JPH0370296B2 - - Google Patents

Info

Publication number
JPH0370296B2
JPH0370296B2 JP59190645A JP19064584A JPH0370296B2 JP H0370296 B2 JPH0370296 B2 JP H0370296B2 JP 59190645 A JP59190645 A JP 59190645A JP 19064584 A JP19064584 A JP 19064584A JP H0370296 B2 JPH0370296 B2 JP H0370296B2
Authority
JP
Japan
Prior art keywords
adhesive
plastic film
film
transparent substrate
optical disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59190645A
Other languages
Japanese (ja)
Other versions
JPS6171433A (en
Inventor
Hideaki Mochizuki
Tooru Tamura
Kensuke Kuchiba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19064584A priority Critical patent/JPS6171433A/en
Publication of JPS6171433A publication Critical patent/JPS6171433A/en
Publication of JPH0370296B2 publication Critical patent/JPH0370296B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacturing Optical Record Carriers (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、レーザー記録用デイスクの接着方法
に関するものである。 (従来例の構成とその問題点) レーザー記録用デイスク(以後、光デイスクと
称する)は、直径30cm足らずの円板上にA4分書
が1万枚以上も記憶できるほど大容量のメモリー
媒体であり、一つのビツトはわずか1μm前後の
長さの小さなピツトに対応している。また、情報
の書き込み、読み出しなどは、1分間に1000回転
以上の高速回転しているデイスク上に、直径1μ
m前後に絞り込んだレーザー光を集光し、位置検
出、焦点調節を行ないながら実行されるものであ
り、極くわずかな基板のソリ、平行度のズレ、変
形、傷、異物なども、信号エラーにつながつてし
まう。このため、光デイスクの製造には、半導体
製造時に劣らない程、細心の注意が要求されてい
る。光デイスクは従来、信頼性を高める目的か
ら、第2図に示すように、レーザー記録用薄膜
4,5を2枚の透明基板2,3の間にはさみ込ん
だ構成となつている。(但し、第1図は光デイス
クを切断した斜視図であり、以下、断面の一部A
を拡大して積層状態を説明する。第2図において
は、両面記録用光デイスクの例を示す。)このた
め、これら2枚の透明基板2,3を接着層6を介
して貼り合わせる接着工程が重要であり、この工
程により歩留まりや光デイスクの信頼性が左右さ
れることも多い。従来、この接着法としてはホツ
トメルト系接着剤を用いる方式が知られている
が、この方法は、熱と圧力とが同時に加わるた
め、基板のソリや歪み、傷つきや気泡などが発生
しやすく、しかも、記録膜によつては、熱影響に
よる変質なども発生しており、加えて、高湿度下
では接着力低下による剥離も生じるなど、多くの
問題点を有していた。 (発明の目的) 本発明は、従来の接着法の欠点を解決するもの
であり、記録膜状の傷つきや気泡の発生がなく、
高温高湿下においても信頼性の高い接着性を有す
る光デイスクの高能率に製造することを目的とし
ている。 (発明の構成) 本発明の光デイスクの製造法は、120℃以下の
温度で粘着性を有する光硬化型接着剤を片側全面
に塗布したプラスチツクフイルム上に、あらかじ
め光記録層を形成した透明基板を光記録層を内側
にして気泡が生じないように貼りつけ、光硬化型
接着剤を紫外線で硬化後、該プラスチツクフイル
ム上に低温下で硬化できる接着剤を塗布して、も
う一枚の同一構成になる透明基板または透明基板
単体と前記接着剤を介して中心軸を一致させて貼
り合わせて硬化した後、余分なプラスチツクフイ
ルムを切除するという工程からなつている。 (実施例の説明) まず、本発明の要点を図により説明する。 本発明によつて完成される両面使用型光デイス
クの断面構成を第3図に示す。すなわち、透明基
板7,8上に光記録層9,10を有し、紫外線硬
化型樹脂層11,12を介してプラスチツクフイ
ルム13,14の層があり、これらの中心に低温
で硬化できる接着剤層15が存在しているという
ものである。全体の製造工程は、第5図に示すよ
うに主として6つの工程からなつている。工程1
は、第4図に示すように光記録膜17を形成した
透明基板16上に、光硬化性樹脂層18を有する
プラスチツクフイルム19を貼りつけるというも
のであり、その一つの方法は、第4図に示すよう
に加熱可能なロール20,21の間を、前記プラ
スチツクフイルムと透明基板を重ね合わせて通過
させ、デイスクの一端から空気を追い出しながら
貼り合わせていくというものである。もう一つの
方法は第6図に示すような減圧下での熱プレス法
であつて、透明基板16上の光記録膜17に、プ
ラスチツクフイルム19上の紫外線硬化樹脂層1
8を重ね合わせ、真空槽26中を排気系27によ
り減圧にした状態で、可動軸22,23で駆動さ
れる加熱可能な上下台座24,25により熱圧着
するというものである。上記いずれの方法によつ
ても気泡を生じることなく透明基板とフイルムの
接着を行なうことができる。この際の熱圧着条件
は、基板や記録膜および使用する光硬化性粘着樹
脂によつて一様ではないが、基板の熱変形温度以
下の温度であり、圧力も15Kgcm2以下であることが
望ましい。これ以上の条件下では、基板の変形が
発生しやすくなる。工程2は、工程1で貼りつけ
たフイルムを通過して、紫外線を照射するもので
あり、このため、プラスチツクフイルムは光を通
過することが必要となる。紫外線により硬化する
ことにより透明基板上の光記録膜は、気泡のない
強固な保護槽で保護されるため、後工程が容易に
なると同時に、光デイスクとしての信頼性が大幅
に向上する。また、第7図に示すように、貼りつ
けたプラスチツクフイルム19の上に接着剤槽2
8を塗布するため、接着性が透明基板16側に回
り込んで汚染したりすることなく、しかも、フイ
ルム18と光硬化樹脂層18を介するため透明基
板16の耐溶剤性の良否に左右されることなく接
着剤を選択できる。さらに、これらの保護がある
ため、光記録膜17の傷つきという不良が大幅に
減少できる。工程3で接着剤をロール、スプレ
ー、グラビア法、ハケ塗りなどにより塗布した
後、2枚のデイスクを、光記録層を内側にし、両
デイスク7の中心軸を一致させて、工程4で貼り
合せた上で、工程5で硬化し、硬化後、工程6で
余分なプラスチツクフイルムを切除することによ
り第3図に示すように本発明の光デイスクが完成
する。この工程3に用いる接着剤は、低温硬化剤
の接着剤が有効であり、エポキシ系接着剤、アク
リル系接着剤、ウレタン系接着剤、ポリブタジエ
ン系接着剤、ポリエステル系接着剤が使用され
る。中でも、2液非混合型(以下SGAと称す)
接着剤が使いやすく、この場合には、接着剤の二
成分を、貼り合わせようとする2枚のデイスクに
それぞれ塗り分ける方法を採用できるため、工程
上、非常に有利となる。 なお、上記実施例として主としてデイスク両面
を使用した光デイスクについて述べてきたが、前
記第4の工程(貼り合わせ)において、一方の側
に光記録膜を用いず、デイスクの片側使用を目的
としたデイスクの製造も本発明に含まれる。すな
わち工程4において工程3までに完成した第8図
に示す光記録膜31上に紫外線硬化樹脂層32と
プラスチツクフイルム33からなる完全な保護層
を有する1枚の透明基板29を、接着剤層34を
介して他の透明基板30と針状合わせるというも
のであり、この場合には接着剤層34として前記
の両面使用デイスク用の各種接着剤に加えて紫外
線硬化接着剤も使用できる。 次に具体例について説明する。 具体例 1 圧さ1.0mm、外径200mm、内径35mmのメタクリル
樹脂基板(以下、PMMA基板)上に、波長800〜
850mmのレーザー光により相変化を起して反射率
が変化するTe系薄膜を蒸着し、この上に、圧さ
25μmのポリエステルフイルム上に20μmの厚さ
にアクリル系光硬化性樹脂層で軟化点が40〜50℃
の接着層を形成した接着フイルムを、先述したゴ
ムロールを用いて貼りつけた。ロールの条件は80
℃、圧力は5psiとした。この後、プラスチツクフ
イルム側から300mJ(ミリジユール)の紫外線を
照射して硬化した。次に、二枚の前記構成になる
基板のプラスチツクフイルム側の全面に、2液混
合型アクリル接着剤の二つの成分を各々5μmづ
つゴムローラーで塗り分けた後、これらを、中心
軸を一致させて平行に貼り合わせ、室温で硬化し
た。つぎに内外周の余分のプラスチツクフイルム
を切除して光デイスクを完成した。この光デイス
クの性能を表に示す。性能のうちエラーレイト
は、波長820mmの半導体レーザーを用い、1μmに
集光した状態で書き込みを行ない、それを読み取
つた際の不良ピツトの発生頻度を完成デイスク
100枚について平均した結果を示すものであり、
例えば1×10-3とは1000ピツト当り、1回の読み
取り不良を示すものである。また、歩留まりは、
全工程終了時のエラーレイトが1×10-4以上を良
品として判定した結果である。対湿性は、60℃−
90%RH下に7日間放置した後の基板の接着部の
変化を目視した結果である。 具体例 2 厚さ1mm、外径200mm、内径35のポリカーボネ
イト基板(以下Pc基板)上に、具体例1のTe系
記録膜を蒸着し、この上から20μmの粘着性のあ
るポリブタジエン系硬化樹脂層を形成した厚さ
15μmのポリエステルフイルムを第6図に示す減
圧接着装置で貼りつけた。貼りつける際の条件
