JPH0369153B2 - - Google Patents

Info

Publication number
JPH0369153B2
JPH0369153B2 JP11358084A JP11358084A JPH0369153B2 JP H0369153 B2 JPH0369153 B2 JP H0369153B2 JP 11358084 A JP11358084 A JP 11358084A JP 11358084 A JP11358084 A JP 11358084A JP H0369153 B2 JPH0369153 B2 JP H0369153B2
Authority
JP
Japan
Prior art keywords
temperature
water
heating element
mixture
soluble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11358084A
Other languages
Japanese (ja)
Other versions
JPS60257091A (en
Inventor
Shigeyuki Yasuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP11358084A priority Critical patent/JPS60257091A/en
Publication of JPS60257091A publication Critical patent/JPS60257091A/en
Publication of JPH0369153B2 publication Critical patent/JPH0369153B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はポリオキシアルキレン類−炭素微細片
混合系に対して膨潤する高分子物質を添加した高
電圧に対しても安定な高分子系自己温度調節発熱
体に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention provides a polymer-based self-polymer which is stable even under high voltage and is added with a polymeric substance that swells to a polyoxyalkylene-carbon particle mixed system. This invention relates to a temperature regulating heating element.

〈従来の技術〉 分子中に複数のアルキレンオキシドを単位構造
として含有する有機化合物と粉末状、繊維状、ウ
イスカー状等の形態をなす炭素微細片との混合物
は、その混合比が適当な範囲にあると、温度変化
に対して電気抵抗が急変する性質を有する、いわ
ゆる正特性の感熱電気抵抗組成物として良好な性
質を有するものとなる。なかでも、ポリオキシア
ルキレンとその誘導体は、安価かつ大量に供給で
きる点で実用上好適な物質であり、正特性の優れ
たものであることを見出し、既に特開昭60−
140692号で提案したところである。また、正特性
を有する上記高分子系自己温度調節発熱体は、そ
れ自身が温度センサーにも温度フユーズの作用を
もし、発熱体内に別の温度センサーや温度フユー
ズを設置する必要のない、安全かつ経済的な蓄熱
暖房装置に利用できることに着目し、建物の床暖
房設備、暖房カーペツト、育雛、育仔、育苗等農
蓄産用暖房マツトなどの基材に好適な面状発熱体
を完成し、特開昭60−158586号で提案した。
<Prior art> A mixture of an organic compound containing a plurality of alkylene oxides as a unit structure in its molecule and fine carbon particles in the form of powder, fibers, whiskers, etc. is prepared by adjusting the mixing ratio within an appropriate range. If so, it will have good properties as a so-called positive characteristic heat-sensitive electrical resistance composition, which has the property that its electrical resistance changes suddenly with respect to temperature changes. Among them, polyoxyalkylene and its derivatives are practically suitable substances because they can be supplied in large quantities at low cost, and they have been found to have excellent positive properties, and have already been published in Japanese Patent Application Laid-Open No.
This was proposed in No. 140692. In addition, the polymer-based self-temperature-regulating heating element with positive characteristics also acts as a temperature fuse on the temperature sensor itself, and is safe and eliminates the need to install a separate temperature sensor or temperature fuse inside the heating element. Focusing on the fact that it can be used as an economical thermal storage heating device, we developed a planar heating element that is suitable for base materials such as floor heating equipment in buildings, heating carpets, and heating pine for agricultural production such as brooding, brooding, and seedling raising. It was proposed in Kaisho 60-158586.

〈発明が解決しようとする問題点〉 ところが、その後の研究で、印加電圧が100V
のときは安定に作動する発熱体でああつても、
200Vになると極めて不安定になり、事実上使用
に耐えないものとなることが判明し、その理由と
解決方法につき種々研究したのである。
<Problems to be solved by the invention> However, subsequent research revealed that the applied voltage was 100V.
Even if the heating element operates stably,
It was discovered that when the voltage reached 200V, it became extremely unstable, making it virtually unusable, and various studies were conducted to find out the reasons for this and ways to solve it.

〈問題点を解決するための手段〉 本発明は以上の問題点を解決したもので、ポリ
オキシアルキレン類−炭素微細片混合系に対して
膨潤する高分子物質を添加すると過大電圧に対し
ても極めて安定に作動する発熱体となることを見
出し、ここにその完成をみるに至つたのである。
<Means for Solving the Problems> The present invention solves the above problems, and by adding a swelling polymeric substance to a polyoxyalkylene-carbon fines mixture system, it can withstand overvoltage. They discovered that it can be used as a heating element that operates extremely stably, and have now completed it.

