JPH03703B2 - - Google Patents

Info

Publication number
JPH03703B2
JPH03703B2 JP56081877A JP8187781A JPH03703B2 JP H03703 B2 JPH03703 B2 JP H03703B2 JP 56081877 A JP56081877 A JP 56081877A JP 8187781 A JP8187781 A JP 8187781A JP H03703 B2 JPH03703 B2 JP H03703B2
Authority
JP
Japan
Prior art keywords
powder
magnetic
particle size
weight
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56081877A
Other languages
Japanese (ja)
Other versions
JPS57198537A (en
Inventor
Toshihiko Oguchi
Hirohisa Kato
Takeo Ito
Tsutomu Takamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP56081877A priority Critical patent/JPS57198537A/en
Publication of JPS57198537A publication Critical patent/JPS57198537A/en
Publication of JPH03703B2 publication Critical patent/JPH03703B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material

Landscapes

  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は低いノイズで高密度記録に適する磁気
記録媒体およびその製造方法に関する。 従来磁気記録媒体の大部分は磁性粉末と樹脂結
合剤よりなる塗料をポリエステルフイルムなどの
支持体上に塗布して構成されている。上記磁性粉
末としてはγ−Fe2O3系、Fe3O4系及びこれらの
コバルト吸着系、あるいはCrO2系などを用いた
針状強磁性粉末が主として用いられている。しか
しながら針状強磁性粉末は、その保磁力が小さい
ために記録密度の点ではすでに限界に達し最近の
高密度記録の要求には適合し得ない欠点があつ
た。このため最近この欠点を改良するために針状
強磁性粉末の粒子長を極力小さくすることを、あ
るいは保磁力(Hc)、最大磁束密度(Ms)を向
上させることが考えられている。しかしこれら針
状強磁性粉に於いて粒子長を小さくしてゆくと、
反磁界の影響により低域での電磁変換特性が悪化
し十分な特性向上を期待しえない欠点を有してい
る。 そこで、このような欠点を有する針状強磁性粉
に代えて0.1μm以下の超微粒状、六方晶系フエラ
イト磁性粉を用いて高密度記録に適した磁気記録
媒体を作成しようとする試みがある。この六方晶
系フエライト磁性粉は通常正六角板の結晶構造を
しており、このような六方晶系フエライトを用い
ると、従来の磁気記録体よりはるかに高い記録密
度が得られる。このフエライトを用いた記録媒体
としては、平均粒径が0.1μm以下の六方晶系フエ
ライト粉を樹脂結合剤と共に支持体面に均一に塗
布し、その磁化容易軸を例えば磁場配向器を使つ
て支持体面と垂直な方向に配向させたのち、塗布
膜を乾燥させたいわゆる垂直磁気記録体が最も優
れていると考えられた。しかしながら平均粒径
0.1μm以下の前記フエライト粒子は垂直磁場内で
高い配向率を得ることが困難であり、その結果当
初期待していた程に高域での出力特性の伸びがみ
られないのみならず低域での特性も大粒径粒に比
較して劣ることがわかつて来た。 本発明者らは、従来技術のこれらの欠点を解消
すべく種々の検討を行なつた結果、0.1μm以下の
超微粒六方晶系フエライト粉に対して0.2〜0.4μ
mの六方晶系フエライト粉を5〜40重量部添加す
ると、前記垂直配向率は著るしく増大し、高域で
の出力が増加することは勿論低域特性も改善され
ることを発見し本発明に至つたものである。 すなわち本発明は平均粒径が0.01〜0.1μmの六
方晶系強磁性粉末80〜95重量部と、平均粒径が
0.2〜0.4μmの六方晶系強磁性粉末5〜20重量部
とが樹脂結合剤と共に支持体上に塗布、配向され
ていることを特徴とする磁気記録媒体に関するも
のである。さらに、本発明は平均粒径が0.01〜
0.1μmの六方晶系強磁性粉末80〜95重量部と、平
均粒径が0.2〜0.4μmの六方晶系強磁性粉末5〜
20重量部とを樹脂結合剤と共に支持体上に塗布し
た後、支持体面に対して垂直な磁場内で前記磁性
粉末を配向せしめることを特徴とする磁気記録媒
体の製造方法に関するものである。 本発明では、平均粒子径の異なる2種の六方晶
系強磁性粉末を併用することにより、垂直配向率
が改善されそれにより、高密度記録が達成され、
さらに0.2〜0.4μm粒径粉の添加により、塗料の
流動特性を著るしく改善し、平滑な塗膜面を与え
る結果ノイズ特性も改良することができたもので
ある。これら0.2〜0.4μm粒径粉を添加したこと
による諸効果の原因は0.2〜0.4μm粒径粉の表面
が0.01〜0.1μm超微粒粉により被覆又は囲繞され
る結果、磁場配向時には大粒径粉が配向を促進
し、再生出力の向上がなされると共に、高域の記
録再生特性に於いては大粒径粉を囲繞している小
粒径粉の磁化が効果的に働らいて周波数特性を改
善するものと思われる。 本発明に用いられる六方晶系強磁性粉末はCo,
Co−Cr,Co−Mn,Mn−Al等のようにそのもの
で六方晶を形成する金属の微粒子であつても良い
が一般式Mo・n(Fe2O3)で表わされる六方晶系
フエライト(MはBa,Sr,Pb,Caのいずれか一
種、nは5〜6であり、Feの一部はTi,Co,
Zn,In,Mn,Cu,Ge,Nb等の遷移金属で置換
されていてもよい)が特に適している。上記六方
晶系フエライトの微粒子は正六角板の単結晶でそ
の粒径は通常正六角板の対角線の長さで表わされ
その磁化容易軸は板面と垂直な方向にある。 このような六方晶系強磁性粉末は、本出願人の
出願に係る特願昭54−143859号、特願昭55−
34769号の明細書に記載したガラス結晶化法等に
より製造することが可能である。これらの磁性粉
の粒径の調整は、製造時の反応条件を適宜変更す
ることにより任意の粒径のものが得られるので、
本発明の粒径に適合する磁性粉を採用することに
より容易に本発明を実施することができる。 本発明で用いる樹脂結合剤としては、可撓性の
あるフイルム形成性材料であつて、支持体材料、
磁性粉と親和性のある材料であれば、いずれも使
用可能であり、これらの例としては塩化ビニル−
酢酸ビニル系共重合体材料、NBR−ポリ酢酸ビ
ニル系材料、ウレタン可塑化塩化ビニル−酢酸ビ
ニル系共重合体材料、ポリウレタン系材料、ポリ
エステル系樹脂、イソシアネート系材料等が挙げ
られるが、これらは公知の材料である。また、支
持体としては、一般的にポリエステルフイルムが
広く用いられているが、これ以外のものでも、可
撓性、引張り強度等充分な機械的強度を持つたも
のであれば使用することができる。 本発明では、二種の平均粒径を持つた六方晶系
強磁性粉末と樹脂結合剤および溶剤とで磁性塗料
を形成し、これを支持体上に塗布し配向させて磁
気記録媒体としているが、この磁性塗料には、他
に分散剤、潤滑剤、帯電防止剤等公知の添加剤を
配合して用いるのが好ましい。 この磁性塗料を支持体上に塗布する方法として
は、リバースロールコータ、ドクターブレードコ
ータ、グラビアコータ等を用いる公知の方法が数
多くあり、本発明においては、これらのいずれも
採用可能である。また、磁性粉末の配向は、本出
願人の出願に係る特願昭54−71278号、特願昭55
−132145号、特願昭55−132138号の明細書に記載
されている方法および装置によつて実施されうる
が、本発明はこれらに限定されるものではない。 以下、実施例により本発明を説明する。 (実施例 1) 化学組成BaO・6(Fe0.86Co0.07Ti0.07)2O3
有する平均粒径0.3μmの置換型バリウムフエライ
ト粉(Ms60cmu/g,iHc650)10重量部と同化
学組成で平均粒径が0.08μmの置換型バリウムフ
エライト粉90重量部に導電性カーボンブラツク2
