JPH0368753A - Production of nitrided steel member - Google Patents
Production of nitrided steel memberInfo
- Publication number
- JPH0368753A JPH0368753A JP20535189A JP20535189A JPH0368753A JP H0368753 A JPH0368753 A JP H0368753A JP 20535189 A JP20535189 A JP 20535189A JP 20535189 A JP20535189 A JP 20535189A JP H0368753 A JPH0368753 A JP H0368753A
- Authority
- JP
- Japan
- Prior art keywords
- steel member
- treatment
- carburizing
- steel
- hardness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 73
- 239000010959 steel Substances 0.000 title claims abstract description 73
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 238000005121 nitriding Methods 0.000 claims abstract description 31
- 238000000034 method Methods 0.000 claims abstract description 26
- 238000012545 processing Methods 0.000 claims description 2
- 238000005255 carburizing Methods 0.000 abstract description 27
- 238000003754 machining Methods 0.000 abstract description 3
- 230000001105 regulatory effect Effects 0.000 abstract description 2
- 239000007789 gas Substances 0.000 description 24
- 229910052799 carbon Inorganic materials 0.000 description 21
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 20
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 19
- 150000002500 ions Chemical class 0.000 description 19
- 229910052757 nitrogen Inorganic materials 0.000 description 9
- 239000000203 mixture Substances 0.000 description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 7
- 238000005261 decarburization Methods 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 238000001816 cooling Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 229910001337 iron nitride Inorganic materials 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000000137 annealing Methods 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 241000473391 Archosargus rhomboidalis Species 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- -1 cyanide compound Chemical class 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000010583 slow cooling Methods 0.000 description 2
- 238000005496 tempering Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910000746 Structural steel Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910001563 bainite Inorganic materials 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000009535 clinical urine test Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- XLJMAIOERFSOGZ-UHFFFAOYSA-M cyanate Chemical compound [O-]C#N XLJMAIOERFSOGZ-UHFFFAOYSA-M 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- QMQXDJATSGGYDR-UHFFFAOYSA-N methylidyneiron Chemical compound [C].[Fe] QMQXDJATSGGYDR-UHFFFAOYSA-N 0.000 description 1
- 238000010587 phase diagram Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005480 shot peening Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
Abstract
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は、窒化綱部材の製造方法に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to a method of manufacturing a nitrided steel member.
[従来の技術]
鋼部材中に窒素を侵入させその表面から深さ数百μm程
度までの部分(以下、この部分を表面部分という)に鉄
の窒化物を含む硬化層を形成させる鋼の窒化処理方法は
、鋼の表面硬化処理方法の1つとして従来より知られて
おり、この処理方法は熱処理歪みが比較的小さいのでと
くに歯車等の機械構造部品に対して多く用いられる。具
体的には、鉄−炭素系状態図のAI変態点(約730℃
)以下の適当な温度条件下(例えば、500〜570℃
)ZこおいてM部材をアンモニアガスを含む窒素系の雰
囲気ガスにさらしその表面部分に鉄の窒化物を生成させ
るようにしたガス窒化処理方法、あるいはA1変態点以
下の適当な温度条件下において鋼部材に熔融青酸塩等を
用いた塩浴を施しその表面部分に鉄の窒化物を生成させ
るようにした塩浴窒化処理方法等が従来より用いられて
いる。[Prior art] Steel nitriding involves infiltrating nitrogen into a steel member to form a hardened layer containing iron nitride in a portion from the surface to a depth of several hundred μm (hereinafter referred to as the surface portion). This treatment method is conventionally known as one of the surface hardening treatment methods for steel, and this treatment method is often used particularly for mechanical structural parts such as gears because heat treatment distortion is relatively small. Specifically, the AI transformation point of the iron-carbon phase diagram (approximately 730°C
) under suitable temperature conditions (e.g. 500-570°C
) In this case, the M member is exposed to a nitrogen-based atmospheric gas containing ammonia gas to generate iron nitride on the surface, or under an appropriate temperature condition below the A1 transformation point. Conventionally, a salt bath nitriding method has been used in which a steel member is subjected to a salt bath using molten cyanate or the like to generate iron nitrides on the surface thereof.