本発明で用いるポリオキシアルキレン類は、例
えば直鎖状化合物としては、ポリオキシアルキレ
ン類、例えば、ポリエチレングリコール及びそれ
の高分子量のポリエチレンオキシド、ポリオキシ
エチレンとポリオキシプロピレンのブロツク共重
合体(いわゆるプルロニツク、テトロニツクと称
されるもの)、ポリオキシエチレンアルキルエー
テル、ポリオキシエチレンアルキルアリルエーテ
ル、ポリオキシエチレンアルキルエステル、ポリ
オキシエチレンアルキルアミン、ポリオキシエチ
レンソルビタン脂肪酸エステルなどが挙げられ
る。なかでも、ポリエチレングリコールは最も好
ましい性質を示す。これらに共通して云えること
は、分子中に複数存在するアルキレンオキシドが
炭素微細片の分散に対して重要な役割を果してい
るようである。
The polyoxyalkylenes used in the present invention include, for example, linear compounds such as polyoxyalkylenes, such as polyethylene glycol and its high molecular weight polyethylene oxide, and block copolymers of polyoxyethylene and polyoxypropylene (so-called Pluronic, Tetronic), polyoxyethylene alkyl ether, polyoxyethylene alkyl allyl ether, polyoxyethylene alkyl ester, polyoxyethylene alkylamine, polyoxyethylene sorbitan fatty acid ester, and the like. Among them, polyethylene glycol exhibits the most favorable properties. What these all have in common is that multiple alkylene oxides present in the molecule seem to play an important role in the dispersion of carbon particles.

ポリオキシアルキレン類に混合する炭素微細片
は、黒鉛粉末、活性炭粉末、無定形炭素粉末、カ
ーボン繊維の細断片、単結晶からなるウイスカー
等の形態をなすものである。
The carbon fine particles to be mixed with the polyoxyalkylenes are in the form of graphite powder, activated carbon powder, amorphous carbon powder, carbon fiber fragments, single crystal whiskers, and the like.

ポリオキシアルキレン類と炭素微細片の混合系
はその混合比によつて正特性のあらわれる領域が
あり、通常、ポリオキシアルキレン類100に対し
て炭素微細片が10〜80の範囲(重量比)である。
10より少ないと高抵抗で通電性がなく、逆に80よ
り多くなると通電性が大となつて温度変化により
正特性を示さないものとなる。しかし、ポリオキ
シアルキレン類の種類や、炭素微細片の種類によ
つて正特性が表われる範囲が大きく変動するか
ら、上記範囲に限定されるものではない。例え
ば、ポリエチレングリコール−黒鉛粉末系の混合
比を異にするものの時間−温度特性は第1図であ
り、黒鉛粉末33%のときの正特性のあらわれ方は
第2図に示すところである。また、その他のポリ
オキシアルキレン類の場合の正特性カーブは第3
図である。
Mixed systems of polyoxyalkylenes and fine carbon particles have positive characteristics depending on their mixing ratio, and usually the mixture of fine carbon particles is in the range of 10 to 80 parts (weight ratio) to 100 parts of polyoxyalkylenes. be.
If it is less than 10, the resistance will be high and there will be no conductivity, and if it is more than 80, the conductivity will be so high that it will not exhibit positive characteristics due to temperature changes. However, since the range in which positive characteristics are exhibited varies greatly depending on the type of polyoxyalkylene and the type of carbon fine particles, it is not limited to the above range. For example, the time-temperature characteristics of polyethylene glycol-graphite powder systems with different mixing ratios are shown in Figure 1, and the appearance of positive characteristics when the graphite powder is 33% is shown in Figure 2. In addition, the positive characteristic curve for other polyoxyalkylenes is the third
It is a diagram.

