JPH0369575B2 - - Google Patents

Info

Publication number
JPH0369575B2
JPH0369575B2 JP54074363A JP7436379A JPH0369575B2 JP H0369575 B2 JPH0369575 B2 JP H0369575B2 JP 54074363 A JP54074363 A JP 54074363A JP 7436379 A JP7436379 A JP 7436379A JP H0369575 B2 JPH0369575 B2 JP H0369575B2
Authority
JP
Japan
Prior art keywords
tank
granulation
moisture
screen
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP54074363A
Other languages
Japanese (ja)
Other versions
JPS55167038A (en
Inventor
Takayuki Maeda
Noboru Yakura
Sumimasa Wada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takeda Pharmaceutical Co Ltd
Original Assignee
Takeda Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takeda Chemical Industries Ltd filed Critical Takeda Chemical Industries Ltd
Priority to JP7436379A priority Critical patent/JPS55167038A/en
Publication of JPS55167038A publication Critical patent/JPS55167038A/en
Publication of JPH0369575B2 publication Critical patent/JPH0369575B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〈産業上の利用分野〉 本発明は、第九改正日本薬局方に規定された細
粒剤(医薬品を細粒状に製したもの)を製造する
装置に関する。 〈従来の技術〉 一般に、流動造粒法によれば、原料となる10μ
程度の粉粒体を造粒乾燥槽内に収め、これをスク
リーン下方から送入される熱風により流動化させ
ると同時に、槽内に設けたスプレーノズルから結
合液を噴霧状にして供給することにより、粒子間
凝集作用を進行させ、例えば200μ以上の造粒品
を得ることができる。しかし、このような流動造
粒法は最近発達しつつある新しい造粒法である
為、所望の粒度のものを得ようとしても多種の要
因との関係が未だ充分に解明されていない。 そのため、従来、厳格な品質が要求される細粒
剤を製造しなければならない場合は、造粒工程終
了後、これをふるい分け工程を通して篩別せざる
を得なかつた。 〈発明が解決しようとする問題点〉 第九改正日本薬局方によれば細粒剤の粒度分布
を、「500〜105μの粒子75%以上、500μ以上の粒
子5%以下、74μ以下の粒子10%以下」と規定し
ている。 本発明者らは、この第九改正日本薬局方に規定
された「細粒剤」の規格を満足する粒度分布のも
のを安定に造粒するため、各種要因と造粒品の粒
度に与える影響を研究した結果、槽内上部に設け
てあるバツクフイルタの目詰まり、スクリーン下
方から供給される熱風の温度及びその湿度、スプ
レーノズルから供給される結合液の分量及びその
水分などが造粒時間とともに重要な要因をなして
いることを知見した。 そこで、製造装置の制御系を簡単化するため、
要因間の相互関係を把握して要因数を絞るべく更
に研究を重ねた結果、造粒中の槽内造粒物の水分
を一定にすれば、他の諸要因の変動にもかかわら
ず、所望の細粒剤に該当する均一な粒度のものを
安定に得ることができることを突きとめた。 一方、流動造粒法においては他の造粒法とは異
り、圧縮空気や造粒液が槽内へ噴出し、造粒中に
造粒物が霧状となつて槽内を流動するなど外乱要
因が多いため、簡単かつ安定に造粒中の水分測定
を行うことは困難であると考えられており、これ
をいかに実現するかという課題があつた。 そこで本発明者らは、槽内の特定箇所に水分検
知器を配設して、その水分検知器により直接測定
される電気抵抗値と造粒中の粉粒体自体が含有す
る実際の水分量との相互関係について検討を加え
た結果、種々な外乱要因が存在する中でも特定箇
所に水分検知器を設けた本願装置を用いると、そ
の電気抵抗値と粉粒体の実際の水分量との間に極
めて密接な相関関係が維持されることをつきとめ
た。この知見をもとに造粒物の粒度を高精度に制
御することができて、特に、日本薬局方の「細粒
剤」を安定に製造することのできる装置を完成す
るに至つた。 〈問題点を解決するための手段〉 本発明の細粒剤製造装置は、円筒形の直塔部の
下方に逆円錐台傾斜部が連続形成された槽からな
り、その槽の底面に水平に張設されたスクリーン
上に被処理用粉粒体を収め、スクリーンの上方に
配設されたスプレーノズルから噴霧状液体を供給
すると共に、上記スクリーンの下方から加圧され
た気体を槽内へ送入することにより造粒を行い、
造粒完了後上記噴霧状液体の供給を断つて上記加
圧された気体の送入を続けることにより乾燥した
造粒品を得るバツチ式装置において、上記逆円錐
台の傾斜部の内壁近傍に、相対向する一対の電極
板から成りその電極面の法線が槽の円周方向をな
す水分検知器を設け、その電極間の電気抵抗値か
ら造粒中粉粒体の水分を測定し、上記造粒が行わ
れている期間中その水分測定値と設定値の偏差が
零になる方向に上記スプレーノズルへ供給する結
合液の水分を自動制御するよう構成されているこ
とを特徴としている。 〈作用〉 流動造粒の開始に先立つて、槽内に被処理用粉
粒体が収納される。このときの粉粒体量は、通常
逆円錐台の部分に仕込まれる。この場合、水分検
知器はこの粉粒体に没している。次に、流動造粒
が開始されると、スクリーンの下方から圧縮空気
が送入され、スプレーノズルから噴霧状の結合液
が散布される。この結果、収納されていた被処理
用粉粒体は、軸心に沿つて上昇し、この上昇した
粒子は結合液と結合したのち傾斜部に沿つて上部
から下部へ流れる。水分検知器は、この傾斜部の
内壁近傍に配設されているから、スクリーン下方
から送入される圧縮空気やスプレーノズル噴出直
後の湿つた結合液を直接受けることなく、造粒中
の流動層に乱れがなく安定で、かつ高密度の粒子
流の水分を検知することができる。 造粒開始時に、10μ程度の粉粒体であつた原料
は、水分を含む結合液との結合を繰り返しながら
粒子間凝集作用を進行させることにより次第に粒
径を肥大させてゆく。水分検出器の測定水分値が
大きいほど平均粒径が大きくなる。本発明の水分
検出器は、槽内中心部において高くまで吹き上げ
られて大きなループを画いて循環する粒径の小さ
い粒子から、肥大して重くなり、小さなループを
画いて槽下部を循環する粒径の大きい粒子まで、
すべてが通過する位置にあり、造粒開始時から造
粒終了時まで連続して正確な水分値を検出するこ
とができる。 第3図の作用説明図において、開始点からA点
の間が、水分が設定値に達するまでの予備造粒過
程、A点からB点の間が、水分の定値制御を行う
本造粒過程で、この両過程を合わせて造粒工程が
構成され、つづくB点以降が乾燥工程であつて水
分が0の乾燥状態に達すると1回のバツチ工程が
終了して造粒物が取り出される。 〈実施例〉 以下、本発明の実施例を図面に基いて説明す
る。 第1図に本発明実施例の全体構成図を示す。 流動造粒乾燥槽1は、円筒形の直塔部の下方に
逆円錐台傾斜部が連続形成された形状をなし、そ
の傾斜部の底面に、粉粒体を載せ空気を通すスク
リーン2が水平に張設され、そのスクリーン2の
下方には熱風送入口3が連設され、その熱風送入
口3と対向する槽の中央部には下方へ向けて霧状
の結合液を噴出するスプレーノズル4が配設さ
れ、槽の上部には造粒物の流出を防ぐためのバツ
クフイルタ5が張設され、槽の上端部には槽内の
余分な空気を排出する排出口6が設けられてい
る。空気送入口3には給気ダンパー7及び蒸気ヒ
ータ8を通して蒸気加熱された空気が供給され、
槽内の空気は排気口6から排気ダンパー9及び排
気フアン10を通して強制排気される。結合液は
結合液タンク11から送液ポンプ12、結合液流
量調節弁13を通してスプレーノズル4に供給さ
れ、一方、圧空気がスプレー空気流量調節弁14
を経てスプレーノズル4に供給され結合液を噴霧
する。 槽1内の逆円錐台傾斜部の近傍、すなわちスク
リーン2の周辺やや上方で、静止状態における粉
体槽内に、銅、ステンレス鋼等の導電性材料から
なる相対向する一対の電極板を絶縁基台上に固定
した水分検知器15を配設する。 この電極板の方向は、電極板面の法線が槽の円
周方向をなす方向、すなわち、槽の軸心を通る縦
断面に沿つて流動する粉粒体に対する流体抵抗が
最小となる方向に設けられる。制御回路16は、
この電極の信号をフイードバツク信号とし、自在
に設定できる設定器による信号を基準信号とし、
その偏差を検出し、造粒工程期間中においては、
偏差値に基づき結合液流量調節弁13及びスプレ
ー空気流動調節弁14の開度を連続制御し、所定
量の結合量の結合液の散布が完了した後の乾燥工
程においては、結合液流動調節弁13及びスプレ
ー空気流動調節弁14を閉じるように構成されて
いる。 本発明における電極間の電気抵抗値の測定は、
電気抵抗値を直接測定するほか、電気導電度、又
は電流値の測定により間接的に求めてもよい。水
分検出器15の電極間空〓は、これが余りせます
でぎると流動造粒物が円滑に通過せず、これが余