しかし、上記従来の鯛の窒化処理方法には、処理に長時
間(数十時間)を要するなどといった問題があるので、
シアン系化合物、RXガス(吸熱型変性ガス)等を用い
て数時間で鋼部材の表面部分に鉄の窒化物を生成させる
ようにした軟窒化処理方法が提案されている(例えば、
特公昭61−31184号公報参照)。However, the above-mentioned conventional nitriding method for sea bream has problems such as the processing time required (several tens of hours).
A soft nitriding treatment method has been proposed that uses a cyanide compound, RX gas (endothermic modified gas), etc. to generate iron nitride on the surface of a steel member in a few hours (for example,
(See Japanese Patent Publication No. 61-31184).
上記従来の窒化処理方法は、いずれも比較的安価で大量
に窒化処理を施すことできるといった利点を有する。し
かしながら、これらの処理方法では、鋼部材への窒素の
供給速度が鋼部材表面における熱化学的な平衡関係によ
って規制されるので、鋼部材中に十分な量の窒素が侵入
せず、十分な硬度をもつ硬化層が形成されない。したが
って、鋼部材の強度を十分に高めることができないとい
った問題がある。一方、近年機械構造部品においてはそ
の小型化・軽量化が図られている関係上、鋼部材に対し
てより高い強度が求められているので、その強度を十分
に高めることができる窒化処理方法が求められている。All of the conventional nitriding methods described above have the advantage of being relatively inexpensive and capable of performing nitriding in large quantities. However, in these treatment methods, the rate of supply of nitrogen to the steel member is regulated by the thermochemical equilibrium relationship on the surface of the steel member, so a sufficient amount of nitrogen does not enter the steel member, resulting in insufficient hardness. No hardened layer is formed. Therefore, there is a problem that the strength of the steel member cannot be sufficiently increased. On the other hand, as mechanical structural parts have become smaller and lighter in recent years, higher strength is required of steel members. It has been demanded.
そこで、低圧(数T orr)の窒素と水素の混合ガス
よりなる雰囲気ガスが封入された容器内に鋼部材を配置
する一方、容器側に正電圧をかけるとともに鋼部材側に
負電圧をかけ、これらの間でグロー放電を起こさせて窒
素ガスをイオン化し、このイオン化された窒素を電気力
で鋼部材内部に侵入させるようにしたイオン窒化処理方
法が提案されている。このイオン窒化処理方法によれば
、熱化学的な平衡関係にかかわりなく、電気力によって
強制的に鋼部材中に多量の窒素を侵入させることができ
るので、その表面部分に十分に鉄の窒化物を生成させる
ことができる。Therefore, a steel member is placed in a container filled with an atmospheric gas consisting of a mixed gas of nitrogen and hydrogen at low pressure (several Torr), while a positive voltage is applied to the container side and a negative voltage is applied to the steel member side. An ion nitriding method has been proposed in which a glow discharge is caused between these materials to ionize nitrogen gas, and the ionized nitrogen is caused to penetrate into the steel member using electric force. According to this ion nitriding treatment method, it is possible to forcibly infiltrate a large amount of nitrogen into the steel member by electric force, regardless of the thermochemical equilibrium relationship. can be generated.
[発明が解決しようとする課題]
したがって、上記イオン窒化処理方法によれば、窒素を
イオン化しない窒化処理方法に比べて、基本的には鋼部
材の表面部分の硬度を高めることができるといえよう。[Problems to be Solved by the Invention] Therefore, it can be said that according to the above-mentioned ion nitriding method, the hardness of the surface portion of a steel member can basically be increased compared to a nitriding method that does not ionize nitrogen. .
しかしながら、本願発明者らが上記従来のイオン窒化処
理が施された鋼部材の表面部分の種々の深さの部分の硬
度を詳細に測定したところ、表面からの深さが50〜1
100ttの部分については十分な硬度が得られている
ものの、深さが25μm以下のごく浅い部分(以下、こ
の部分を最表面部分という)では、十分な硬度が得られ
ておらず、このため鋼部材全体としては強度がいま1つ
不足しているということが判明した。However, when the inventors of the present application carefully measured the hardness of various depths on the surface of the steel member subjected to the conventional ion nitriding treatment, it was found that the hardness from the surface was 50 to 1.