このような正特性は電極間に交流100Vの電圧
をかけたときのデータであるが、電圧を上昇させ
て、例えば交流200Vの下では100Vで安定なカー
ボン30%混合系であつても、第4図に示すよう
に、正特性の安定性が崩れ、第1図にみられる黒
鉛粉末が40%以上の領域と同じく過熱状態とな
る。その理由は十分解明されていないが、多分電
極間の発熱体が高電圧下では面状発熱から線状発
熱となり、一種の短絡状態となり、過電流状態が
生ずるものと考えられる。そこで、このような炭
素微細片の運動をおさえ、面状に分散した状態を
固定するようなネツトワークを生じさせる物質の
添加が良いのではないかと考え、種々検討の結果
得られたのが、ポリオキシアルキレン類−炭素微
細片混合系に対して膨潤する高分子物質の添加効
果である。
Such positive characteristics are obtained when a voltage of 100 V AC is applied between the electrodes, but when the voltage is increased, for example, under 200 V AC, even with a 30% carbon mixture system that is stable at 100 V, the As shown in Figure 4, the stability of the positive characteristics collapses and the graphite powder becomes overheated, similar to the region where the graphite powder is 40% or more as shown in Figure 1. The reason for this is not fully understood, but it is thought that the heating element between the electrodes changes from planar heat generation to linear heat generation under high voltage, resulting in a kind of short circuit and an overcurrent state. Therefore, we thought that it would be better to add a substance that suppresses the movement of such fine carbon particles and creates a network that fixes the planarly dispersed state, and after various studies, we found the following: This is the effect of adding a polymeric substance that swells to the polyoxyalkylene-carbon fines mixed system.

膨潤する高分子物質には水溶性又は水膨潤性の
合成高分子あるいは天然高分子及びその誘導体な
どがある。水溶性又は水膨潤性の合成高分子の例
としては、ポリビニルピロリドン、ポリビニルア
ルコール、ポリアクリルアミド、ポリアクリル酸
あるいはアクリルアミド−アクリル酸−メチルメ
タクリレート三元共重合体などの一種又は二種以
上の混合物である。また、水溶性又は水膨潤性の
天然高分子又はその誘導体の例としては、澱粉、
可溶性澱粉、セルロース、メチルセルロース、カ
ルボキシメチルセルロース、寒天、カゼイン、ゼ
ラチン等の一種又は二種以上の混合物などであ
る。なかでも、ポリビニルピロリドンはポリオキ
シアルキレン類に完全溶解し、発熱体に対する安
定化効果の極めて大きいもので、以下の実施例に
みられるように僅か0.3%の添加で顕著な効果を
見せるものである。
Swelling polymeric substances include water-soluble or water-swellable synthetic or natural polymers and derivatives thereof. Examples of water-soluble or water-swellable synthetic polymers include polyvinylpyrrolidone, polyvinyl alcohol, polyacrylamide, polyacrylic acid, or a mixture of two or more of them, such as acrylamide-acrylic acid-methyl methacrylate terpolymer. be. In addition, examples of water-soluble or water-swellable natural polymers or derivatives thereof include starch,
Examples include one or a mixture of two or more of soluble starch, cellulose, methylcellulose, carboxymethylcellulose, agar, casein, gelatin, and the like. Among these, polyvinylpyrrolidone is completely soluble in polyoxyalkylenes and has an extremely large stabilizing effect on heating elements, and as shown in the examples below, it shows a remarkable effect even when added at only 0.3%. .

一般に、これら水溶性又は水膨潤性高分子物質
の安定化効果は、ポリオキシアルキレン類−炭素
微細片混合物100部に対して0.01〜10部の添加量
の範囲で顕著にあらわれる。
Generally, the stabilizing effect of these water-soluble or water-swellable polymeric substances becomes noticeable when the amount added is in the range of 0.01 to 10 parts per 100 parts of the polyoxyalkylene-carbon fines mixture.

以下、実施例によつて本発明の構成及び作用効
果を具体的に説明する。実施例1のポリビニルピ
ロリドンは完全相溶するが、実施例2以降の他の
高分子物質は粉末で混合加熱しても膨潤するにと
どまる。しかし、いずれも、高電圧下で極めて安
定な正特性が得られているから、膨潤したものは
一部溶解して安定な正特性が得られるものと思わ
れる。
Hereinafter, the configuration and effects of the present invention will be specifically explained with reference to Examples. The polyvinylpyrrolidone of Example 1 is completely compatible, but the other polymeric substances of Example 2 and later only swell even when mixed and heated in powder form. However, since extremely stable positive characteristics were obtained in both cases under high voltage, it is thought that the swollen material partially dissolves and stable positive characteristics are obtained.