は、真空度1torr、圧力0.1Kg/mm2、室温1分間と
した。常圧に戻したのち、500mJの紫外線で硬
化し、貼りつけたフイルムの上に、2液混合型の
低温硬化型エポキシ樹脂の混合ワニスを厚さ30μ
mに塗布した。塗布にはゴムローラーを用いた。
この上から、同一構成になる光デイスク基板の中
心軸を合致させて貼り合わせ、70℃で5分間仮硬
化し、その後、室温で24時間の本硬化を行ない、
余分なフイルムを切除して両面使用型光デイスク
を製造した。本光デイスクの性能を表に示す。 具体例 3 厚さ1.0mm、外径200mm、内径35mmのPc基板を用
い、実施例1と同一の方法により、フイルムを貼
りつけ光硬化した。一方、他の一枚の同一寸法の
透明基板上に、回転塗布法により液状のアクリル
系紫外線硬化性接着剤を10μmの厚さに塗布した
のち、前記のフイルムを貼りつけた基板と中心軸
を一致させ、光記録膜が内側になるように密着さ
せ、透明基板側から300mJの紫外線で硬化した。
硬化後、余分なフイルムを切除して片側記録用光
デイスクを完成した。この光デイスクの性能を表
に示す。 (参考例) 厚さ1.0mm、外径200mm、内径35mmのアクリル基
板上に、前記Te系光記録膜を形成しこの上に、
市販のホツトメルトアプリケーターを用いて、
30μm厚にウレタン系ホツトメルト接着剤を塗布
した。ロール温度は100℃とした。このようにし
てホツトメルト接着剤を塗布した2組の透明基板
を中心軸を一致させて、接着剤面同志を密着さ
せ、100℃の熱プレスを用い、5Kg/cm2の圧力で
5分間プレスして貼り合わせた。この光デイスク
の性能を表に示す。 (発明の効果) 表より明らかなように、本発明の製造法になる
光デイスクはいずれも、従来の一般的なホツトメ
ルト接着剤を用いた方法と比較して、ピツトの読
み取りエラーの発生率が極めて少なく、記録膜近
傍における気泡の発生や膜の損傷が少ない優れた
製造法であることがわかる。しかも、架橋型高分
子によつて保護されているため、高温高湿下でも
安定した接着状態を維持しているという特徴も有
しているなど、高信頼性の光デイスクの実現に大
きく貢献するものである。 【表】
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for bonding laser recording disks. (Conventional structure and its problems) A laser recording disk (hereinafter referred to as an optical disk) is a large-capacity memory medium that can store more than 10,000 A4 pages on a disk with a diameter of less than 30 cm. Yes, each bit corresponds to a small pit with a length of only around 1 μm. In addition, information must be written and read on a disk with a diameter of 1 μm that rotates at a high speed of more than 1000 revolutions per minute.
This is done by condensing a laser beam narrowed down to around m, detecting the position, and adjusting the focus.Even the slightest warpage of the board, deviation in parallelism, deformation, scratches, foreign objects, etc., can cause signal errors. It leads to For this reason, the manufacturing of optical disks requires as much care as in the manufacturing of semiconductors. Conventionally, for the purpose of increasing reliability, an optical disk has a structure in which laser recording thin films 4 and 5 are sandwiched between two transparent substrates 2 and 3, as shown in FIG. (However, Figure 1 is a perspective view of the optical disk cut away, and below, part of the cross section A
The laminated state will be explained by enlarging the figure. FIG. 2 shows an example of a double-sided recording optical disc. ) Therefore, the adhesion process of bonding these two transparent substrates 2 and 3 together via the adhesive layer 6 is important, and this process often affects the yield and reliability of the optical disk. Traditionally, hot melt adhesives have been known as this bonding method, but since heat and pressure are applied at the same time, this method tends to cause warping, distortion, scratches, and bubbles on the board, and it is also difficult to use. However, some recording films suffer from deterioration due to the influence of heat, and in addition, there are many problems such as peeling due to a decrease in adhesive strength under high humidity. (Objective of the Invention) The present invention solves the drawbacks of conventional adhesive methods, and eliminates the generation of scratches and bubbles on the recording film.
The objective is to efficiently manufacture optical disks that have highly reliable adhesion even under high temperature and high humidity conditions. (Structure of the Invention) The method for manufacturing an optical disk of the present invention is based on a transparent substrate on which an optical recording layer is preliminarily formed on a plastic film coated on the entire surface of one side with a photocurable adhesive that is sticky at a temperature of 120°C or less. The plastic film is pasted with the optical recording layer on the inside to avoid air bubbles, and after curing the photocurable adhesive with ultraviolet rays, an adhesive that can be cured at low temperatures is applied onto the plastic film, and another identical sheet is attached. The process consists of the steps of bonding the constituting transparent substrate or transparent substrate alone through the adhesive with their central axes aligned and curing, and then cutting off the excess plastic film. (Description of Examples) First, the main points of the present invention will be explained with reference to the drawings. FIG. 3 shows a cross-sectional structure of a double-sided optical disc completed according to the present invention. That is, optical recording layers 9 and 10 are provided on transparent substrates 7 and 8, and there are layers of plastic films 13 and 14 via ultraviolet curable resin layers 11 and 12, and an adhesive that can be cured at low temperature is placed in the center of these layers. This means that layer 15 is present. The entire manufacturing process mainly consists of six steps as shown in FIG. Process 1
As shown in FIG. 4, a plastic film 19 having a photocurable resin layer 18 is pasted on a transparent substrate 16 on which an optical recording film 17 is formed.One method is as shown in FIG. As shown in the figure, the plastic film and the transparent substrate are overlapped and passed between heatable rolls 20 and 21, and the discs are bonded together while expelling air from one end of the disc. Another method is a hot press method under reduced pressure as shown in FIG.
8 are stacked one on top of the other, and with the pressure in the vacuum chamber 26 reduced by the exhaust system 27, they are thermocompressed by heatable upper and lower pedestals 24, 25 driven by movable shafts 22, 23. By any of the above methods, the transparent substrate and the film can be bonded without producing bubbles. The thermocompression bonding conditions at this time vary depending on the substrate, recording film, and photocurable adhesive resin used, but it is desirable that the temperature is below the heat deformation temperature of the substrate and the pressure is below 15Kgcm2 . . Under conditions higher than this, deformation of the substrate is likely to occur. In step 2, ultraviolet rays are irradiated through the film pasted in step 1. Therefore, it is necessary for the plastic film to pass the light. By curing with ultraviolet rays, the optical recording film on the transparent substrate is protected by a strong bubble-free protection tank, which simplifies post-processing and greatly improves the reliability of the optical disc. In addition, as shown in FIG. 7, the adhesive tank 2
8, the adhesiveness does not go around to the transparent substrate 16 side and contaminate it, and since it is applied via the film 18 and the photocurable resin layer 18, it depends on the quality of the solvent resistance of the transparent substrate 16. You can choose the adhesive without any hassle. Furthermore, because of these protections, defects such as scratches on the optical recording film 17 can be significantly reduced. After applying the adhesive by roll, spray, gravure, brushing, etc. in step 3, the two disks are bonded together in step 4 with the optical recording layer facing inside and the center axes of both disks 7 aligned. Then, the plastic film is cured in step 5, and after curing, the excess plastic film is removed in step 6, thereby completing the optical disk of the present invention as shown in FIG. As the adhesive used in this step 3, a low-temperature curing adhesive is effective, and epoxy adhesives, acrylic adhesives, urethane adhesives, polybutadiene adhesives, and polyester adhesives are used. Among them, two-liquid non-mixable type (hereinafter referred to as SGA)
The adhesive is easy to use, and in this case, a method can be adopted in which the two components of the adhesive are applied separately to the two disks to be bonded together, which is very advantageous in terms of the process. Although the above embodiment has mainly described an optical disc using both sides of the disc, in the fourth step (bonding), an optical recording film is not used on one side, and the disc is intended to be used on one side. The manufacture of disks is also included in the invention. That is, in step 4, one transparent substrate 29 having a complete protective layer consisting of an ultraviolet curing resin layer 32 and a plastic film 33 is placed on the optical recording film 31 shown in FIG. In this case, the adhesive layer 34 may be an ultraviolet curing adhesive in addition to the various adhesives for double-sided discs described above. Next, a specific example will be explained. Specific example 1 On a methacrylic resin substrate (hereinafter referred to as PMMA substrate) with a pressure of 1.0 mm, an outer diameter of 200 mm, and an inner diameter of 35 mm, a wavelength of 800 ~
A Te-based thin film whose reflectance changes when a phase change is caused by an 850 mm laser beam is deposited, and on top of this, pressure is applied.
A 20μm thick acrylic photocurable resin layer on a 25μm polyester film with a softening point of 40~50℃
The adhesive film with the adhesive layer formed thereon was attached using the rubber roll described above. Roll condition is 80
°C and the pressure was 5 psi. Thereafter, the plastic film was cured by irradiating 300 mJ (millijoules) of ultraviolet light from the side. Next, the two components of the two-component mixed acrylic adhesive were applied with a rubber roller to the entire surface of the plastic film side of the two substrates having the above structure, each with a thickness of 5 μm, and then the central axes were aligned. They were bonded together in parallel and cured at room temperature. Next, the excess plastic film on the inner and outer peripheries was removed to complete the optical disk. The performance of this optical disk is shown in the table. Among performance, error rate is the frequency at which defective pits occur when writing is performed using a semiconductor laser with a wavelength of 820 mm focused at 1 μm, and the data is read.
It shows the average result for 100 sheets,
For example, 1×10 −3 indicates one reading failure per 1000 pits. In addition, the yield is
This is the result of determining that a product with an error rate of 1×10 -4 or higher at the end of all processes is considered to be a good product. Humidity resistance is 60℃-
These are the results of visual observation of changes in the bonded area of the substrate after it was left under 90% RH for 7 days. Specific Example 2 The Te-based recording film of Specific Example 1 was deposited on a polycarbonate substrate (hereinafter referred to as Pc substrate) with a thickness of 1 mm, an outer diameter of 200 mm, and an inner diameter of 35 mm, and a 20 μm adhesive polybutadiene-based cured resin layer was added on top of this. formed thickness
A 15 μm polyester film was attached using a vacuum adhesive device shown in FIG. The conditions for pasting were a degree of vacuum of 1 torr, a pressure of 0.1 Kg/mm 2 and a room temperature of 1 minute. After returning to normal pressure, a 2-component low-temperature curing epoxy resin mixed varnish was applied to a thickness of 30 μm on top of the film, which was cured with 500 mJ of ultraviolet light.
It was applied to m. A rubber roller was used for application.
On top of this, optical disk substrates having the same configuration were bonded together with their central axes aligned, pre-cured at 70°C for 5 minutes, and then main cured at room temperature for 24 hours.
A double-sided optical disc was manufactured by cutting off the excess film. The performance of this optical disk is shown in the table. Specific Example 3 Using a PC substrate with a thickness of 1.0 mm, an outer diameter of 200 mm, and an inner diameter of 35 mm, a film was attached and photocured in the same manner as in Example 1. On the other hand, on another transparent substrate of the same size, a liquid acrylic ultraviolet curable adhesive was applied to a thickness of 10 μm using a spin coating method, and then the substrate on which the film was pasted was aligned with the central axis. They were aligned and brought into close contact with each other so that the optical recording film was on the inside, and cured with 300 mJ of ultraviolet light from the transparent substrate side.
After curing, the excess film was removed to complete a one-sided recording optical disc. The performance of this optical disk is shown in the table. (Reference example) The Te-based optical recording film was formed on an acrylic substrate with a thickness of 1.0 mm, an outer diameter of 200 mm, and an inner diameter of 35 mm.
Using a commercially available hot melt applicator,
Urethane hot melt adhesive was applied to a thickness of 30 μm. The roll temperature was 100°C. The two sets of transparent substrates coated with hot melt adhesive in this way were aligned with their central axes, the adhesive surfaces were brought into close contact with each other, and pressed for 5 minutes at a pressure of 5 kg/cm 2 using a heat press at 100°C. I pasted it together. The performance of this optical disk is shown in the table. (Effects of the Invention) As is clear from the table, all optical disks manufactured using the method of the present invention have a lower incidence of pit reading errors than the conventional method using a general hot melt adhesive. It can be seen that this is an excellent manufacturing method that causes very little generation of bubbles near the recording film and little damage to the film. Moreover, because it is protected by a cross-linked polymer, it maintains a stable adhesive state even under high temperature and high humidity conditions, making a major contribution to the realization of highly reliable optical disks. It is something. 【table】

【図面の簡単な説明】[Brief explanation of drawings]

第1図は光デイスクを切断し拡大部Aを示した
斜視図、第2図は、従来のホツトメルトによる接
着デイスクの断面図、第3図は、本発明の製造法
によつて完成される両面使用デイスクの断面図、
第4図は、ローラーにより、基板上にフイルムを
貼りつけている状態の説明図、第5図は本発明の
工程を示す流れ図、第6図は、減圧接着装置の
図、第7図は接着剤の塗布状態を示す断面図、第
8図は片側使用デイスクの断面図である。 1……完成デイスク、2,3,7,8,16,
29,30……透明基板、4,5,9,10,1
7,31……光記録膜、6……ホツトメルト接着
剤、11,12,18,32……紫外線硬化樹脂
層、13,14,19,33……プラスチツクフ
イルム、15,28,34……接着剤層、20,
21……加熱ロール、22,23……可動軸、2
4,25……上下台座、26……真空槽、27…
…排気系。
FIG. 1 is a perspective view of an optical disc cut away and showing an enlarged part A, FIG. 2 is a sectional view of a conventional hot-melt adhesive disc, and FIG. 3 is a double-sided disc completed by the manufacturing method of the present invention. Cross-sectional view of the disk used,
Fig. 4 is an explanatory diagram of a state in which a film is pasted onto a substrate by a roller, Fig. 5 is a flowchart showing the process of the present invention, Fig. 6 is a diagram of a vacuum bonding device, and Fig. 7 is an illustration of adhesion. FIG. 8 is a cross-sectional view showing the state of application of the agent, and FIG. 8 is a cross-sectional view of a disc used on one side. 1... Completed disk, 2, 3, 7, 8, 16,
29,30...transparent substrate, 4,5,9,10,1
7, 31... Optical recording film, 6... Hot melt adhesive, 11, 12, 18, 32... Ultraviolet curing resin layer, 13, 14, 19, 33... Plastic film, 15, 28, 34... Adhesion agent layer, 20,
21...Heating roll, 22, 23...Movable shaft, 2
4, 25... Upper and lower pedestals, 26... Vacuum chamber, 27...
...Exhaust system.

Claims (1)

【特許請求の範囲】 1 120℃以下の温度で粘着性を有する光硬化性
接着剤を片側全面に塗布したプラスチツクフイル
ム上に、あらかじめ光記録層を形成した透明基板
を光記録層を内側にして気泡が生じないように貼
りつけ光硬化性接着剤を紫外線で硬化後、該プラ
スチツクフイルム上に低温下で硬化できる接着剤
を塗布して、もう一枚の同一構成になる透明基板
または透明基板単体と前記接着剤を介して中心軸
を一致して貼り合わせて硬化した後、余分なプラ
スチツクフイルムを切除するという工程によつて
構成されることを特徴とする光デイスクの製造
法。 2 プラスチツクフイルムを透明基板に貼りつけ
るに際し、加熱可能なロールを用いることを特徴
とする特許請求の範囲第1項記載の光デイスクの
製造法。 3 プラスチツクフイルムを透明基板に貼りつけ
るに際し、減圧下で加熱可能なプレスを用いるこ
とを特徴とする特許請求の範囲第1項記載の光デ
イスクの製造法。 4 プラスチツクフイルムを貼りつけた透明基板
の一枚に、2液非混合型急速硬化型接着剤の一成
分を塗布し、プラスチツクフイルムを貼りつけた
他の一枚のフイルム上に、該接着剤の他の一成分
を塗布し、これらを貼り合わせて硬化させること
を特徴とする特許請求の範囲第1項記載の光デイ
スクの製造法。
[Claims] 1. A transparent substrate on which an optical recording layer has been formed in advance is placed on a plastic film coated with a photocurable adhesive that is sticky at a temperature of 120°C or less on one side, with the optical recording layer inside. Paste the plastic film without creating bubbles, cure the photocurable adhesive with ultraviolet light, and then apply an adhesive that can be cured at low temperatures on top of the plastic film to create another transparent substrate or a single transparent substrate with the same structure. A method for manufacturing an optical disk, comprising the steps of: bonding the two pieces together with their central axes aligned with each other via the adhesive, curing the film, and then cutting off the excess plastic film. 2. The method for manufacturing an optical disk according to claim 1, characterized in that a heatable roll is used when attaching the plastic film to the transparent substrate. 3. The method for manufacturing an optical disk according to claim 1, wherein a press capable of heating under reduced pressure is used when attaching the plastic film to the transparent substrate. 4. Apply one component of a two-component, non-mixable, rapid-curing adhesive to one of the transparent substrates to which the plastic film has been pasted, and apply the adhesive onto the other film to which the plastic film has been pasted. 2. A method for manufacturing an optical disk according to claim 1, which comprises applying another component, bonding these components together, and curing them.
JP19064584A 1984-09-13 1984-09-13 Manufacture of optical disc Granted JPS6171433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19064584A JPS6171433A (en) 1984-09-13 1984-09-13 Manufacture of optical disc

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19064584A JPS6171433A (en) 1984-09-13 1984-09-13 Manufacture of optical disc

Publications (2)

Publication Number Publication Date
JPS6171433A JPS6171433A (en) 1986-04-12
JPH0370296B2 true JPH0370296B2 (en) 1991-11-07

Family

ID=16261520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19064584A Granted JPS6171433A (en) 1984-09-13 1984-09-13 Manufacture of optical disc

Country Status (1)

Country Link
JP (1) JPS6171433A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2733942B2 (en) * 1988-02-05 1998-03-30 凸版印刷株式会社 optical disk
WO2012129541A2 (en) 2011-03-23 2012-09-27 Sri International Active electroadhesive cleaning

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5175523A (en) * 1974-12-26 1976-06-30 Canon Kk
JPS5758252A (en) * 1981-07-30 1982-04-07 Toshiba Corp Manufacture of optical recording body
JPS57130243A (en) * 1981-02-05 1982-08-12 Toshiba Corp Information storage medium
JPS5965950A (en) * 1982-10-05 1984-04-14 Canon Inc Optical recording element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5175523A (en) * 1974-12-26 1976-06-30 Canon Kk
JPS57130243A (en) * 1981-02-05 1982-08-12 Toshiba Corp Information storage medium
JPS5758252A (en) * 1981-07-30 1982-04-07 Toshiba Corp Manufacture of optical recording body
JPS5965950A (en) * 1982-10-05 1984-04-14 Canon Inc Optical recording element

Also Published As

Publication number Publication date
JPS6171433A (en) 1986-04-12

Similar Documents

Publication Publication Date Title
TW200403652A (en) Optical recording medium and the manufacturing method thereof
JPH0370296B2 (en)
JPS6150232A (en) Optical recording medium and its manufacture
JPH0443332B2 (en)
JPS6173251A (en) Manufacture of optical disk
JP3460402B2 (en) Multilayer optical recording medium and manufacturing method thereof
JP3675635B2 (en) Optical disc manufacturing method and manufacturing apparatus thereof
JPH01133238A (en) Production of optical disk
JPH0750035A (en) Method and apparatus for manufacture of optical disc
JPS6166239A (en) Optical disk
JPS613340A (en) Adhering method of optical disk
JPH08161771A (en) Information medium as well as method and apparatus for its manufacture
JP2001184742A (en) Apparatus for manufacturing optical disk and method for manufacturing the same
JPH09259472A (en) Optical type laminated disk, its production and apparatus for production
JPS61151853A (en) Optical disk
JPH08329532A (en) Production of optical disk
JPS6387631A (en) Production of optical disk
JPH0227538A (en) Both-face optical disk
JPH087336A (en) Optical disk and its manufacture
JPH0428035A (en) Production of optical disk
JPH11328755A (en) Production of information recording medium
JPH08212597A (en) Optical information medium, production of optical information medium and apparatus for producing optical information medium
JPH09320130A (en) Optical disk and laminating method for optical disk
JPS61182646A (en) Optical disk and its production
JPS6180630A (en) Reflected light disc and its manufacture