り広がりすぎると感度が低下して電気導電がなく
なることがある。実験によれば10〜20mmのとき良
好な結果を得た。また、電極間に印加する電圧
は、交流、直流のいずれでもよいが、微小電圧の
場合は増幅回路等を必要とするので装置が複雑化
し、実施例において25ボルトの直流をもちいて取
扱いに都合のよい測定値がえられた。 第2図に、電気抵抗式の水分検出器を装備した
本発明装置を用いて試験を行つたときの、水分検
出器の電極間抵抗値(MΩ)と、その試験に供さ
れた粉粒体自体の含有水分値とをプロツトしてい
る。このグラフで注目すべきことは、実用上充分
な5〜13%の広範囲な水分について、水分検出器
の測定データと、被測定物である粉粒体自体の水
分とのプロツトが一直線上に乗つている。このこ
とは本装置によれば測定された抵抗値と粉粒体の
実験の水分含量との相関関係が精度よく再現され
ていることを意味している。なお、この試験を行
つたときの条件は次の通りであつた。 水分検出器の電極条件 電極寸法 40mm×30mm方形 電極間〓 20mm 結合液処方 原料粉粒体 乳糖:コーンスターチ 85:15 仕込量 16Kg 結合剤 5%HPC−L 操作条件 給気温度 90℃ 給気量 毎分10m3 制御回路16の出力信号による調節弁13及び
14の開度制御は、槽内水分測定値が設定値より
も減少したときには結合液を増大させる側に結合
液流動調節弁13を作動させ、それとは反対に槽
内水分測定値が設定値よりも増大したときには結
合液を減少させる側に作動させる。この場合、同
時に、噴霧液滴径を同一にするためスプレー空気
流動調節弁14の開度制御が行われる。 〈発明の効果〉 本発明によれば、水分検出器を槽の逆円錐台傾
斜部の内壁近傍に設けるとともに、その水分測定
値を監視しながら、造粒を行うバツチ方式により
あらかじめ槽内へ収納された粉粒体に噴霧状液体
を作用させて造粒を行つているので、外乱要因が
存在する場合でもその影響を受けることなく正確
な水分値の測定を行うことができる。そして、水
分を一定値に制御しながら流動造粒を行う過程
を、第3図に示すように持続させることにより、
粒度分布が鋭く、かつ、密度が高く締まつている
重質な造粒品を得ることができる。従つて、従来
困難であつた第九改正日本薬局方の「細粒剤」を
安定に製造することが可能になつた。 また、本発明によれば、電極面の法線が槽の円
周方向をなす一対の電極板を設け、その電気抵抗
値から造粒中粉粒体の水分を測定しているので、
槽の軸心を通る縦断面に沿つて流動する粉粒体の
流れを乱さず、電極板に粉粒体が付着堆積せず、
造粒工程中の水分変化を高感度、高精度に測定す
ることができる。 さらに本発明によれば、造粒工程の開始から乾
燥工程の終了まで被処理材料を槽内に密閉収納し
たまま進行するので、非常に衛生的である。 次に、いくつかの試験例を挙げて本発明の効果
を説明する。 試験例1および比較試験例1 第3図に上記実施例装置を用いて水分制御を行
つた場合(実線)と、水分制御を行わない場合
(点線)の槽内水分検知器による測定値の推移を
示す。 このような水分制御の有無が得られた造粒品の
粒度分布及び密度(粗比容)にどのように影響し
ているかを第1表に示す。水分制御を行わない場
合(比較試験1)は粒度分布を広がりが大きく、
また、粗比容も比較的高い。これに対し、水分制
御を行つた場合(試験例1)は粒度分布が鋭くな
り、しかも、後工程である打錠、カプセル充填、
包装などを行う場合でも作業性の良い重質なもの
が得られ、単に第9改正日本薬局方の「細粒剤」
規格を満足するだけでなく、これよりもはるかに
粒度分布を鋭いすぐれた「細粒剤」が得られた。
<Industrial Field of Application> The present invention relates to an apparatus for producing fine granules (medicinal products made into fine granules) defined in the Ninth Edition Japanese Pharmacopoeia. <Conventional technology> Generally, according to the fluidized granulation method, the raw material 10μ
This process is carried out by placing a certain amount of powder and granules in a granulation drying tank, fluidizing it with hot air blown in from below the screen, and at the same time supplying the binding liquid in the form of a spray from a spray nozzle installed in the tank. By promoting the aggregation effect between particles, it is possible to obtain, for example, a granulated product with a size of 200μ or more. However, since such a fluidized granulation method is a new granulation method that has recently been developed, the relationship between various factors has not yet been fully elucidated even when attempting to obtain a desired particle size. For this reason, conventionally, when fine granules requiring strict quality had to be manufactured, the granules had to be sieved through a sieving process after the granulation process was completed. <Problems to be solved by the invention> According to the Ninth Edition Japanese Pharmacopoeia, the particle size distribution of fine granules is defined as "75% or more of particles between 500 and 105μ, 5% or less of particles of 500μ or more, and 10% of particles of 74μ or less. % or less.” In order to stably granulate particles with a particle size distribution that satisfies the standards for "fine granules" stipulated in the Ninth Edition Japanese Pharmacopoeia, the present inventors investigated various factors and their effects on the particle size of granulated products. As a result of our research, we found that the clogging of the back filter installed at the top of the tank, the temperature and humidity of the hot air supplied from below the screen, the amount of binding liquid supplied from the spray nozzle and its moisture content, etc. are important along with the granulation time. We found that this is a contributing factor. Therefore, in order to simplify the control system of manufacturing equipment,