実施例 1 ポリエチレングリコール(第一工業製薬株式会
社製、以下同じ#6000)、ポリエチレングリコー
ル(同#2000)、グラフアイトカーボン(米山薬
品株式会社製、以下同じ)5:5:4重量比の混
合物100部に対してポリビニルピロリドン(半井
化学薬品株式会社製、試薬一級)0.3部を添加し
たものを加熱溶融し撹拌後得られた発熱体1を、
第6図及び第7図に示すように、繊維層2が内側
についているポリエステルシートからなる非電導
性シート3(300×80×0.16mm)2枚の間に流し
込んで、両側に銅箔テープ電極4をとりつけた。
全体の厚みは0.25mmであつた。この表面に温度セ
ンサ5を取付け、100V及び200Vの交流電圧をか
けたときの発熱体の温度−時間曲線を第4図のA
及びBに示した。100Vのときはほぼ44.5℃で安
定し、200Vのときは約53℃で安定した自己温度
調節機能を発現した。
Example 1 Mixture of polyethylene glycol (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., hereinafter the same #6000), polyethylene glycol (same #2000), graphite carbon (manufactured by Yoneyama Pharmaceutical Co., Ltd., the same hereinafter) in a weight ratio of 5:5:4 Heat generating element 1 obtained by heating and melting 0.3 parts of polyvinylpyrrolidone (manufactured by Hanui Chemical Co., Ltd., reagent grade 1) per 100 parts and stirring,
As shown in Figures 6 and 7, a non-conductive sheet 3 (300 x 80 x 0.16 mm) made of a polyester sheet with a fiber layer 2 on the inside is poured between two sheets, and copper foil tape electrodes are placed on both sides. I got 4.
The total thickness was 0.25 mm. A temperature sensor 5 is attached to this surface, and the temperature-time curve of the heating element when AC voltages of 100V and 200V are applied is shown in Figure 4.
and shown in B. At 100V, it stabilized at approximately 44.5℃, and at 200V, it exhibited stable self-temperature regulation at approximately 53℃.

比較例として、上記混合物からポリビニルピロ
リドンを除去した発熱体の場合を同第4図のなか
に点線でC及びDに示した。
As a comparative example, a heating element obtained by removing polyvinylpyrrolidone from the above mixture is shown by dotted lines C and D in FIG.

これら実施例と比較例との対比で明らかなよう
に、電圧100Vではあまり変化がないが、200Vに
なると正特性が全く消失して使用に供し得ないも
のとなるのである。
As is clear from the comparison between these Examples and Comparative Examples, there is not much change at a voltage of 100V, but when the voltage increases to 200V, the positive characteristics completely disappear and the product becomes unusable.

実施例 2 ポリエチレングリコール100gにカルボキシメ
チルセルローズ(以下CMCと称す)(半井化学薬
品株式会社製)100mgを添加して乳鉢に入れ、乳
棒で十分撹拌した後、加熱溶融し、グラフアイト
カーボン39gを添加混合した。この組成物(カー
ボン28%、CMC0.07%)を実施例1と同じ面状
発熱体に加工し、200VACを通電し、通電開始後
各時間における温度を測定して、その結果を第5
図中に示した。この組成物も実施例1と同様に
自己温度調節機能を示し、59℃で一定温度となつ
た。
Example 2 100 mg of carboxymethyl cellulose (hereinafter referred to as CMC) (manufactured by Hanui Chemical Co., Ltd.) was added to 100 g of polyethylene glycol, placed in a mortar, thoroughly stirred with a pestle, heated and melted, and 39 g of graphite carbon was added. Mixed. This composition (carbon 28%, CMC 0.07%) was processed into the same planar heating element as in Example 1, energized at 200 VAC, and the temperature measured at each time after the start of energization.
Shown in the figure. This composition also exhibited a self-temperature regulating function as in Example 1, reaching a constant temperature of 59°C.