Although sufficient hardness was obtained in the 100 tt portion, sufficient hardness was not obtained in the extremely shallow portion (hereinafter referred to as the outermost surface portion) with a depth of 25 μm or less, and for this reason, the steel It was found that the strength of the member as a whole was lacking.
本発明は上記従来の問題点に鑑みてなされたものであっ
て、鋼部材の最表面部分の硬度を低下させず、表面部分
全域にわたって十分に硬度を高めることができ、鋼部材
の強度を機械構造部品等の小型化・軽量化に有効に対応
できるように十分に高めることができる窒化綱部材の製
造方法を提供することを目的とする。The present invention has been made in view of the above-mentioned conventional problems, and it is possible to sufficiently increase the hardness over the entire surface area without reducing the hardness of the outermost surface part of the steel member, and to increase the strength of the steel member mechanically. It is an object of the present invention to provide a method for manufacturing a nitrided steel member that can sufficiently increase the size and weight of structural parts.
[課題を解決するための手段]
本願発明者らは上記従来のイオン窒化処理が施された鋼
部材において、その最表面部分の硬度が低下する原因に
ついて詳細な研究を行い、次のような事実を発見した。[Means for Solving the Problems] The inventors of the present application have conducted detailed research into the cause of the decrease in hardness of the outermost surface portion of steel members subjected to the conventional ion nitriding treatment, and have found the following facts. discovered.
すなわち、鯛のイオン窒化処理においては、般に雰囲気
ガスとして、窒素イオンをつくるための窒素ガスと、鋼
表面を活性化するための水素ガスとが混合された低圧の
混合ガスが用いられるが、鋼部材の最表面部分の炭素の
かなりの部分が雰囲気ガス中の水素と結合して鋼部材か
ら失われるといった、いわゆる脱炭現象が生じる。この
ため、鋼部材の最表面部分では炭素濃度が低下して硬度
が低下する。That is, in the ion nitriding treatment of sea bream, a low-pressure mixed gas containing nitrogen gas to create nitrogen ions and hydrogen gas to activate the steel surface is generally used as the atmospheric gas. A so-called decarburization phenomenon occurs in which a considerable portion of the carbon at the outermost surface of the steel member combines with hydrogen in the atmospheric gas and is lost from the steel member. For this reason, the carbon concentration decreases in the outermost surface portion of the steel member, resulting in a decrease in hardness.
本願発明者らはこのような事実に着目し、予め鋼部材の
最表面部分の炭素濃度を適度に高めておけば、イオン窒
化処理時に最表面部分の炭素が雰囲気ガス中の水素と結
合して失われても、なお炭素濃度を適正値に保持できる
ものと考えた。本発明はこのような考察に基づき、上記
の目的を達するため、鋼部材に対して、機械加工を施し
、次にその表面から0.05〜0 、5 amの深さま
での部分の浸炭濃度が0.3〜0.7%となるように弱
浸炭処理を施し、この後イオン窒化処理を施すことを特
徴とする窒化綱部材の製造方法を提供する。The inventors of the present application focused on this fact, and if the carbon concentration at the outermost surface of the steel member is appropriately increased in advance, the carbon at the outermost surface will combine with hydrogen in the atmospheric gas during ion nitriding. We thought that even if carbon was lost, the carbon concentration could still be maintained at an appropriate value. Based on such consideration, and in order to achieve the above object, the present invention machine-processes a steel member, and then reduces the carburization concentration at a depth of 0.05 to 0.5 am from the surface. Provided is a method for producing a nitrided steel member, characterized in that a weak carburizing treatment is performed to give a carbon content of 0.3 to 0.7%, and then an ion nitriding treatment is performed.
[発明の作用・効果]
本発明によれば、弱浸炭処理によって鋼部材の表面から
0.05〜0 、5111mの深さまでの部分の炭’s
a度が0.3〜0.7%まで高められるので、この後イ
オン窒化処理が行なわれ最表面部分の炭素が雰囲気ガス
中の水素と結合して失われた場合でも、最表面部分の炭
素濃度は適正値に保持され硬度の低下が生じない。この
ためイオン窒化処理によって表面部分全域に十分な硬度
を有する硬化層を形成することができ、鋼部材の強度を
十分に高めることができる。[Operations and Effects of the Invention] According to the present invention, charcoal is removed from the surface of the steel member to a depth of 0.05 to 0.5111 m by mild carburizing treatment.
Since the a degree is increased to 0.3 to 0.7%, even if the carbon at the outermost surface is lost by combining with hydrogen in the atmospheric gas when ion nitriding is performed afterwards, the carbon at the outermost surface will be removed. The concentration is maintained at an appropriate value and no decrease in hardness occurs. Therefore, a hardened layer having sufficient hardness can be formed over the entire surface portion by the ion nitriding treatment, and the strength of the steel member can be sufficiently increased.
[実施例]
以下、第1図に示すフローチャートに従って、本発明に
かかる窒化綱部材の製造方法の実施例を具体的に説明す
る。[Example] Hereinafter, an example of the method for manufacturing a nitrided steel member according to the present invention will be specifically described according to the flowchart shown in FIG.
ステップS2では、用途に応じた適当な組成をもつ鋼部
材が調製される(第2表参照)。なお、本発明は通常の
構造用鋼全般に適用できるが、クロム(Cr)、モリブ
デン(MO)、バナジウム(V)、アルミニウム(A
I)、チタン(T i)等を含む合金鋼に対してとくに
効果的である。In step S2, a steel member having an appropriate composition depending on the intended use is prepared (see Table 2). The present invention can be applied to general structural steel, but it can also be applied to chromium (Cr), molybdenum (MO), vanadium (V), aluminum (A
It is particularly effective for alloy steels containing I), titanium (T i), and the like.
ステップS2では、熱間鍛造により上記組成の鋼部材が
、該鋼部材から製作される機械構造部品の最終的な部品
形状に対応する適当な形状に成形される。In step S2, the steel member having the above-mentioned composition is formed by hot forging into an appropriate shape corresponding to the final part shape of the mechanical structural part to be manufactured from the steel member.
ステップS3では、熱間鍛造された鋼部材の結晶粒度を
微細化・均一化するために、これに対して焼準処理(焼
きならし)が行なわれる。この焼準処理は鋼部材を適当
な温度(例えば900℃)に加熱した後、大気中で放冷
するといった普通の方法で行なわれる。In step S3, a normalizing treatment (normalizing) is performed on the hot-forged steel member in order to refine and make the grain size uniform. This normalizing treatment is carried out in a conventional manner by heating the steel member to an appropriate temperature (for example, 900° C.) and then allowing it to cool in the atmosphere.
ステップS4では、鋼部材の内部歪みを除去するために
、これに対して低温焼鈍処理(低温焼きなまし)が行な
われる。この低温焼鈍処理は鋼部材を300〜600℃
の範囲内の適当な温度で0゜5〜2時間保持した後、徐
々に冷却するといった普通の方法で行なわれ、とくにベ
イナイト変態が生じている鋼部材の内部歪みが効果的に
除去される。In step S4, a low-temperature annealing treatment (low-temperature annealing) is performed on the steel member in order to remove internal distortion of the steel member. This low-temperature annealing treatment heats steel members to 300-600°C.
This is carried out by the usual method of holding at a suitable temperature within the range of 0.5 to 2 hours, followed by gradual cooling, and in particular, internal strains in steel members where bainite transformation has occurred are effectively removed.
なお、上記のステップ82〜ステツプS4の処理は不可
欠なものではなく、鋼部材の材質、最終製品の形状、要
求される品質等に応じて、必要な場合にのみ行えばよい
。It should be noted that the processes from step 82 to step S4 described above are not essential, and may be performed only when necessary depending on the material of the steel member, the shape of the final product, the required quality, etc.
ステップS5では、鋼部材に対して機械加工が行なわれ
、最終製品(機械構造部品)と同一の形状に加工される
。例えば、歯車においては歯の形成が機械加工により行
なわれる。In step S5, the steel member is machined into the same shape as the final product (mechanical structural part). For example, in gears, teeth are formed by machining.
