JPH0370345B2 - - Google Patents

Info

Publication number
JPH0370345B2
JPH0370345B2 JP58152012A JP15201283A JPH0370345B2 JP H0370345 B2 JPH0370345 B2 JP H0370345B2 JP 58152012 A JP58152012 A JP 58152012A JP 15201283 A JP15201283 A JP 15201283A JP H0370345 B2 JPH0370345 B2 JP H0370345B2
Authority
JP
Japan
Prior art keywords
electrolyte
battery
separator
negative electrode
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58152012A
Other languages
Japanese (ja)
Other versions
JPS6044964A (en
Inventor
Ryoji Okazaki
Yutaka Hashimoto
Shigeo Kobayashi
Hiroharu Fukuda
Kunitoshi Katayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15201283A priority Critical patent/JPS6044964A/en
Publication of JPS6044964A publication Critical patent/JPS6044964A/en
Publication of JPH0370345B2 publication Critical patent/JPH0370345B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、シート状の包装材に、負極にリチウ
ムを用いた発電要素を収納して密封する扁平形非
水電解液電池の製造法に関するものである。 従来例の構成とその問題点 非水電解液電池は、負極にリチウムを用いるの
が一般的で、正極にはフツ化炭素、二酸化マンガ
ン、酸化銅、硫化鉄クロム酸銀などの各種ハロゲ
ン化物、酸化物、硫化物を用いることができ、そ
の種類により様々な特性が得られる。また、電解
液にはγ−ブチロラクトン、プロピレンカーボネ
イト等の比較的高沸点、高粘度の溶媒とテトラヒ
ドロフラン、デイメトキシエタン等の比較的低沸
点、低粘度の溶媒の単独又は混合用媒にホウフツ
化リチウム、過塩素リチウム等の溶質を溶解した
非水電解液を用いている。これらの電池系の電池
の構造は大別して、円筒形、ボタン形が代表的で
あり、一般に普及しつつあるが、近年の電子機器
の小形、薄形化に伴い、薄形電池の開発が活発に
行われている。薄形電池の構成として、例えばア
ルミニウム箔に熱可塑性樹脂をラミネートしたフ
イルムを電池容器とし、ラミネート樹脂相互を熱
溶着して発電要素を内封する方式、或いは2枚の
金属箔の周縁部間に熱可塑性樹脂の窓ワク状のシ
ール材を介在させた電池室に発電要素を収納し、
シール材と金属箔の熱溶着により電池を密封する
方法が代表的なものとして、提案されている。こ
れら電池に用いるシール材、ラミネート樹脂は熱
溶着が可能で非水電解液に対して化学的に安定で
あることが必要で、これを満足させるためにはポ
リオレフイン系樹脂、とりわけポリエチレン、ポ
リプロピレンが適している。しかし、より溶着性
を確実にするために上記樹脂に無水マレイン酸等
との共重合によりカルボキシル基を付加するな
ど、変性したポリオレフイン系樹脂を選択する必
要があり、このことは特に金属と樹脂との溶着に
は不可欠である。ところが上記の変性ポリオレフ
イン樹脂は前記の電解液中の溶媒のうち、比較的
高沸点、高粘度の溶媒には耐えるが、低沸点、低
粘度の溶媒とはわずか乍ら反応し、溶着性が損わ
れて電池の密封信頼性が不十分なため、前者に属
する溶媒単独、又はこれらを主体とする溶媒を用
いた電解液を用いる必要がある。その場合、電解
液の粘度が高いため、セパレータ及び正極への電
解液の含浸速度が小さいため製造工程に於いて注
液した電解液が発電要素に含浸させるのに多くの
時間を要する。この際、含浸不十分な状態で密封
すると密封時に電解液があふれ出たり、電池内に
空気を残したまま封ずることになるので、漏液や
液量不足による放電性能不足、或いは電池の膨張
をひき起こす。一方、電解液が十分に含浸させて
から密封することは含浸に要する時間が長いため
量産性が著しく悪くなるという問題があつた。 発明の目的 本発明は、上述した薄形非水電解液電池の発電
要素への電解液の含浸を円滑に行わせて量産性を
向上させ、電池品質を安定化させることを目的と
する。 発明の構成 本発明は負極にリチウム、電解液に非水電解液
を用い、熱可塑性樹脂相互もしくは熱可塑性樹脂
と金属との熱溶着により発電要素を密封する扁平
形電池の製造法に係り、一端が開封された袋状の
電池容器内に少くとも正極とセパレータと負極と
が収納された状態で開封部より電解液を注液する
工程に先立ち、予めセパレータを負極に圧着して
固定しておき、電池容器の両面を吸盤をもつ減圧
パイプで吸着させて開封部を強制的に開口しセパ
レータと正極との間に空隙を生ぜしめ、この開口
部よりセパレータと正極の間に非水電解液を注入
することを特徴とするものである。 本発明は上記の方法で電解液をセパレータと正
極との間に注入することにより、セパレータと正
極とに並行して同時に電解液を含浸せしめること
により含浸時間を短縮することができるものであ
り、これにより開封部の熱溶着の際、或いはこれ
に先立つて行う電池内の脱気のための減圧工程に
おいて、電解液が外部に漏出したり、開封部の漏
れのための溶着不良を発生することなく、量産性
よく、高品質の電池の製造を可能とするものであ
る。 次に本発明の実施例を従来の方法と対比して説
明する。 実施例の説明 第1図は本発明の実施例における扁平形非水電
解液電池の見取り図、第2図は第1図のA−
A′線に沿つた断面図である。第3図は第1図、
第2図の電池の製造工程のうち、電解液の注入工
程の見取り図であり、第4図、第5図は第3図の
B−B′線に沿つた断面図で、第4図は従来法の
例示、第5図は本発明の実施例を各々示してい
る。第1図、第2図において、1はステンレスス
チール箔製の負極集電体と負極端子板を兼ねた負
極容器、2は1の内面に圧着されたシート状の負
極リチウム、3はポリプロピレン不織布のセパレ
ータ、4は二酸化マンガンを活物質とし、これに
導電材としてアセチレンブラツク、結着剤として
フツ素樹脂デイスパージヨン、増粘剤としてカル
ボキシルメチルセルロースを加えて混練してペー
スト状として正極容器5の片面に塗布して乾燥し
た正極である。正極容器はステンレススチール箔
製で、正極集電体と正極端子板を兼ねている。6
はポリエチレンに無水マレイン酸を添加して金属
との熱溶着性を付与したシール材で、窓枠状に加
工されており、負極容器1と正極容器5の各周縁
部とに熱溶着され、発電要素は密封されている。
電池内にはプロピレンカーボネイトに1モル/
の過塩素酸リチウムを溶解した非水電解液が封入
されている。 次に、この電池の製造工程を第3図、第4図、
第5図について説明する。先づ、負極容器1の周
縁の全面にシール材6を熱溶着して一体化し、次
いでリチウムシート2をシール材6で囲われた部
分の負極容器1の表面に圧着して三者を一体化す
るまでの工程は本発明実施例と従来法ともに同一
である。次いで、本発明の実施例の場合はセパレ
ータ3をリチウムシート2の表面に圧着して固定
する工程を設ける点が従来法と異る。一方、正極
容器5の表面に正極4を設ける工程は、本発明実
施例、従来例とも同様に行い、その後、従来例で
は負極2と正極4の間にセパレータが挿入された
状態で正極容器側と負極容器側の各部材を重ね合
せ、正極容器5の周縁部の三辺をシール材6と熱
溶着して一辺が未溶着で開封された袋状の容器を
形成する。 本発明の場合は予めセパレータ3とリチウムシ
ート2を重ね合わせてロールその他の手段で加圧
圧着することにより、セパレータ3を構成する繊
維が柔軟性を有するリチウムシートに圧入されて
セパレータ3とリチウムシート2とが一体となつ
ているので、正極容器側と負極容器側の各一体化
部材を重ね合せて正極容器5の周縁部の辺をシー
ルして一辺が開封された袋状の容器とする。第3
図は、上記の如く電池部材を収容した袋状の容器
に電解液を注入し易いように容器の両面を吸盤を
もつ減圧パイプで吸着させて開封部を開口すると
共に、容器内に空隙を形成した状態を図解したも
ので、7,7′は各々減圧パイプ、8は電解液注
入ノズル、9は電解液である。この際、電池の各
構成要素のうち、正極容器5、負極容器1は薄く
てバネ性を有し、セパレータ3、負極2、正極4
は薄い上に軟性で可撓性を有しているので、上記
の如き操作により注液時の開口は容易に行うこと
ができ、注液後減圧を解除すれば減圧前の状態に
復元し、その後開封部10を溶着すれば、第1図
及び第2図の如き電池が完成する。第4図は従来
法の場合で上記の如き一辺の開口操作を行つた場
合の第3図のB−B′線に沿つた断面であるが、
セパレータ3が固定されていないため、電池室の
空隙部が不定形な状態で存在している。このた
め、開口部11より注入した電解液9が正極4と
セパレータ3との間、負極2とセパレータ3との
間に不定の比率で存在することになる。この際、
負極2は無孔性のリチウムなので本質的に電解液
を含浸する性質はなく、負極2側に存在する電解
液9′はセパレータ3に含浸されるが、この電解
液9′の正極4への含浸はセパレータ3に浸透し
て後にはじめて開始されることになり、元来セパ
レータ3への電解液9′の浸透速度が遅いだけに
著しく電解液9′の含浸速度が遅くなり、量産的
には時間の制約があり、事実上多くの遊離した電
解液を残したまま開封部を溶着せざるを得ず、溶
着時に開口状態が復元した際に空隙がなくなり、
遊離の電解液の少なくとも一部が電池外に漏出し
たり、未溶着部のシール材の表面を漏らし、電解
液不足で性能不十分な電池や、密封不十分で保存
の信頼性の低い電池を製造することになる。 一方、第5図は本発明実施例の電池の開口状態
の断面図であり、セパレータ3が予め負極2の表