実施例 3 ポリエチレングリコール(#6000)100gにセ
ルローズ粉(半井化学薬品株式会社製)100mgを
添加し、実施例2に同じく乳鉢と乳棒で十分撹拌
混合し、加熱溶融後、グラフアイトカーボン39g
を混合して、実施例1と同じ面状発熱体を作製
し、200VACを通電し、各時間における温度を測
定して、第5図中に示した。このものも実施例
2と同じく59℃で一定温度に到達した。
Example 3 100 mg of cellulose powder (manufactured by Hanui Chemicals Co., Ltd.) was added to 100 g of polyethylene glycol (#6000), stirred and mixed thoroughly with a mortar and pestle in the same manner as in Example 2, and after heating and melting, 39 g of graphite carbon was added.
A planar heating element similar to that in Example 1 was prepared by mixing the above, and a current of 200 VAC was applied, and the temperature at each time was measured, and the results are shown in FIG. This sample also reached a constant temperature of 59° C. as in Example 2.

実施例 4 ポリエチレングリコール(#6000)100gに寒
天末(半井化学薬品株式会社製一級(EP))100
mgを添加し、実施例2,3に同じく乳鉢、乳棒で
十分撹拌混合した後加熱溶融し、グラフアイトカ
ーボン39gを混合し、実施例1〜3と同様の面状
発熱体を作製し、200VAC通電後、各時間におけ
る温度を測定し、第5図中に示した。この組成
物も59℃において一定温度となることがわかる。
Example 4 100 g of polyethylene glycol (#6000) and 100 g of agar powder (first class (EP) manufactured by Hani Chemical Co., Ltd.)
After stirring and mixing thoroughly with a mortar and pestle in the same manner as in Examples 2 and 3, the mixture was heated and melted, and 39 g of graphite carbon was mixed therein to produce a planar heating element similar to Examples 1 to 3. After energization, the temperature at each time was measured and shown in FIG. It can be seen that this composition also has a constant temperature at 59°C.

実施例 5 ポリエチレングリコール(#6000)100gに可
溶性デンプン(メルク社製、分析用試薬)100mg
を添加し、実施例2〜4と同様に乳鉢と乳棒で十
分撹拌混合した後、加熱溶融し、グラフアイトカ
ーボン39gを混合して、実施例1〜4と同様の面
状発熱体を作製し、200VACを通電後、各時間に
おける温度を測定し、第5図中に示した。この
組成物においても59℃に温度が一定した。
Example 5 100 mg of soluble starch (manufactured by Merck & Co., Ltd., analytical reagent) in 100 g of polyethylene glycol (#6000)
After stirring and mixing thoroughly with a mortar and pestle in the same manner as in Examples 2 to 4, the mixture was heated and melted, and 39 g of graphite carbon was mixed therein to produce a sheet heating element similar to that in Examples 1 to 4. , 200 VAC was applied, and the temperature at each time was measured and shown in FIG. In this composition as well, the temperature remained constant at 59°C.

実施例 6 ポリエチレングリコール(#6000)100gに3
元共重合体〔ポリアクリルアミド(70M%)−ポ
リアクリル酸(25M%)−ポリメチルメタクリル
酸(5M%),Mn=600万;日東化学工業株式会
社製〕100mgを添加し、実施例2〜5と同様に乳
鉢、乳棒で十分に撹拌混合した後加熱溶融し、実
施例1〜5と同様に面状発熱体を作製して
200VACを通電し、各時間における温度を測定し
て、第5図中に示した。この組成物においても
59℃の一定温度が得られた。
Example 6 Polyethylene glycol (#6000) 3 to 100g
Example 2~ Similar to Example 5, the mixture was thoroughly stirred and mixed with a mortar and pestle, and then heated and melted to produce a sheet heating element in the same manner as in Examples 1 to 5.
A current of 200 VAC was applied, and the temperature at each time was measured and shown in FIG. Also in this composition
A constant temperature of 59°C was obtained.

実施例 7 ポリエチレングリコール(#6000)100gにポ
リビニルアルコール(半井化学薬品株式会社製、
重合度500、ケン化度86.5〜89%)100mgを添加
し、実施例2〜6と同様に乳鉢、乳棒で十分撹拌
混合し加熱溶融後、グラフアイトカーボン39gを
混合し、実施例1〜6と同じ面状発熱体とし、
AC200Vを通電後各時間の温度を第5図中に示
した。この組成物の到達一定温度も59℃であつ
た。
Example 7 100g of polyethylene glycol (#6000) and polyvinyl alcohol (manufactured by Hanui Chemical Co., Ltd.,
Polymerization degree 500, saponification degree 86.5-89%) 100mg was added, stirred and mixed thoroughly with a mortar and pestle in the same manner as Examples 2-6, heated and melted, and 39g of graphite carbon was mixed. The same planar heating element as
Figure 5 shows the temperature at each time after AC200V was applied. The constant temperature reached by this composition was also 59°C.