重量部、Aerosol OT(商品名、オクチルスルホ
コハク酸ソーダ)1重量部、レシチン4重量部、
メチルエチルケトン50重量部、トルエン50重量部
と良く混合したのち、塩ビ−酢ビ共重合体(分子
量約2万)を加えて更に混合し約2時間サンドグ
ラインダー中で分散せしめた。得られた塗料はメ
チルエチルケトンとトルエンの1:1混合溶媒に
て粘度調整したのち、ポアサイズ1μmのSUSフ
イルターを通過せしめ、リバースロールコータに
てポリエステルフイルム上に塗布したのち垂直磁
場内を通過せしめつつ乾燥せしめ、塗膜厚2μm
の磁気記録層を作成し、5段スーパーカレンダー
を通過せしめて磁性層の表面粗さ0.1μm以下の磁
気記録媒体を得た。 又比較例として上記の平均粒径0.08μm及び
0.3μmの置換型バリウムフエライト粉のそれぞれ
100重量部づつを上記と全く同様にして塗料化、
塗布し表面処理を施こして磁気記録媒体を得た。 以上により得られた3種の磁気記録媒体につい
て磁性層の表面粗さ、垂直配向率、記録波長0.5μ
mに於ける記録再生出力S/N比及びエンベロー
プの乱れを比較した結果は表1の如くであり、混
合バリウムフエライト粉の記録再生特性は著るし
く優れていることが証明された。 又この実施例に於ける置換型バリウムフエライ
ト粉は、置換換量を減じてiHcを増大せしめた磁
性粉についても、又置換量を増してiHcを減少せ
しめた磁性粉についても平均粒径0.1μm以下の小
粒径粉に対して20wt%以下の平均粒径0.2μm〜
0.4μmの大粒径粉を混合すると記録再生特性の同
様な向上が認められた。
The present invention relates to a magnetic recording medium suitable for high-density recording with low noise, and a method for manufacturing the same. Most conventional magnetic recording media are constructed by coating a paint made of magnetic powder and a resin binder on a support such as a polyester film. As the above-mentioned magnetic powder, acicular ferromagnetic powder using γ-Fe 2 O 3 type, Fe 3 O 4 type, cobalt adsorption type thereof, CrO 2 type, etc. is mainly used. However, acicular ferromagnetic powder has a drawback in that it has already reached its limit in terms of recording density due to its small coercive force and cannot meet recent demands for high-density recording. Therefore, recently, in order to improve this drawback, it has been considered to reduce the particle length of the acicular ferromagnetic powder as much as possible, or to improve the coercive force (Hc) and maximum magnetic flux density (Ms). However, when the particle length of these acicular ferromagnetic powders is reduced,
This has the disadvantage that the electromagnetic conversion characteristics in the low range deteriorate due to the influence of the demagnetizing field, making it impossible to expect sufficient improvement in the characteristics. Therefore, attempts have been made to create a magnetic recording medium suitable for high-density recording by using ultrafine hexagonal ferrite magnetic powder of 0.1 μm or less in size instead of the acicular ferromagnetic powder that has such drawbacks. . This hexagonal ferrite magnetic powder usually has a regular hexagonal plate crystal structure, and when such hexagonal ferrite is used, a much higher recording density than conventional magnetic recording bodies can be obtained. For a recording medium using this ferrite, hexagonal ferrite powder with an average particle size of 0.1 μm or less is uniformly coated on the support surface together with a resin binder, and the axis of easy magnetization is set on the support surface using, for example, a magnetic field orientator. It was thought that the so-called perpendicular magnetic recording material, in which the coating film was dried after being oriented in a direction perpendicular to the magnetic field, was the best. However, the average particle size
It is difficult to obtain a high orientation rate for the ferrite particles of 0.1 μm or less in a vertical magnetic field, and as a result, not only the output characteristics do not increase as much in the high range as originally expected, but also the output characteristics in the low range do not increase as much as expected. It has come to be known that the properties of grains are also inferior to those of large-sized grains. The present inventors conducted various studies in order to eliminate these drawbacks of the conventional technology, and as a result, we found that the
It was discovered that when 5 to 40 parts by weight of hexagonal ferrite powder of M is added, the perpendicular orientation rate increases significantly, and not only the high-frequency output increases but also the low-frequency characteristics are improved. This led to the invention. That is, the present invention contains 80 to 95 parts by weight of hexagonal ferromagnetic powder with an average particle size of 0.01 to 0.1 μm;
The present invention relates to a magnetic recording medium characterized in that 5 to 20 parts by weight of hexagonal ferromagnetic powder of 0.2 to 0.4 μm is coated and oriented on a support together with a resin binder. Furthermore, the present invention has an average particle size of 0.01~
80 to 95 parts by weight of hexagonal ferromagnetic powder with a diameter of 0.1 μm and 5 to 95 parts by weight of a hexagonal ferromagnetic powder with an average particle size of 0.2 to 0.4 μm.
The present invention relates to a method for manufacturing a magnetic recording medium, which comprises applying 20 parts by weight of the magnetic powder on a support together with a resin binder, and then orienting the magnetic powder in a magnetic field perpendicular to the surface of the support. In the present invention, by using two types of hexagonal ferromagnetic powders with different average particle diameters, the perpendicular orientation rate is improved, thereby achieving high-density recording.
Furthermore, by adding powder with a particle size of 0.2 to 0.4 μm, the flow characteristics of the paint were significantly improved, a smooth coating surface was obtained, and the noise characteristics were also improved. These effects caused by adding 0.2 to 0.4 μm particle size powder are due to the fact that the surface of 0.2 to 0.4 μm particle size powder is covered or surrounded by 0.01 to 0.1 μm ultrafine powder, and when oriented in a magnetic field, large particle size powder promotes orientation, improving reproduction output, and in high-frequency recording and reproduction characteristics, the magnetization of the small particle size powder surrounding the large particle size powder works effectively to improve the frequency characteristics. It seems to be an improvement. The hexagonal ferromagnetic powder used in the present invention is Co,
Fine particles of metals that form hexagonal crystals by themselves such as Co-Cr, Co-Mn, Mn-Al, etc. may be fine particles, but hexagonal ferrite (which is expressed by the general formula Mo・n(Fe 2 O 3 )) M is one of Ba, Sr, Pb, Ca, n is 5 to 6, and part of Fe is Ti, Co,
(Optionally substituted with transition metals such as Zn, In, Mn, Cu, Ge, Nb, etc.) are particularly suitable. The fine particles of the hexagonal ferrite mentioned above are single crystals of regular hexagonal plates, and the particle size is usually expressed by the length of the diagonal line of the regular hexagonal plate, and the axis of easy magnetization is in the direction perpendicular to the plane of the plate. Such hexagonal ferromagnetic powders are disclosed in Japanese Patent Application Nos. 143859-1985 and 1983-143859 filed by the present applicant.
It can be produced by the glass crystallization method described in the specification of No. 34769. The particle size of these magnetic powders can be adjusted to any desired particle size by appropriately changing the reaction conditions during production.
The present invention can be easily carried out by employing magnetic powder that matches the particle size of the present invention. The resin binder used in the present invention is a flexible film-forming material, a support material,
Any material that has an affinity for magnetic powder can be used; examples of these include vinyl chloride.
Examples include vinyl acetate copolymer materials, NBR-polyvinyl acetate materials, urethane plasticized vinyl chloride-vinyl acetate copolymer materials, polyurethane materials, polyester resins, isocyanate materials, etc., which are known in the art. It is the material of In addition, polyester film is generally widely used as a support, but other materials can also be used as long as they have sufficient mechanical strength such as flexibility and tensile strength. . In the present invention, a magnetic coating is formed from hexagonal ferromagnetic powder having two types of average particle diameters, a resin binder, and a solvent, and this is coated on a support and oriented to form a magnetic recording medium. It is preferable that other known additives such as a dispersant, a lubricant, and an antistatic agent be blended into the magnetic paint. There are many known methods for applying this magnetic paint onto a support, using a reverse roll coater, a doctor blade coater, a gravure coater, etc., and any of these methods can be employed in the present invention. In addition, the orientation of the magnetic powder is determined by
Although the present invention can be carried out by the method and apparatus described in the specifications of Japanese Patent Application No. 132145-132145 and Japanese Patent Application No. 132138-1982, the present invention is not limited thereto. The present invention will be explained below with reference to Examples. (Example 1) With the same chemical composition as 10 parts by weight of substituted barium ferrite powder (Ms60cmu/g, iHc650) with an average particle size of 0.3μm and having the chemical composition BaO・6 (Fe0.86Co0.07Ti0.07) 2 O 3 Conductive carbon black 2 is added to 90 parts by weight of substituted barium ferrite powder with an average particle size of 0.08 μm.
parts by weight, Aerosol OT (trade name, sodium octylsulfosuccinate) 1 part by weight, lecithin 4 parts by weight,
After thoroughly mixing with 50 parts by weight of methyl ethyl ketone and 50 parts by weight of toluene, vinyl chloride-vinyl acetate copolymer (molecular weight: about 20,000) was added, further mixed, and dispersed in a sand grinder for about 2 hours. After adjusting the viscosity of the obtained paint with a 1:1 mixed solvent of methyl ethyl ketone and toluene, it was passed through a SUS filter with a pore size of 1 μm, coated on a polyester film using a reverse roll coater, and then dried while being passed through a vertical magnetic field. Seshime, coating thickness 2μm
A magnetic recording layer was prepared and passed through a five-stage supercalender to obtain a magnetic recording medium with a magnetic layer surface roughness of 0.1 μm or less. In addition, as a comparative example, the above average particle size of 0.08 μm and
Each of 0.3μm substituted barium ferrite powder
100 parts by weight were made into paint in exactly the same manner as above.
A magnetic recording medium was obtained by coating and surface treatment. Regarding the three types of magnetic recording media obtained above, the surface roughness of the magnetic layer, the perpendicular orientation rate, and the recording wavelength of 0.5μ
Table 1 shows the results of comparing the recording/reproducing output S/N ratio and envelope disturbance at m, proving that the recording/reproducing characteristics of the mixed barium ferrite powder are significantly superior. In addition, the substituted barium ferrite powder in this example had an average particle diameter of 0.1 μm for both the magnetic powder whose iHc was increased by decreasing the amount of substitution, and the magnetic powder whose iHc was decreased by increasing the amount of substitution. Average particle size of 0.2μm or less of 20wt% or less for the following small particle size powders
A similar improvement in recording and reproducing characteristics was observed when a large particle size powder of 0.4 μm was mixed.

【表】 である。
以上に述べたように本発明の磁気記録媒体は、
再生出力、S/N比が優れており、垂直配向率が
高いことから高密度記録に適しており、実用上極
めて優れたものである。
[Table]
As described above, the magnetic recording medium of the present invention has
It has excellent reproduction output and S/N ratio, and has a high vertical orientation rate, making it suitable for high-density recording and extremely excellent in practical use.

Claims (1)

【特許請求の範囲】 1 平均粒径が0.01〜0.1μmの六方晶系強磁性粉
末80〜95重量部と、平均粒径が0.2〜0.4μmの六
方晶系強磁性粉末5〜20重量部とが樹脂結合剤と
共に支持体上に塗布、配向されていることを特徴
とする磁気記録媒体。 2 平均粒径が0.01〜0.1μmの六方晶系強磁性粉
末80〜95重量部と、平均粒径が0.2〜0.4μmの六
方晶系強磁性粉末5〜20重量部とを樹脂結合剤と
共に支持体上に塗布した後、支持体面に対して垂
直な磁場内で前記磁性粉末を配向せしめることを
特徴とする磁気記録媒体の製造方法。
[Scope of Claims] 1. 80 to 95 parts by weight of hexagonal ferromagnetic powder with an average particle size of 0.01 to 0.1 μm, and 5 to 20 parts by weight of hexagonal ferromagnetic powder with an average particle size of 0.2 to 0.4 μm. A magnetic recording medium characterized in that the magnetic recording medium is coated and oriented on a support together with a resin binder. 2 80 to 95 parts by weight of hexagonal ferromagnetic powder with an average particle size of 0.01 to 0.1 μm and 5 to 20 parts by weight of hexagonal ferromagnetic powder with an average particle size of 0.2 to 0.4 μm are supported together with a resin binder. 1. A method for manufacturing a magnetic recording medium, which comprises orienting the magnetic powder in a magnetic field perpendicular to the surface of the support after coating the magnetic powder on the support.
JP56081877A 1981-05-30 1981-05-30 Magnetic recording medium and its manufacture Granted JPS57198537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56081877A JPS57198537A (en) 1981-05-30 1981-05-30 Magnetic recording medium and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56081877A JPS57198537A (en) 1981-05-30 1981-05-30 Magnetic recording medium and its manufacture

Publications (2)

Publication Number Publication Date
JPS57198537A JPS57198537A (en) 1982-12-06
JPH03703B2 true JPH03703B2 (en) 1991-01-08

Family

ID=13758678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56081877A Granted JPS57198537A (en) 1981-05-30 1981-05-30 Magnetic recording medium and its manufacture

Country Status (1)

Country Link
JP (1) JPS57198537A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0579325B2 (en) * 1989-11-22 1993-11-02 Naoto Hanazono

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0579325B2 (en) * 1989-11-22 1993-11-02 Naoto Hanazono

Also Published As

Publication number Publication date
JPS57198537A (en) 1982-12-06

Similar Documents

Publication Publication Date Title
JP2644322B2 (en) Magnetic recording media
JP2008108943A (en) Magnetic powder and magnetic recording medium using it
JPH01300419A (en) Magnetic recording medium
US4714654A (en) Magnetic recording medium
JPH03701B2 (en)
JPH03703B2 (en)
US4818608A (en) Magnetic recording medium
JPS59172142A (en) Magnetic recording medium
JP2802518B2 (en) Magnetic recording media
JPS59129933A (en) Magnetic recording medium
JPH0619829B2 (en) Magnetic recording medium
JP3035857B2 (en) Binder for magnetic recording medium and magnetic recording medium
JP2007200547A (en) Magnetic recording medium
JP3012190B2 (en) Magnetic recording media
KR890003201B1 (en) Magnetic recording carriage
JP2971023B2 (en) Magnetic recording media
JPS6066321A (en) Magnetic recording medium
JPS59129935A (en) Magnetic recording medium
JPH06236543A (en) High-recording-density magnetic recording medium
JPH0785457A (en) Magnetic recording medium
JPS6063718A (en) Magnetic recording medium
JPH0581643A (en) Magnetic recording medium
JPS59151342A (en) Magnetic recording medium and its manufacture
JPH09180170A (en) Magnetic recording medium
JPS6366724A (en) Magnetic recording medium