面に固定されているため、開口により生じた空隙
は、必ず正極4とセパレータ3の間に存在し、電
解液は必ず正極4とセパレータ3の間に注入され
る。従つて、注入された電解液はセパレータ3と
正極4の双方に接触して双方に同時に含浸されて
いく。従つて、前記の従来例の場合よりも電解液
の含浸速度が速く、遊離の電解液の少ない状態で
溶着工程に入ることができ、電解液の漏出やシー
ル材6の表面の漏れのない状態で溶着して密封を
果せるので放電性能、保存性能ともにすぐれた電
池を製造することができる。 次に、本発明の実施例における電池と、従来法
の電池を試作して比較評価した結果を説明する。
電池の形状は厚さ1.0mm、縦25mm、横50mmで、正
極容器5、負極容器1の厚さは各々50μ、電解液
注液後減圧パイプの減圧維持時間は1分間とし
た。次表に温度20℃、負荷抵抗5KΩで放電した
場合の放電持続時間と、60℃で1ケ月保存した場
合の電池の重量減少と漏液発生率とを示した。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for manufacturing a flat non-aqueous electrolyte battery in which a power generation element using lithium as a negative electrode is housed in a sheet-like packaging material and sealed. Conventional structure and problems Nonaqueous electrolyte batteries generally use lithium for the negative electrode, and various halides such as carbon fluoride, manganese dioxide, copper oxide, iron sulfide, silver chromate, etc. for the positive electrode. Oxides and sulfides can be used, and various properties can be obtained depending on the type. In addition, the electrolyte contains a relatively high-boiling point, high-viscosity solvent such as γ-butyrolactone and propylene carbonate, and a relatively low-boiling point, low-viscosity solvent such as tetrahydrofuran and dimethoxyethane, either singly or in combination with lithium borofluoride. , a non-aqueous electrolyte in which a solute such as lithium perchloride is dissolved is used. The structures of these battery types can be roughly divided into cylindrical and button-shaped, which are becoming more common, but as electronic devices have become smaller and thinner in recent years, development of thinner batteries has become more active. is being carried out. Thin batteries can be constructed by, for example, using a film made by laminating thermoplastic resin on aluminum foil as the battery container, and then thermally welding the laminated resin to each other to encapsulate the power generation element, or by placing the power generation element inside the film between the peripheral edges of two metal foils. The power generation element is housed in a battery chamber with a thermoplastic resin window-wake-like sealant interposed.
A typical method proposed is to seal a battery by thermally welding a sealing material and metal foil. The sealing materials and laminate resins used in these batteries must be able to be thermally welded and chemically stable against non-aqueous electrolytes. To satisfy this requirement, polyolefin resins, especially polyethylene and polypropylene, are suitable. ing. However, in order to ensure better weldability, it is necessary to select a polyolefin resin that has been modified by adding a carboxyl group to the above resin by copolymerizing with maleic anhydride, etc., and this is especially true for metals and resins. It is essential for welding. However, among the solvents in the electrolytic solution, the modified polyolefin resin can withstand relatively high boiling point and high viscosity solvents, but reacts slightly with low boiling point and low viscosity solvents, resulting in loss of weldability. However, since the sealing reliability of the battery is insufficient, it is necessary to use only a solvent belonging to the former category, or an electrolytic solution using a solvent mainly composed of these solvents. In this case, since the viscosity of the electrolytic solution is high, the rate of impregnation of the electrolytic solution into the separator and the positive electrode is slow, so it takes a long time for the electrolytic solution injected in the manufacturing process to impregnate the power generation element. At this time, if the seal is sealed with insufficient impregnation, the electrolyte may overflow during sealing, or the battery may be sealed with air left inside, resulting in poor discharge performance due to leakage or insufficient liquid volume, or battery expansion. cause On the other hand, sealing after sufficient impregnation with the electrolytic solution poses a problem in that the time required for impregnation is long, which significantly impairs mass productivity. OBJECTS OF THE INVENTION An object of the present invention is to improve mass productivity and stabilize battery quality by smoothly impregnating the power generation element of the thin non-aqueous electrolyte battery with electrolyte. Structure of the Invention The present invention relates to a method for manufacturing a flat battery that uses lithium as a negative electrode and a non-aqueous electrolyte