実施例 8 ポリエチレングリコール(#6000)100gにポ
リビニルアルコール(半井化学薬品株式会社製、
重合度2500、ケン化度99〜100%)100mgを加え、
実施例2〜7と同様乳鉢、乳棒で十分撹拌混合
し、加熱溶融後グラフアイトカーボン39gを混合
し、実施例1〜7と同じ面状発熱体を作製し、
200VACを通電した。各時間の温度を測定した結
果を第5図中に示した。到達一定温度は59℃で
あつた。
Example 8 100g of polyethylene glycol (#6000) and polyvinyl alcohol (manufactured by Hanui Chemical Co., Ltd.,
Add 100 mg of polymerization degree 2500, saponification degree 99-100%,
As in Examples 2 to 7, the mixture was thoroughly stirred and mixed with a mortar and pestle, and after heating and melting, 39 g of graphite carbon was mixed to produce the same planar heating element as in Examples 1 to 7.
200VAC was applied. The results of measuring the temperature at each time are shown in FIG. The constant temperature reached was 59°C.

実施例 9 ポリエチレングリコール(#6000)100gにカ
ゼイン(半井化学薬品株式会社製、試薬特級)
100mgを添加し、実施例2〜8と同様に乳鉢、乳
棒で十分に撹拌混合した後加熱溶融しグラフアイ
トカーボン39gを混合し、実施例1〜8と同様に
面状発熱体を作製し、200VACを通電後、各時間
における温度を第5図中に示した。この組成物
の一定到達温度は59℃であつた。
Example 9 100 g of polyethylene glycol (#6000) and casein (manufactured by Hanui Chemical Co., Ltd., reagent special grade)
Add 100 mg, stir and mix thoroughly with a mortar and pestle as in Examples 2 to 8, heat and melt, mix with 39 g of graphite carbon, and prepare a sheet heating element in the same manner as in Examples 1 to 8. The temperature at each time after 200 VAC was applied is shown in FIG. The constant temperature reached by this composition was 59°C.

〈発明の効果〉 以上の結果から明らかなように、本発明の組成
物からなる高分子系自己温度調節発熱体は、
200Vの電圧を加えても安定な正特性が得られ、
これにより建物の床暖房設備、暖房カーペツト、
その他各種用途に用いる面状発熱体として安全性
の高い製品を供給できることとなつたのである。
<Effects of the Invention> As is clear from the above results, the polymer self-temperature-regulating heating element made of the composition of the present invention has the following effects:
Stable positive characteristics can be obtained even when a voltage of 200V is applied.
As a result, the building's floor heating equipment, heating carpets,
It has now become possible to supply a highly safe product as a sheet heating element for use in a variety of other applications.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はポリエチレングリコール−黒鉛粉末系
の混合比を異にする発熱体の通電時間と温度との
関係を示すグラフ、第2図は第1図における黒鉛
粉末33%のときの正特性を示すグラフ、第3図は
各種ポリオキシアルキレン類−黒鉛粉末混合系発
熱体の正特性を示すグラフである。第4図はポリ
ビニルピロリドンの添加効果を示す通電時間と温
度との関係を示すグラフ、第5図は他の各種高分
子添加効果を示す第4図相当のグラフである。ま
た、第6図、第7図は面状発熱体を示すもので、
第6図は平面図、第7図は第6図のA−A断面拡
大図である。
Figure 1 is a graph showing the relationship between energization time and temperature for heating elements with different mixing ratios of polyethylene glycol and graphite powder, and Figure 2 shows the positive characteristics when graphite powder is 33% in Figure 1. The graph and FIG. 3 are graphs showing the positive characteristics of various polyoxyalkylene-graphite powder mixture heating elements. FIG. 4 is a graph showing the relationship between current application time and temperature showing the effect of adding polyvinylpyrrolidone, and FIG. 5 is a graph corresponding to FIG. 4 showing the effect of adding various other polymers. In addition, Fig. 6 and Fig. 7 show sheet heating elements.
FIG. 6 is a plan view, and FIG. 7 is an enlarged cross-sectional view taken along line AA in FIG. 6.