ステップS6では、機械加工された鋼部材に対して弱浸
炭処理が行なわれる。後で説明するステップS8におけ
るイオン窒化処理において、雰囲気ガス中の水素によっ
て鋼部材の最表面部分に脱炭現象が生じるので、これを
補うために表面部分の炭素濃度か高められる。In step S6, a weak carburizing process is performed on the machined steel member. In the ion nitriding process in step S8, which will be described later, decarburization occurs at the outermost surface of the steel member due to hydrogen in the atmospheric gas, so to compensate for this, the carbon concentration at the surface is increased.
この弱浸炭処理においては、浸炭濃度は0,3〜0.7
%の範囲内の適当な値に設定するのが好ましい。浸炭濃
度をこのように限定するのは、浸炭濃度が0.3%未満
ではイオン窒化処理時の脱炭現象による炭素の減少を十
分に補うことができず、鋼部材の最表面部分の硬度を十
分に高めることができないからであり、一方浸炭濃度が
0.7%を超えると、表面部分の炭素濃度が高くなり過
ぎ、この炭素によって窒化の進行が妨害され、表面部分
の硬度を十分に高めることができないからである。なお
、機械構造部品として用いられる窒化用鋼の炭素濃度は
通常0.1〜0.5%である。In this weak carburizing treatment, the carburizing concentration is 0.3 to 0.7
It is preferable to set it to an appropriate value within the range of %. The reason why the carburizing concentration is limited in this way is that if the carburizing concentration is less than 0.3%, it will not be possible to sufficiently compensate for the decrease in carbon due to the decarburization phenomenon during ion nitriding treatment, and the hardness of the outermost surface of the steel member will be reduced. On the other hand, if the carburizing concentration exceeds 0.7%, the carbon concentration in the surface area becomes too high, and this carbon blocks the progress of nitriding and sufficiently increases the hardness of the surface area. This is because it is not possible. Note that the carbon concentration of nitriding steel used as mechanical structural parts is usually 0.1 to 0.5%.
浸炭濃度のコントロールは、後で説明するように雰囲気
ガスの組成を調節することにより行なわれる。The carburization concentration is controlled by adjusting the composition of the atmospheric gas, as will be explained later.
また、浸炭深さは0.05〜0 、5 rrlmの範囲
内の適当な値に設定するのが好ましい。浸炭深さをこの
ように限定するのは、浸炭深さが0.05mm未満では
鋼部材の最表面部分に必要な炭素濃度を確保することが
できないからであり、一方浸炭深さが0 、5 mmを
超えるとイオン窒化処理時に脱炭が生じない内部領域の
炭素濃度が必要以上に高くなるからである。浸炭深さの
コントロールは、後で説明するように処理時間を調節す
ることにより行なわれる。Further, the carburizing depth is preferably set to an appropriate value within the range of 0.05 to 0.5 rrlm. The reason why the carburizing depth is limited in this way is that if the carburizing depth is less than 0.05 mm, it is not possible to secure the necessary carbon concentration in the outermost part of the steel member. This is because if it exceeds mm, the carbon concentration in the internal region where decarburization does not occur during ion nitriding becomes higher than necessary. The carburization depth is controlled by adjusting the treatment time, as will be explained later.
上記のような弱浸炭処理を行うための雰囲気ガスとして
は、第1表に組成を示すようなRXガスに0〜5%の範
囲内の空気を添加した混合気が用いられる。As the atmospheric gas for performing the above-mentioned weak carburizing treatment, a mixture of RX gas whose composition is shown in Table 1 and air added in a range of 0 to 5% is used.
第1表 RXガスの組成[単位vo1.%コここにおい
て、RXガスへの空気添加量と、弱浸炭処理後の表面部
分の炭素濃度(浸炭濃度)との間には、熱化学的な平衡
関係に基づく一定の対応関係があるので、空気添加量を
変えることによって浸炭濃度を自在に調整することがで
きる。例えば、空気添加量が0%のときには浸炭濃度が
0゜7%となり、空気添加量が5%のときには浸炭濃度
が0.3%となる。これを利用して、RXガスへの空気
添加量を0〜5%の範囲内で調節することによって、浸
炭濃度を0.3〜0.7%の範囲内の所望の値に調整す
る。なお、浸炭濃度が0.8〜0.9%の普通の浸炭処
理を行う必要がある場合には、上記RXガスにプロパン
(Cs Hs )等のエンリッチガスをam添加すれば
よい。Table 1 Composition of RX gas [Unit: vol. Here, there is a certain correspondence based on a thermochemical equilibrium relationship between the amount of air added to the RX gas and the carbon concentration (carburized concentration) in the surface area after weak carburizing treatment. The carburization concentration can be freely adjusted by changing the amount of air added. For example, when the amount of air added is 0%, the carburization concentration is 0.7%, and when the amount of air added is 5%, the carburization concentration is 0.3%. Utilizing this, the carburization concentration is adjusted to a desired value within the range of 0.3 to 0.7% by adjusting the amount of air added to the RX gas within the range of 0 to 5%. In addition, if it is necessary to perform ordinary carburizing treatment with a carburizing concentration of 0.8 to 0.9%, an enriched gas such as propane (Cs Hs ) may be added to the RX gas.
このようにして所定の組成に調整された雰囲気ガス下に
おいて、鋼部材が800〜900℃の範囲内の適当な温
度まで加熱され、この温度がIO〜60分の範囲内の適
当な時間(以下、この時間を浸炭時間という)だけ保持
される。ここにおいて、−船釣な理論によれば、浸炭深
さは浸炭時間の0.5乗にほぼ比例するので、浸炭深さ
が0.05〜0 、5 mmの範囲内の所望の値となる
ように、浸炭時間を設定する。Under an atmosphere gas adjusted to a predetermined composition in this way, the steel member is heated to an appropriate temperature within the range of 800 to 900°C, and this temperature is maintained for an appropriate time within the range of IO to 60 minutes (hereinafter referred to as , this time is called carburizing time). Here, according to the basic theory, the carburizing depth is approximately proportional to the 0.5th power of the carburizing time, so the carburizing depth will be a desired value within the range of 0.05 to 0.5 mm. Set the carburizing time as follows.
この後鋼部材は冷却されるが、弱浸炭処理は鋼部材の表
面部分の炭素濃度を高めることが目的であるので、弱浸
炭処理後の冷却方法として急冷法(焼入れ)を用いるこ
とができる。なお、徐冷法を用いることができるのはも
ちろんである。After this, the steel member is cooled, and since the purpose of the mild carburizing treatment is to increase the carbon concentration in the surface portion of the steel member, a rapid cooling method (quenching) can be used as a cooling method after the mild carburizing treatment. Note that, of course, a slow cooling method can be used.
このようなコントロール方法により、綱部材の表面部分
において、0.05〜0 、5 mmの範囲内の所望の
深さの部分までの炭素濃度が、0.3〜0゜7%の範囲
内の所望の値に調整される。With this control method, the carbon concentration in the surface area of the rope member to a desired depth within the range of 0.05 to 0.5 mm is reduced to within the range of 0.3 to 0.7%. Adjusted to desired value.
ステップS7では、鋼部材の靭性を回復するために、1
50〜600℃の範囲内の適当な温度で0.5〜5時間
焼き戻しが行なわれる。なお、この焼戻しは、ステップ
S6で急冷(焼入れ)が行なわれた場合にのみ行えばよ
く、徐冷された場合には省略できる。In step S7, in order to restore the toughness of the steel member, 1
Tempering is carried out at a suitable temperature within the range of 50-600°C for 0.5-5 hours. Note that this tempering need only be performed when rapid cooling (quenching) is performed in step S6, and can be omitted when slow cooling is performed.
ステップS8では、綱部材に対してイオン窒化処理が行
なわれ、その表面部分に鉄の窒化物が生成され硬化層が
形成される。このイオン窒化処理方法は一般に行なわれ
ている普通の方法であるので詳しい説明は省略するが、
例えば、N、とH2とが体積比で6:4に混合された7
Torrの雰囲気ガスを用い、容器と鋼部材との間に4
50vの電圧をかけ、570℃で3時間加熱するといっ
た方法で行なわれる。前記したとおり、ステップS6に
おいて鋼部材の表面部分の炭素濃度が高められているの
で、雰囲気ガス中の水素によって最表面部分に脱炭が生
じても、炭素濃度は適正値に保たれ硬度の低下が生じな
い。したがって、鋼部材の強度を十分に高めることがで
きる。In step S8, the rope member is subjected to ion nitriding treatment, and iron nitride is generated on the surface portion thereof to form a hardened layer. This ion nitriding method is a commonly used method, so a detailed explanation will be omitted.
For example, when N and H2 are mixed at a volume ratio of 6:4,
Using an atmospheric gas of Torr, there is a
This is done by applying a voltage of 50V and heating at 570°C for 3 hours. As mentioned above, since the carbon concentration at the surface portion of the steel member is increased in step S6, even if decarburization occurs at the outermost surface portion due to hydrogen in the atmospheric gas, the carbon concentration is maintained at an appropriate value and the hardness is reduced. does not occur. Therefore, the strength of the steel member can be sufficiently increased.
ステップS6では、綱部材表面にショットピーニングが
施され、表面部分の残留圧縮応力が増加して、鋼部材の
強度が一層高められる。In step S6, shot peening is applied to the surface of the steel member to increase the residual compressive stress in the surface portion, thereby further increasing the strength of the steel member.
本発明の効果を確認するために、本発明にかかる製造方
法で製作された鋼部材の表面硬度Hvと、従来のイオン
窒化処理方法を用いて製作された鋼部材の表面硬度Hv
の比較実験を行ったが、以下その実験方法と実験結果と
について説明する。In order to confirm the effects of the present invention, the surface hardness Hv of the steel member manufactured using the manufacturing method according to the present invention and the surface hardness Hv of the steel member manufactured using the conventional ion nitriding treatment method were compared.
A comparative experiment was conducted, and the experimental method and experimental results will be explained below.
まず、第2表に示すようなA、B、Cの3種の組成の鋼
材料を用いて、熱間圧延により直径が30mmの丸棒を
つくり、この丸棒を900℃に加熱した後、焼準処理を
行い、3種の尿試験片を製作しナー
そして、夫々A、B、Cの3種の材質の鋼から製作され
た3つの原試験片に対して、次のような条件でイオン窒
化処理のみを行い、これらを夫々試料1,2.3とした
(以下、これらを従来例と総称する)。First, a round bar with a diameter of 30 mm was made by hot rolling using steel materials with three compositions, A, B, and C as shown in Table 2. After heating this round bar to 900°C, Three types of urine test pieces were prepared by normalizing treatment, and three original test pieces made from three types of steel, A, B, and C, were tested under the following conditions. Only ion nitriding treatment was performed, and these were designated as Samples 1, 2.3, respectively (hereinafter, these are collectively referred to as conventional examples).
雰囲気ガス N1:Ht= 6 +4ガス圧力
7Torr
印加電圧 450■
加熱条件 570℃で3hr
また、A、B、Cの3種の材質の鋼から製作されたいく
つかの原試験片に対して、夫々第3表に示すような種々
の弱浸炭処理を行った後、試料1〜3と同様のイオン窒
化処理を行い、これらを試料4〜9とした。なお、弱浸
炭処理後の冷却において、急冷する場合はflI4al
K材をオイル中に浸漬し、徐冷する場合は鋼部材を炉内
で約0.5℃/秒で冷却した。Atmospheric gas N1:Ht= 6 +4 gas pressure
7 Torr Applied voltage: 450 ■ Heating conditions: 570°C for 3 hours In addition, several original test specimens made from three types of steel, A, B, and C, were heated at various temperatures as shown in Table 3. After performing the carburizing treatment, the same ion nitriding treatment as in samples 1 to 3 was performed, and these were designated as samples 4 to 9. In addition, when cooling rapidly after weak carburizing treatment, flI4al
When the K material was immersed in oil and slowly cooled, the steel member was cooled in a furnace at a rate of about 0.5° C./sec.