as an electrolyte, and seals a power generating element by thermally welding thermoplastic resins to each other or a thermoplastic resin and a metal. With at least the positive electrode, separator, and negative electrode stored in the opened bag-shaped battery container, the separator is crimped and fixed to the negative electrode in advance before the step of injecting the electrolyte from the opening part. , both sides of the battery container are suctioned with a vacuum pipe with a suction cup to forcibly open the unsealed part to create a gap between the separator and the positive electrode, and the non-aqueous electrolyte is introduced between the separator and the positive electrode through this opening. It is characterized by injection. The present invention is capable of shortening the impregnation time by injecting the electrolytic solution between the separator and the positive electrode using the above method, thereby simultaneously impregnating the separator and the positive electrode with the electrolytic solution. As a result, during heat welding at the unsealed part, or during the depressurization step to degas the battery that is performed prior to this, the electrolyte may leak to the outside, or welding failure may occur due to leakage at the unsealed part. This makes it possible to manufacture high-quality batteries with good mass production. Next, an embodiment of the present invention will be described in comparison with a conventional method. DESCRIPTION OF EMBODIMENTS FIG. 1 is a sketch of a flat non-aqueous electrolyte battery according to an embodiment of the present invention, and FIG. 2 is a diagram showing A-A in FIG.
FIG. 3 is a sectional view taken along line A'. Figure 3 is like Figure 1,
This is a sketch of the electrolyte injection step in the manufacturing process of the battery shown in FIG. 2, and FIGS. FIG. 5 depicts each embodiment of the invention. In Figures 1 and 2, 1 is a negative electrode container made of stainless steel foil that serves as a negative electrode current collector and a negative electrode terminal plate, 2 is a sheet-shaped negative electrode lithium crimped to the inner surface of 1, and 3 is a polypropylene nonwoven fabric. The separator 4 uses manganese dioxide as an active material, to which are added acetylene black as a conductive material, fluororesin dispersion as a binder, and carboxymethyl cellulose as a thickener, and kneaded to form a paste, which is placed on one side of the positive electrode container 5. This is the positive electrode that has been coated and dried. The positive electrode container is made of stainless steel foil and serves as both a positive electrode current collector and a positive terminal plate. 6
is a sealing material made by adding maleic anhydride to polyethylene to give it heat-weldability to metal. It is processed into a window frame shape, and is heat-welded to the peripheral edges of the negative electrode container 1 and the positive electrode container 5, and is used to generate electricity. The elements are sealed.
Inside the battery, propylene carbonate contains 1 mole/
A non-aqueous electrolyte containing dissolved lithium perchlorate is sealed. Next, the manufacturing process of this battery is shown in Figures 3 and 4.
FIG. 5 will be explained. First, the sealing material 6 is thermally welded to the entire peripheral edge of the negative electrode container 1 to integrate it, and then the lithium sheet 2 is crimped to the surface of the negative electrode container 1 in the area surrounded by the sealing material 6 to integrate the three parts. The steps up to this point are the same for both the embodiment of the present invention and the conventional method. Next, the embodiment of the present invention differs from the conventional method in that a step of press-bonding and fixing the separator 3 to the surface of the lithium sheet 2 is provided. On the other hand, the step of providing the positive electrode 4 on the surface of the positive electrode container 5 is performed in the same manner in both the embodiment of the present invention and the conventional example. and each member on the negative electrode container side are superimposed, and three sides of the periphery of the positive electrode container 5 are thermally welded to the sealing material 6 to form a bag-shaped container with one side unwelded and opened. In the case of the present invention, the separator 3 and the lithium sheet 2 are overlapped in advance and pressure bonded using a roll or other means, so that the fibers constituting the separator 3 are press-fitted into the flexible lithium sheet, and the separator 3 and the lithium sheet are bonded together. 2 are integrated, the integrated members on the positive electrode container side and the negative electrode container side are overlapped and the peripheral edge of the positive electrode container 5 is sealed to form a bag-shaped container with one side opened. Third
The figure shows a bag-like container containing battery components as described above, in order to easily inject the electrolyte into the container by suctioning both sides of the container with a vacuum pipe equipped with a suction cup to open the unsealed part and create a void inside the container. 7 and 7' are decompression pipes, 8 is an electrolyte injection nozzle, and 9 is an electrolyte. At this time, among the constituent elements of the battery, the positive electrode container 5 and the negative electrode container 1 are thin and have spring properties, the separator 3, the negative electrode 2, and the positive electrode 4
Since it is thin, soft, and flexible, it can be easily opened during injection using the operations described above, and if the vacuum is released after injection, it will return to the state before the vacuum. Thereafter, by welding the unsealing part 10, a battery as shown in FIGS. 1 and 2 is completed. Fig. 4 is a cross section taken along the line B-B' in Fig. 3 when the opening operation on one side is performed as described above in the case of the conventional method.
Since the separator 3 is not fixed, the gap in the battery chamber exists in an irregular shape. Therefore, the electrolytic solution 9 injected through the opening 11 exists between the positive electrode 4 and the separator 3 and between the negative electrode 2 and the separator 3 at an undefined ratio. On this occasion,
Since the negative electrode 2 is non-porous lithium, it does not essentially have the property of being impregnated with an electrolyte, and the electrolyte 9' present on the negative electrode 2 side is impregnated into the separator 3. Impregnation is started only after it penetrates into the separator 3, and since the rate of penetration of the electrolyte 9' into the separator 3 is originally slow, the impregnation rate of the electrolyte 9' is significantly slowed down, making it difficult for mass production. Due to time constraints, we had no choice but to weld the unsealed part with a large amount of free electrolyte remaining, and when the open state was restored during welding, there was no void.
At least a portion of the free electrolyte may leak out of the battery or leak through the surface of the unwelded sealing material, resulting in a battery with insufficient performance due to insufficient electrolyte, or a battery with unreliable storage due to insufficient sealing. will be manufactured. On the other hand, FIG. 5 is a cross-sectional view of the battery according to the embodiment of the present invention in an open state. Since the separator 3 is fixed in advance to the surface of the negative electrode 2, the gap created by the opening is always between the positive electrode 4 and the separator 3. The electrolytic solution is always injected between the positive electrode 4 and the separator 3. Therefore, the injected electrolyte comes into contact with both the separator 3 and the positive electrode 4, and is impregnated into both at the same time. Therefore, the impregnation speed of the electrolyte is faster than in the conventional example, and the welding process can be started with less free electrolyte, and there is no electrolyte leakage or leakage on the surface of the sealing material 6. Since it can be welded and sealed, it is possible to manufacture batteries with excellent discharge performance and storage performance. Next, the results of a comparative evaluation of a battery according to an example of the present invention and a conventional battery produced as prototypes will be explained.
The shape of the battery was 1.0 mm thick, 25 mm long, and 50 mm wide, the positive electrode container 5 and the negative electrode container 1 each had a thickness of 50 μm, and the reduced pressure maintained in the reduced pressure pipe after the electrolyte was poured was 1 minute. The following table shows the discharge duration when discharging at a temperature of 20°C and a load resistance of 5KΩ, and the weight loss and leakage rate of the battery when stored at 60°C for one month.

【表】 この表に示される如く、従来法では電池製造時
の電解液の漏出により放電反応に必要な電解液が
不足するとともにバラツキが大きく、本発明実施
例の電池の性能より著るしく劣つている。さら
に、従来法では電解液でシール材表面が濡れた状
態で密封されている電池が多いため、溶着が不完
全で保存中に電解液が蒸発して外部に逸散した
り、漏液し易いのに対し、本発明では保存性能の
信頼性が極めて高いことが実証されている。 なお以上の例ではおもに二枚の金属箔間に枠状
のシール材を介在させて発電要素を密封する形式
の薄形電池を例にとつて説明したが、この他に本
発明は、例えば金属箔に樹脂をラミネートしたフ
イルムや樹脂フイルム相互により電池要素を包装
して密封する形式の電池にも適用でき、同様の効
果が得られる。 発明の効果 以上述べた如く、本発明は放電性能、保存性に
すぐれた高品質の扁平形非水電解液電池を量産性
良く製造するために極めて効果的な方法である。
[Table] As shown in this table, in the conventional method, there is a shortage of electrolyte necessary for the discharge reaction due to leakage of electrolyte during battery manufacturing, and there is large variation, and the performance is significantly inferior to that of the battery of the example of the present invention. It's on. Furthermore, with conventional methods, many batteries are sealed with the surface of the sealing material wet with electrolyte, so welding is incomplete and the electrolyte evaporates during storage and is prone to escaping or leaking. In contrast, the present invention has been proven to have extremely high reliability in storage performance. In the above example, the explanation was mainly given to a thin battery of the type in which a power generation element is sealed by interposing a frame-shaped sealing material between two sheets of metal foil, but in addition to this, the present invention can be applied to The present invention can also be applied to batteries in which battery elements are wrapped and sealed with a film in which resin is laminated on foil or resin films, and similar effects can be obtained. Effects of the Invention As described above, the present invention is an extremely effective method for manufacturing high-quality flat non-aqueous electrolyte batteries with excellent discharge performance and storage stability with good mass productivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は扁平形非水電解液電池の一例を示す見
取り図、第2図は第1図のA−A′線に沿つた断
面図、第3図は注液工程時の電池及び注液装置を
示す見取り図、第4図は第3図のB−B′線に沿
つた従来の電池製造法における断面図、第5図は
第3図のB−B′線に沿つた本発明の電池製造法
における電池の断面図である。 1……負極容器、2……負極、3……セパレー
タ、4……正極、5……正極容器、6……シール
材、7,7′……減圧パイプ、8……電解液注入
ノズル、9……非水電解液、9′……負極側に注
入した電解液、10……開封部(未溶着シール材
表面)、11……開口(注液口)。
Figure 1 is a sketch showing an example of a flat non-aqueous electrolyte battery, Figure 2 is a sectional view taken along line A-A' in Figure 1, and Figure 3 is a battery and liquid injection device during the liquid injection process. 4 is a cross-sectional view of the conventional battery manufacturing method taken along line BB' in Figure 3, and Figure 5 is a cross-sectional view of the battery manufacturing method of the present invention taken along line BB' in Figure 3 1 is a cross-sectional view of a battery according to the method. 1... Negative electrode container, 2... Negative electrode, 3... Separator, 4... Positive electrode, 5... Positive electrode container, 6... Seal material, 7, 7'...... Decompression pipe, 8... Electrolyte injection nozzle, 9... Nonaqueous electrolyte, 9'... Electrolyte injected into the negative electrode side, 10... Opening part (unwelded sealing material surface), 11... Opening (liquid injection port).

Claims (1)

【特許請求の範囲】[Claims] 1 負極にリチウム、電解液に非水電解液を用
い、熱可塑性樹脂相互もしくは熱可塑性樹脂と金
属との熱溶着により発電要素を密封する扁平形電
池の製造法であつて、一端を未溶着の開封部とし
た袋状の電池容器内に少なくとも正極とセパレー
タと負極とが収納された状態で前記開封部より電
解液を注液する工程に先立ち、予めセパレータを
負極に圧着して固定しておき、注液時に容器の両
面を減圧パイプで吸着させて開封部を強制的に開
口し、前記セパレータと正極との間に形成された
空隙に非水電解液を注入することを特徴とする扁
平形電池の製造法。
1 A method for manufacturing a flat battery that uses lithium for the negative electrode, a non-aqueous electrolyte for the electrolyte, and seals the power generation element by thermally welding thermoplastic resins or thermoplastic resins and metals, one end of which is unwelded. Prior to the step of injecting the electrolyte from the opening part with at least a positive electrode, a separator, and a negative electrode housed in a bag-shaped battery container serving as an opening part, the separator is crimped and fixed to the negative electrode in advance. , a flat type characterized in that when pouring liquid, both sides of the container are adsorbed with a vacuum pipe to forcibly open the unsealed part, and the non-aqueous electrolyte is injected into the gap formed between the separator and the positive electrode. Battery manufacturing method.
JP15201283A 1983-08-19 1983-08-19 Manufacture of flat type battery Granted JPS6044964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15201283A JPS6044964A (en) 1983-08-19 1983-08-19 Manufacture of flat type battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15201283A JPS6044964A (en) 1983-08-19 1983-08-19 Manufacture of flat type battery

Publications (2)

Publication Number Publication Date
JPS6044964A JPS6044964A (en) 1985-03-11
JPH0370345B2 true JPH0370345B2 (en) 1991-11-07

Family

ID=15531129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15201283A Granted JPS6044964A (en) 1983-08-19 1983-08-19 Manufacture of flat type battery

Country Status (1)

Country Link
JP (1) JPS6044964A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100409210B1 (en) 1998-05-20 2003-12-12 오사까 가스 가부시키가이샤 Nonaqueous secondary cell and method for controlling the same
JP5346086B2 (en) * 2008-09-05 2013-11-20 レナタ・アーゲー Thin film battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5654568B2 (en) * 1976-10-29 1981-12-26
JPS5796460A (en) * 1980-12-06 1982-06-15 Hitachi Maxell Ltd Method of manufacturing battery of organic electrolyte

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5654568U (en) * 1979-10-02 1981-05-13

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5654568B2 (en) * 1976-10-29 1981-12-26
JPS5796460A (en) * 1980-12-06 1982-06-15 Hitachi Maxell Ltd Method of manufacturing battery of organic electrolyte

Also Published As

Publication number Publication date
JPS6044964A (en) 1985-03-11

Similar Documents

Publication Publication Date Title
JP3795713B2 (en) Manufacturing method of sheet type battery
JP4187870B2 (en) Battery manufacturing method
JP3825593B2 (en) Manufacturing method of package
JP2006278897A (en) Electrochemical device
US7704635B2 (en) Electrochemical device and method of manufacturing electrochemical device
JP2007026901A (en) Film packaged battery
JP3837004B2 (en) Sheet type battery
JP4138172B2 (en) Electrochemical device and manufacturing method thereof
JP4021592B2 (en) Electrochemical devices
JPH0370345B2 (en)
JP2003077545A (en) Method of manufacturing nonaqueous electrolyte battery
JP3869668B2 (en) Electrochemical device and manufacturing method thereof
JP2002313677A (en) Assembly method of electric double-layer capacitor
JP4202549B2 (en) Electrochemical device and manufacturing method thereof
JP2002231196A (en) Method of manufacturing thin battery
JP4187875B2 (en) Thin battery manufacturing method
JP2019145709A (en) Power storage device and manufacturing method of the same
JP2003086172A (en) Secondary battery and its method of manufacture
JPS61176054A (en) Flat cell
JP3980757B2 (en) Thin battery
JP2001297736A (en) Nonaqueous electrolyte secondary battery
JPS6129065A (en) Flat type nonaqueous electrolyte cell
JP4166906B2 (en) Manufacturing method of sheet type battery
JPS60220553A (en) Flat-type nonaqueous electrolyte cell
JP4595465B2 (en) Electrochemical devices