Claims (1)

【特許請求の範囲】 1 ポリオキシアルキレン類−炭素微細片混合系
100部に対して水溶性又は水膨潤性のある有機高
分子物質0.01〜10部を添加してなることを特徴と
する高分子系自己温度調節発熱体。 2 水溶性又は水膨潤性の有機高分子物質はポリ
ビニルピロリドン、ポリビニルアルコール、ポリ
アクリルアミド、ポリアクリル酸等の一種又は二
種以上の混合物である特許請求の範囲第1項記載
の高分子系自己温度調節発熱体。 3 水溶性又は水膨潤性の有機高分子物質は天然
高分子の澱粉、セルロース、メチルセルロース、
カルボキシメチルセルロース、寒天、カゼイン、
ゼラチン等の一種又は二種以上の混合物である特
許請求の範囲第1項記載の高分子系自己温度調節
発熱体。
[Claims] 1. Polyoxyalkylene-carbon fine particle mixed system
1. A polymer self-temperature-regulating heating element, characterized in that 0.01 to 10 parts of a water-soluble or water-swellable organic polymer substance is added to 100 parts. 2. The self-temperature of a polymer according to claim 1, wherein the water-soluble or water-swellable organic polymer substance is one or a mixture of two or more of polyvinylpyrrolidone, polyvinyl alcohol, polyacrylamide, polyacrylic acid, etc. Adjustable heating element. 3 Water-soluble or water-swellable organic polymer substances include natural polymers such as starch, cellulose, methyl cellulose,
Carboxymethyl cellulose, agar, casein,
The polymeric self-temperature-regulating heating element according to claim 1, which is one or a mixture of two or more of gelatin and the like.
JP11358084A 1984-06-02 1984-06-02 Polymer self-temperature regulating heater Granted JPS60257091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11358084A JPS60257091A (en) 1984-06-02 1984-06-02 Polymer self-temperature regulating heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11358084A JPS60257091A (en) 1984-06-02 1984-06-02 Polymer self-temperature regulating heater

Publications (2)

Publication Number Publication Date
JPS60257091A JPS60257091A (en) 1985-12-18
JPH0369153B2 true JPH0369153B2 (en) 1991-10-31

Family

ID=14615826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11358084A Granted JPS60257091A (en) 1984-06-02 1984-06-02 Polymer self-temperature regulating heater

Country Status (1)

Country Link
JP (1) JPS60257091A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62202793U (en) * 1986-06-16 1987-12-24
JPS6315595U (en) * 1986-07-16 1988-02-01
JPS6348788A (en) * 1986-08-13 1988-03-01 安田 繁之 Panel heater
JP7464952B2 (en) * 2018-04-16 2024-04-10 三菱ケミカル株式会社 Polymer PTC composition, layered polymer PTC element, polymer PTC element, PTC device, electric device and secondary battery cell

Also Published As

Publication number Publication date
JPS60257091A (en) 1985-12-18

Similar Documents

Publication Publication Date Title
Segal et al. Polystyrene/polyaniline nanoblends for sensing of aliphatic alcohols
JPH0342681B2 (en)
EP0160207A1 (en) Processable conductive polymers
US5196145A (en) Temperature self-controlling heating composition
JPH0369153B2 (en)
Barra et al. Solution-cast blends of polyaniline–DBSA with EVA copolymers
JPH03131679A (en) Conductive adhesive
Segal et al. Chemical sensing materials based on electrically‐conductive immiscible polymer blends
JPS5918804B2 (en) heat sensitive element
JPS62281293A (en) Carbon fiber mixing sheet heater
JPS59122524A (en) Composition having positive temperature characteristics of resistance
EP0692924A1 (en) Heat generating panel
JPH0374472B2 (en)
JP2876125B2 (en) Low resistance PTC element
JPH0748396B2 (en) Sheet heating element
JPH0374473B2 (en)
KR950001483B1 (en) Organic high molecule humidity sensor
JP2719936B2 (en) Self temperature control low temperature heating element
JPS5871584A (en) Panel heater
JPH0927383A (en) Surface heater element and its manufacture
JPH01265394A (en) Sensor for fire alarm
JPH01304704A (en) Organic high polymer composition of ptc behavior
JPS63223049A (en) Electrically conductive sheet
JPH05149908A (en) Material for humidity sensor
JPH0414201A (en) Polyethylene glycol carbon powder base positive characteristic electric resistance composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees