量の絞り込み操作を行う。燃焼ガスの絞り込みに
対し、燃焼器53の圧力を規定値以上にしないよ
うにするため燃料も絞り込み、安定した燃焼状態
を維持させる。このように、FCB発生時、1台
の発電ユニツトで必要な所内負荷を維持するため
に、目標負荷を急速に下げて発電機出力を追従さ
せるためにはガスタービンの燃料流量を急速に絞
り込み、また必要であれば蒸気タービン側は一旦
蒸気加減弁を全閉にしてタービンの出力を減少さ
せる。 In this way, one power generation plant is constructed by using n power generation units as shown in FIG. do. If an accident occurs in the in-house power transmission system bus 24, the power supply to the power system becomes impossible.In other words, since it is unnecessary to supply power, the output of the entire power generation plant must be reduced. . Therefore, for example, all but one unit is tripped, and the power generation output of that one unit is adjusted to output only the load power corresponding to the load within the station. For example, now,
If the rated capacity of the power generation plant is 1000MW and it is composed of 8 power generation units, the rated power distributed by each power generation unit during rated load operation is
This means that the maximum capacity of each power generation unit needs to be 125MW. While this plant was operating at a rated capacity of 1000MW, an accident occurred in the grid.
When shifting to in-house independent operation, first the main disconnector 23 is opened to isolate it from the grid, and seven of the eight power generation units are tripped. on the other hand,
The on-site load is usually about 5% of the rated capacity of the power plant, which is 50MW, so the remaining one
The load will rapidly follow the load from 125MW to 50MW, and the load will be maintained within the plant until the system fault is restored. In response to a sudden load increase, the amount of combustion gas generated in the combustor 53 in FIG. 5 flowing into the gas turbine 51 is reduced. To this end, the gas control valve at the gas turbine inlet is throttled at once due to the generation of FCB, and the flow rate of air supplied from the compressor 50 to the combustion 53 is throttled accordingly. In addition to restricting the combustion gas, the fuel is also restricted in order to prevent the pressure in the combustor 53 from exceeding a specified value, thereby maintaining a stable combustion state. In this way, when an FCB occurs, in order to maintain the necessary station load with one power generation unit, the target load can be rapidly lowered and the generator output can follow, by rapidly reducing the fuel flow rate of the gas turbine. Further, if necessary, the steam control valve on the steam turbine side is once fully closed to reduce the output of the turbine.
この場合、所内負荷は前述したように50MWで
あり、これは1台の発電ユニツトから見れば40%
に相当する。また所内負荷が125MWをこえる場
合は、2台の発電ユニツトを残し、それぞれに所
内負荷を分担させる。 In this case, the station load is 50MW as mentioned above, which is 40% from the perspective of one power generation unit.
corresponds to If the station load exceeds 125MW, two power generation units will be left and each will share the station load.
従つて、FCB発生時の燃焼ガス、燃料、空気
流量の絞り込みは、従来の火力発電プラントの場
合は100%から5%への絞り込みだつたのに対し、
本実施例の発電プラントの場合は100%から40%
の絞り込みで済み、絞り込みスパンが大巾に狭く
なる。また、このときの操作は従来の火力発電プ
ラントに比べて単純で他のプロセス量との協調も
少なく、ガス、燃料、空気の追従性も良くFCB
成功の確率が極めて高くなる。 Therefore, when FCB occurs, the flow rate of combustion gas, fuel, and air is reduced from 100% to 5% in the case of conventional thermal power plants.
In the case of the power plant in this example, 100% to 40%
This narrows down the narrowing span considerably. In addition, the operation at this time is simpler than in conventional thermal power plants, requires less coordination with other process quantities, and has good followability of gas, fuel, and air.
The probability of success is extremely high.
また、従来火力プラントにおいては制御対象と
して蒸気(流量、圧力)、燃料、空気、給水と多
岐に亘り、且つ給水の絞り込み時の給水流量の追
従性が特に悪く、従つて急激な給水減撹作時の給
水流量のアンダシユートがFCB失敗の最大要因
であつたが、本実施例の発電プラントでは燃焼ガ
ス(流量、圧力)、燃焼、空気のみで従来の給水
に相当するフアクターが無く制御が容易となる。 In addition, in conventional thermal power plants, the control targets are diverse, including steam (flow rate, pressure), fuel, air, and water supply, and the follow-up of the water supply flow rate when throttling the supply water is particularly poor, resulting in sudden reductions in water supply and agitation. Undershoot of the water supply flow rate was the biggest cause of FCB failure, but the power plant of this example uses only combustion gas (flow rate, pressure), combustion, and air, and there are no factors equivalent to conventional water supply, making it easy to control. Become.
以上のように本発明によれば、系統事故発生
時、発電プラントを確実に所内単独運転に移行さ
せることができると共に、これにより事故復旧後
の系統への再併入も迅速かつ簡単に行うことがで
きるようになる。
As described above, according to the present invention, when a power grid accident occurs, it is possible to reliably shift the power plant to on-site isolated operation, and also to quickly and easily rejoin the power plant after the fault is restored. You will be able to do this.
第1図は従来タイプの火力発電プラントのシス
テム構成図、第2図は従来タイプの火力発電プラ
ントの所内電気系統図、第3図は従来タイプの火
力発電プラントのFCB運転説明図、第4図は本
発明の一実施例に係わる発電プラントの所内電気
系統図、第5図はその発電ユニツトの1つを示す
ブロツク図である。
20……送電系統、21,27,42……しや
断器、22……主変圧器、主しや断器、24……
所内送電系統側母線、25……所内母線、26…
…切換装置、28……起動変圧器、29……所内
変圧器、40……発電器、41……変圧器、50
……圧縮機、51……ガスタービン、52……ス
チームタービン、53……燃焼器、51……ガス
タービン排熱回収ボイラ、55……復水器。
Figure 1 is a system configuration diagram of a conventional thermal power plant, Figure 2 is an internal electrical system diagram of a conventional thermal power plant, Figure 3 is an explanatory diagram of FCB operation of a conventional thermal power plant, and Figure 4 5 is an internal electrical system diagram of a power generation plant according to an embodiment of the present invention, and FIG. 5 is a block diagram showing one of its power generation units. 20...Power transmission system, 21, 27, 42...Shield disconnector, 22...Main transformer, main sheath disconnector, 24...
Station power transmission system side bus, 25... Station bus, 26...
...Switching device, 28...Starting transformer, 29...In-house transformer, 40...Generator, 41...Transformer, 50
... Compressor, 51 ... Gas turbine, 52 ... Steam turbine, 53 ... Combustor, 51 ... Gas turbine exhaust heat recovery boiler, 55 ... Condenser.
Claims (1)
ービンの各軸を互いに連結し、燃焼器から発生す
るガスでガスタービンを回転させる一方、その排
熱を利用してスチームタービンを回転させるよう
にした発電プラントを複数台設けて成る発電プラ
ントの前記各発電ユニツトの発電機から発生する
電力は共通の主変圧器、主しや断器を経由して電
力系統へ送電するようにしたものにあつて、前記
電力系統への電力供給が不要になつた場合は、前
記主しや断器開放後、前記発電ユニツトのうち所
内負荷に見合う発電出力を出すに必要なものだけ
残して他はトリツプさせ、これによつて発電プラ
ントを所内単独運転に移行させるようにしたこと
を特徴とする発電プラントの運転・制御方法。1 Power generation in which the shafts of a compressor, gas turbine, generator, and steam turbine are connected to each other, and the gas generated from the combustor rotates the gas turbine, while the exhaust heat is used to rotate the steam turbine. In a power generation plant consisting of a plurality of plants, the power generated from the generators of each power generation unit is transmitted to the power system via a common main transformer, main transformer, and disconnector, When the power supply to the power system is no longer necessary, after opening the main disconnector, leave only the power generation unit necessary to produce the power generation output that matches the station load, and trip the others. 1. A method for operating and controlling a power generation plant, characterized in that the power generation plant is shifted to isolated operation within the plant.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57070328A JPS58190233A (en) | 1982-04-28 | 1982-04-28 | Method of operating and controlling generator plant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57070328A JPS58190233A (en) | 1982-04-28 | 1982-04-28 | Method of operating and controlling generator plant |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58190233A JPS58190233A (en) | 1983-11-07 |
JPH0241261B2 true JPH0241261B2 (en) | 1990-09-17 |
Family
ID=13428252
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57070328A Granted JPS58190233A (en) | 1982-04-28 | 1982-04-28 | Method of operating and controlling generator plant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58190233A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH046071U (en) * | 1990-04-27 | 1992-01-21 | ||
JPH0493862U (en) * | 1990-12-28 | 1992-08-14 | ||
JP2008075652A (en) * | 2006-09-19 | 2008-04-03 | General Electric Co <Ge> | Method and system for detection and transfer for electrical isolated operation |
-
1982
- 1982-04-28 JP JP57070328A patent/JPS58190233A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH046071U (en) * | 1990-04-27 | 1992-01-21 | ||
JPH0493862U (en) * | 1990-12-28 | 1992-08-14 | ||
JP2008075652A (en) * | 2006-09-19 | 2008-04-03 | General Electric Co <Ge> | Method and system for detection and transfer for electrical isolated operation |
Also Published As
Publication number | Publication date |
---|---|
JPS58190233A (en) | 1983-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104633638B (en) | The integrated control method of the shutdown not blowing out function of power plant FCB | |
CN106089341B (en) | Method for enhancing cold steam turbine startup in a multi-gas turbine combined cycle plant | |
JP2000161014A (en) | Combined power generator facility | |
CN111255536B (en) | FCB operation method of gas-steam unit power plant | |
US5435138A (en) | Reduction in turbine/boiler thermal stress during bypass operation | |
CN102235657A (en) | Control method for improving reliability of utility boiler | |
CN112431642A (en) | Steam turbine system based on FCB control logic | |
JP5694112B2 (en) | Uniaxial combined cycle power plant and operation method thereof | |
CN104074560B (en) | For the method that gas turbine combined cycle power plant unit steam by-pass controls | |
JPH0241261B2 (en) | ||
JPH0763010A (en) | Starting method for single type combined cycle power generating facility | |
JPH09125912A (en) | Operating method for single-shaft combined cycle plant | |
JP3675880B2 (en) | Method and apparatus for controlling single-shaft combined cycle power generation facility | |
US4151712A (en) | Protective shutdown system for combined cycle plant having a dual liquid fuel system | |
JP3144440B2 (en) | Multi-shaft combined cycle power plant | |
JP4560481B2 (en) | Steam turbine plant | |
Response | Guidelines for enhancing power plant response to partial load rejections | |
JP2692974B2 (en) | Control method for combined cycle power plant | |
JP3780789B2 (en) | Steam turbine equipment | |
Pambudi et al. | Study and Implementation of Fast Cut Back for Increasing Success Rate of House Load Operation Mode on Thermal Power Plant: Case Study in SLK Coal Fired Steam Power Plant in Central Kalimantan | |
JPH0419285Y2 (en) | ||
JP2002129909A (en) | Starting control method of single-shaft compound electric power plant | |
JP3650277B2 (en) | Thermal power plant control device and thermal power plant control method | |
CN115539932A (en) | Bypass steam supply system control method and steam supply system | |
CN117524524A (en) | Shutdown non-shutdown system for high-temperature gas cooled reactor |