As a result of further research to understand the interrelationships between factors and narrow down the number of factors, we found that if the moisture content of the granules in the tank during granulation is constant, the desired result can be achieved despite fluctuations in other factors. It has been found that it is possible to stably obtain particles of uniform particle size that correspond to fine granules. On the other hand, in the fluidized granulation method, unlike other granulation methods, compressed air and granulation liquid are ejected into the tank, and during granulation, the granules become atomized and flow inside the tank. It is believed that it is difficult to easily and stably measure the moisture content during granulation due to the large number of disturbance factors, and the challenge was how to achieve this. Therefore, the present inventors installed a moisture detector at a specific location in the tank, and determined the electrical resistance value directly measured by the moisture detector and the actual moisture content of the powder itself during granulation. As a result of considering the interrelationship with It was found that an extremely close correlation was maintained between the two. Based on this knowledge, we were able to control the particle size of granules with high precision, and in particular, we completed an apparatus that can stably produce "fine granules" according to the Japanese Pharmacopoeia. <Means for Solving the Problems> The fine granule manufacturing apparatus of the present invention consists of a tank in which an inverted truncated conical inclined part is continuously formed below a cylindrical straight tower part, and a horizontal part is provided on the bottom of the tank. The powder to be treated is placed on a stretched screen, and atomized liquid is supplied from a spray nozzle placed above the screen, and pressurized gas is sent into the tank from below the screen. Granulation is performed by adding
In a batch type apparatus for obtaining a dry granulated product by cutting off the supply of the atomized liquid and continuing to feed the pressurized gas after granulation is completed, near the inner wall of the inclined part of the inverted truncated cone, A moisture detector is provided, which consists of a pair of electrode plates facing each other, with the normal line of the electrode surfaces extending in the circumferential direction of the tank, and the moisture content of the powder during granulation is measured from the electrical resistance value between the electrodes. The apparatus is characterized in that the water content of the binding liquid supplied to the spray nozzle is automatically controlled in such a direction that the deviation between the measured water content value and the set value becomes zero during the period when granulation is being performed. <Operation> Prior to the start of fluidized granulation, the powder to be treated is stored in the tank. The amount of powder and granules at this time is usually charged into the inverted truncated cone portion. In this case, the moisture detector is submerged in the powder. Next, when fluidized granulation is started, compressed air is introduced from below the screen, and the atomized binding liquid is sprayed from the spray nozzle. As a result, the stored powder to be processed rises along the axis, and the rising particles combine with the binding liquid and then flow from the top to the bottom along the slope. Since the moisture detector is installed near the inner wall of this slope, it does not directly receive the compressed air sent from below the screen or the moist binding liquid immediately after being ejected from the spray nozzle. Moisture can be detected in a stable, high-density particle flow with no turbulence. At the start of granulation, the raw material is a powder or granule of about 10 μm in size, and as it is repeatedly combined with a water-containing binding liquid, the particle size gradually increases as agglomeration between particles progresses. The larger the moisture value measured by the moisture detector, the larger the average particle size. The moisture detector of the present invention ranges from small particles that are blown up high in the center of the tank and circulate in a large loop, to particles that enlarge and become heavy and circulate in the lower part of the tank in a small loop. up to large particles,
It is located in a position where everything passes through, and accurate moisture values can be detected continuously from the start of granulation to the end of granulation. In the action diagram in Figure 3, the period between the starting point and point A is the preliminary granulation process until the moisture content reaches the set value, and the period between point A and B is the main granulation process where the moisture content is controlled at a constant value. These two processes together constitute a granulation process, and the next step after point B is a drying process, and when a dry state with zero moisture is reached, one batch process is completed and the granules are taken out. <Example> Hereinafter, an example of the present invention will be described based on the drawings. FIG. 1 shows an overall configuration diagram of an embodiment of the present invention. The fluidized granulation drying tank 1 has a shape in which an inverted truncated conical inclined part is continuously formed below a cylindrical straight tower part, and a screen 2 on which the powder and granules are placed and through which air passes is horizontally placed on the bottom of the inclined part. A hot air inlet 3 is connected to the bottom of the screen 2, and a spray nozzle 4 that sprays atomized binding liquid downward is installed in the center of the tank facing the hot air inlet 3. A back filter 5 is provided at the top of the tank to prevent the granules from flowing out, and an exhaust port 6 is provided at the top end of the tank to discharge excess air from inside the tank. Steam-heated air is supplied to the air inlet 3 through an air supply damper 7 and a steam heater 8,
Air in the tank is forcibly exhausted from the exhaust port 6 through an exhaust damper 9 and an exhaust fan 10. The binding liquid is supplied from the binding liquid tank 11 to the spray nozzle 4 through the liquid feeding pump 12 and the binding liquid flow rate adjustment valve 13, while pressurized air is supplied to the spray nozzle 4 through the spray air flow rate adjustment valve 14.
is supplied to the spray nozzle 4 through which the binding liquid is sprayed. A pair of opposing electrode plates made of a conductive material such as copper or stainless steel are insulated in the powder tank in a stationary state near the inverted truncated conical slope in the tank 1, that is, slightly above the periphery of the screen 2. A moisture detector 15 fixed on a base is arranged. The direction of this electrode plate is the direction in which the normal line of the electrode plate surface forms the circumferential direction of the tank, that is, the direction in which the fluid resistance to the powder and granular material flowing along the longitudinal section passing through the axis of the tank is minimized. provided. The control circuit 16 is
The signal from this electrode is used as a feedback signal, and the signal from a setting device that can be freely set is used as a reference signal.
The deviation is detected and during the granulation process,
The opening degrees of the binding liquid flow rate control valve 13 and the spray air flow control valve 14 are continuously controlled based on the deviation value, and in the drying process after the spraying of a predetermined amount of binding liquid is completed, the binding liquid flow rate control valve 13 and the spray air flow control valve 14 are controlled continuously. 13 and spray air flow control valve 14. The measurement of the electrical resistance value between the electrodes in the present invention is as follows:
In addition to directly measuring the electrical resistance value, it may be determined indirectly by measuring the electrical conductivity or current value. If the space between the electrodes of the moisture detector 15 is too large, the fluidized granules will not pass through it smoothly, and if it is too wide, the sensitivity will decrease and electrical conductivity may be lost. According to experiments, good results were obtained when the thickness was 10 to 20 mm. In addition, the voltage applied between the electrodes may be either alternating current or direct current, but if the voltage is very small, an amplifier circuit etc. will be required, which will complicate the device. Good measured values were obtained. Figure 2 shows the interelectrode resistance value (MΩ) of the moisture detector and the powder and granular material used in the test when a test was conducted using the device of the present invention equipped with an electrical resistance type moisture detector. The water content value itself is plotted. What should be noted in this graph is that for a wide range of moisture content from 5% to 13%, which is sufficient for practical use, the plots of the moisture detector measurement data and the moisture content of the powder or granular material itself, which is the object to be measured, line up on a straight line. It's on. This means that according to the present device, the correlation between the measured resistance value and the moisture content of the powder or granular material in the experiment is reproduced with high accuracy. The conditions under which this test was conducted were as follows. Moisture detector electrode conditions Electrode dimensions 40mm x 30mm square Between electrodes 20mm Binding liquid formulation Raw material powder Lactose: Cornstarch 85:15 Charge amount 16Kg Binder 5%HPC-L Operating conditions Supply air temperature 90℃ Supply air amount per unit The opening of the control valves 13 and 14 is controlled by the output signal of the control circuit 16. When the measured moisture value in the tank decreases below the set value, the combined liquid flow control valve 13 is operated to increase the combined liquid. On the other hand, when the measured water content in the tank increases beyond the set value, the binding liquid is operated to decrease. In this case, at the same time, the opening degree of the spray air flow control valve 14 is controlled to make the spray droplet diameter the same. <Effects of the Invention> According to the present invention, a moisture detector is provided near the inner wall of the inverted truncated conical slope of the tank, and while monitoring the moisture measurement value, granulation is carried out in batches, which are stored in the tank in advance. Since granulation is performed by applying an atomized liquid to the granular material, even if there is a disturbance factor, the moisture value can be accurately measured without being affected by it. By continuing the process of fluidized granulation while controlling the moisture content to a constant value as shown in Figure 3,
A heavy granulated product with a sharp particle size distribution and a high density and compactness can be obtained. Therefore, it has become possible to stably produce "fine granules" according to the Ninth Edition Japanese Pharmacopoeia, which was previously difficult. Further, according to the present invention, a pair of electrode plates are provided whose normal line to the electrode surface is in the circumferential direction of the tank, and the water content of the powder during granulation is measured from the electrical resistance value of the electrode plates.
It does not disturb the flow of the powder and granules flowing along the longitudinal section passing through the axis of the tank, and the powder and granules do not adhere to and accumulate on the electrode plate.
Moisture changes during the granulation process can be measured with high sensitivity and accuracy. Further, according to the present invention, the process proceeds from the start of the granulation process to the end of the drying process while the material to be treated remains hermetically housed in the tank, which is very sanitary. Next, the effects of the present invention will be explained with reference to some test examples. Test Example 1 and Comparative Test Example 1 Figure 3 shows the change in measured values by the tank moisture detector when moisture control is performed using the above-mentioned example device (solid line) and when moisture control is not performed (dotted line). shows. Table 1 shows how the presence or absence of such moisture control affects the particle size distribution and density (crude specific volume) of the resulting granulated product. When moisture control is not performed (comparative test 1), the particle size distribution is greatly spread;
Moreover, the crude specific volume is also relatively high. On the other hand, when moisture was controlled (Test Example 1), the particle size distribution became sharper, and the subsequent steps of tabletting, capsule filling, and
Even when packaging, etc., a heavy product with good workability can be obtained, and it is simply a "fine granule" in the 9th revised Japanese Pharmacopoeia.
We obtained an excellent "fine granule agent" that not only met the specifications but also had a much sharper particle size distribution.

【表】【table】

【表】 試験例 2 次に、いろいろな異常状態を作為的に設定して
造粒品にどのような影響を与えるかについて試験
を行つた。 空気送入口からの給気温度が正常時80℃である
のに対し、設定の誤りにより異常な低温度45〜50
℃となつた場合、造粒時間は長くなるが造粒中水
分が一定に保持されていたために同一品質の造粒
乾燥品が得られた。その結果を第2表に示す。な
お以下の試験例においていずれも設定抵抗値
2MΩ、制御水分8%である。
[Table] Test Example 2 Next, various abnormal conditions were randomly set and tests were conducted to see how they would affect the granulated product. The supply air temperature from the air inlet is normally 80℃, but due to a setting error, the temperature is abnormally low 45 to 50℃.
℃, the granulation time was longer, but the moisture content was kept constant during granulation, so a granulated dry product of the same quality was obtained. The results are shown in Table 2. In addition, in the following test examples, the set resistance value
2MΩ, controlled moisture 8%.

【表】 試験例 3 空気送入口からの空気に絶対湿度0.007Kg
H2O/Kgdry Airの脱湿空気を用いた場合、造粒
及び乾燥速度に影響を受けるものの、造粒中水分
が一定に保たれるため試験例1と同程度の良質の
造粒品が得られた。
[Table] Test example 3 Absolute humidity of air from air inlet 0.007Kg
When using dehumidified air such as H 2 O/Kgdry Air, although the granulation and drying speeds are affected, the moisture content is kept constant during granulation, resulting in a granulated product of the same quality as Test Example 1. Obtained.

【表】【table】

【表】 試験例 4 槽内のバツクフイルターの目詰りが生じて給気
量が毎分7.5m3と減少した状態で造粒が行われた
場合、流動状態に若干の影響を与えたが水分が一
定に保たれていたため試験例1と同程度の良質の
造粒品が得られた。
[Table] Test Example 4 When granulation was performed with the back filter in the tank becoming clogged and the supply air volume reduced to 7.5 m3 per minute, the flow state was slightly affected, but moisture was kept constant, so a granulated product of comparable quality to Test Example 1 was obtained.

【表】 比較例 前記した実施例の試験条件と同一条件のもと
で、ただし水分検出器の装置場所のみを流動造粒
乾燥槽1の直胴部の下端に変えて、比較試験を行
つた。造粒時にサンプリングし、その時の粒子の
含有水分量および、測定された抵抗値を第5表に
示す。
[Table] Comparative Example A comparative test was conducted under the same test conditions as in the example described above, except that only the location of the moisture detector was changed to the lower end of the straight body of the fluidized granulation drying tank 1. . Samples were taken at the time of granulation, and Table 5 shows the moisture content of the particles and the measured resistance values at that time.

【表】 この試験のデータによれば、粒子含有水分量と
水分検出器の抵抗値とは全く相関関係を示してい
ない。このことは、水分検知器が流動造粒乾燥槽
の直胴部下端に設置された場合はもはや検知器の
役割を果たしていないことを示している。 さらに、この比較例の装置を用いて造粒を行
い、得られた造粒品の粒度分布を調べたところ、
第6表のデータが得られた。なお、抵抗値は第5
表のデータを考慮して30MΩに設定した。
[Table] According to the data of this test, there is no correlation between the moisture content of the particles and the resistance value of the moisture detector. This shows that when the moisture detector is installed at the lower end of the straight body of the fluidized granulation drying tank, it no longer plays the role of a detector. Furthermore, when granulation was carried out using the apparatus of this comparative example and the particle size distribution of the obtained granulated product was investigated,
The data in Table 6 was obtained. Note that the resistance value is the fifth
Considering the data in the table, it was set to 30MΩ.

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例の全体構成図、第2図及
び第3図は上記実施例の作用説明図である。 1……流動造粒乾燥槽、2……スクリーン、3
……空気送入口、4……排気口、6……スプレー
ノズル、11……結合液タンク、12……送液ポ
ンプ、13……結合液流量調節弁、14……スプ
レー空気流動調節弁、15……水分検知器、16
……制御回路。
FIG. 1 is an overall configuration diagram of an embodiment of the present invention, and FIGS. 2 and 3 are explanatory diagrams of the operation of the above embodiment. 1...Fluidized granulation drying tank, 2...Screen, 3
...Air inlet, 4...Exhaust port, 6...Spray nozzle, 11...Binding liquid tank, 12...Liquid feeding pump, 13...Binding liquid flow rate control valve, 14...Spray air flow control valve, 15...Moisture detector, 16
...control circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 円筒形の直塔部の下方に逆円錐台傾斜部が連
続形成された槽からなり、その槽の底面に水平に
張設されたスクリーン上に被処理用粉粒体を収
め、スクリーンの上方に配設されたスプレーノズ
ルから噴霧状液体を供給すると共に、上記スクリ
ーンの下方から加圧された気体を槽内へ送入する
ことにより造粒を行い、造粒完了後上記噴霧状液
体の供給を断つて上記加圧された気体の送入を続
けることにより乾燥した造粒品を得るバツチ式装
置において、上記逆円錐台の傾斜部の内壁近傍
に、相対向する一対の電極板から成りその電極面
の法線が槽の円周方向をなす水分検知器を設け、
その電極間の電気抵抗値から造粒中粉粒体の水分
を測定し、上記造粒が行われている期間中その水
分測定値と設定値の偏差が零になる方向に上記ス
プレーノズルへ供給する結合液の水分を自動制御
するよう構成されていることを特徴とする細粒剤
製造装置。
1 Consists of a tank in which an inverted truncated conical inclined part is continuously formed below a cylindrical straight tower part, and the granular material to be treated is stored on a screen stretched horizontally on the bottom of the tank, and the granular material to be treated is placed above the screen The atomized liquid is supplied from a spray nozzle installed in the tank, and granulation is performed by feeding pressurized gas into the tank from below the screen, and after granulation is completed, the atomized liquid is supplied. In a batch-type device for obtaining a dry granulated product by continuing to feed the pressurized gas while cutting off the gas, the apparatus comprises a pair of electrode plates facing each other near the inner wall of the inclined part of the inverted truncated cone. A moisture detector is installed in which the normal line of the electrode surface is in the circumferential direction of the tank.
The moisture content of the powder during granulation is measured from the electrical resistance value between the electrodes, and the moisture is supplied to the spray nozzle in the direction where the deviation between the measured moisture value and the set value becomes zero during the granulation period. A fine granule manufacturing device characterized in that it is configured to automatically control the moisture content of a binding liquid.
JP7436379A 1979-06-13 1979-06-13 Fluidizing, granulating, and drying apparatus Granted JPS55167038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7436379A JPS55167038A (en) 1979-06-13 1979-06-13 Fluidizing, granulating, and drying apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7436379A JPS55167038A (en) 1979-06-13 1979-06-13 Fluidizing, granulating, and drying apparatus

Publications (2)

Publication Number Publication Date
JPS55167038A JPS55167038A (en) 1980-12-26
JPH0369575B2 true JPH0369575B2 (en) 1991-11-01

Family

ID=13544981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7436379A Granted JPS55167038A (en) 1979-06-13 1979-06-13 Fluidizing, granulating, and drying apparatus

Country Status (1)

Country Link
JP (1) JPS55167038A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57167730A (en) * 1981-04-08 1982-10-15 Sumitomo Chem Co Ltd Controlling method for granulating and coating
JPS6238231A (en) * 1985-08-09 1987-02-19 Kyowa Hakko Kogyo Co Ltd Method and apparatus for fluidized granulation and coating
WO1987001202A1 (en) * 1985-08-20 1987-02-26 Kyowa Hakko Kogyo Co., Ltd. Apparatus for measuring water content of particulate and granular materials and method of measuring water content using the same apparatus
JPH072210B2 (en) * 1985-10-21 1995-01-18 株式会社大川原製作所 Granulation control method for hygroscopic powder
ATE260708T1 (en) * 1999-06-29 2004-03-15 Aeromatic Fielder Ag METHOD FOR GRANULATING PARTICLES

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928106A (en) * 1972-07-15 1974-03-13

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928106A (en) * 1972-07-15 1974-03-13

Also Published As

Publication number Publication date
JPS55167038A (en) 1980-12-26

Similar Documents

Publication Publication Date Title
JP3284218B2 (en) Apparatus and method for granulating powdery material
JPH01500807A (en) Method and apparatus for agglomerating and/or coating particles
JPH0369575B2 (en)
Wan et al. The influence of liquid spray rate and atomizing pressure on the size of spray droplets and spheroids
Watano et al. Determination of end-point with a complex granulation applying infrared moisture sensor
Rajasekar et al. Heat and mass transfer characteristics during spray drying of Na2Fe0. 6Mn0. 4PO4F/C cathode material for Na-ion batteries
Kucharski et al. Kinetics of granulation process during coating of tablets in a spouted bed
JPS62279835A (en) Particle diameter control device for continuous granulating
US3743461A (en) Pelletizer control system
US4335676A (en) Device for regulating a gaseous flowstream introduced into a spouted bed granulating and/or coating apparatus
JPS5839776Y2 (en) spray equipment
JPH10128098A (en) Granulation controller and granulation control method
JP3595949B2 (en) Granulation control method for granular material in fluidized bed processing equipment
CN203525647U (en) Spraying granulating device
JPS6238231A (en) Method and apparatus for fluidized granulation and coating
JP2003001091A (en) Fluidized bed granulating and coating method
US4005136A (en) Granules of salts of poly-α-hydroxyacrylic acids and a process for their manufacture
JP2932081B2 (en) Method for measuring moisture in fluidized bed treatment apparatus and method for controlling moisture in treated object
JPS6411332B2 (en)
WO1987001202A1 (en) Apparatus for measuring water content of particulate and granular materials and method of measuring water content using the same apparatus
JPS63201595A (en) Method of coating granulated powder material
Heyd et al. Improved self-programming automated tablet-coating system
Souza et al. Comparative study of the evaporation capacity of the conventional and jet spouted bed dryers for liquid materials
JPH0320886B2 (en)
US3511900A (en) Granulating process