そして、試料1〜9に対して、夫々その表面からの深さ
が25.50,100μmの位置における硬度Hvを測
定した。その結果を第3表に示す。Then, the hardness Hv of Samples 1 to 9 was measured at positions at depths of 25.50 and 100 μm from the surface, respectively. The results are shown in Table 3.
第3表から明らかなように、同一の材質の鋼から製作さ
れた試料を比較すると、イオン窒化処理jこよって脱炭
現象の生じる最表面部分に相当する深さ25μmにおけ
る硬度は、弱浸炭処理の条件のいかんにかかわらず、本
発明にかかる試料の方が従来例に比べて大幅に高くなっ
ている。なお、深さ50,100μmにおける硬度も、
若干の例外を除けば本発明にかかる試料の硬度が、従来
例の硬度以上となっている。As is clear from Table 3, when comparing samples made from the same steel material, the hardness at a depth of 25 μm, which corresponds to the outermost surface area where decarburization occurs due to ion nitriding treatment, is lower than that of weak carburizing treatment. Regardless of the conditions, the sample according to the present invention is significantly higher than the conventional example. In addition, the hardness at a depth of 50 and 100 μm is also
With a few exceptions, the hardness of the samples according to the present invention is higher than that of the conventional example.
この実験結果から、本発明にかかる製造方法によれば、
最表面部分の硬度を大幅に高めることができ、窒化綱部
材の強度を大幅1こ高めることができることがわかる。From this experimental result, according to the manufacturing method according to the present invention,
It can be seen that the hardness of the outermost surface portion can be significantly increased, and the strength of the nitrided steel member can be significantly increased by one factor.
第1図は、本発明にかかる窒化綱部材の製造方法を示す
フローチャートである。FIG. 1 is a flowchart showing a method for manufacturing a nitrided steel member according to the present invention.
Claims (1)
から0.05〜0.5mmの深さまでの部分の浸炭濃度
が0.3〜0.7%となるように弱浸炭処理を施し、こ
の後イオン窒化処理を施すことを特徴とする窒化綱部材
の製造方法。(1) Machine processing is performed on the steel member, and then mild carburization is performed so that the carburization concentration at a depth of 0.05 to 0.5 mm from the surface is 0.3 to 0.7%. 1. A method for manufacturing a nitrided steel member, which comprises applying ion nitriding treatment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20535189A JPH0368753A (en) | 1989-08-07 | 1989-08-07 | Production of nitrided steel member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20535189A JPH0368753A (en) | 1989-08-07 | 1989-08-07 | Production of nitrided steel member |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0368753A true JPH0368753A (en) | 1991-03-25 |
Family
ID=16505438
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20535189A Pending JPH0368753A (en) | 1989-08-07 | 1989-08-07 | Production of nitrided steel member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0368753A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008115422A (en) * | 2006-11-02 | 2008-05-22 | Parker Netsu Shori Kogyo Kk | Plasma nitriding device and nitriding method |
-
1989
- 1989-08-07 JP JP20535189A patent/JPH0368753A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008115422A (en) * | 2006-11-02 | 2008-05-22 | Parker Netsu Shori Kogyo Kk | Plasma nitriding device and nitriding method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3885995A (en) | Process for carburizing high alloy steels | |
Edenhofer et al. | Carburizing of steels | |
GB1562739A (en) | Atmosphere compositions and methods of using same for surface treating ferrous metals | |
JPH0288714A (en) | Manufacture of steel member | |
AU2012247863A1 (en) | Method for solution hardening of a cold deformed workpiece of a passive alloy, and a member solution hardened by the method | |
CN113862610B (en) | Pretreatment method for improving corrosion resistance of carburized layer | |
US4913749A (en) | Process for case-hardening rolling bearing elements of low-alloy nickeliferous steel | |
JPS6043431B2 (en) | Manufacturing method of nitrided machine parts for light loads | |
JP3792341B2 (en) | Soft nitriding steel with excellent cold forgeability and pitting resistance | |
US6235128B1 (en) | Carbon and alloy steels thermochemical treatments | |
US4236942A (en) | Method for the gaseous nitriding of ferrous-based components | |
RU2291227C1 (en) | Construction-steel parts surface hardening method | |
JPS5929646B2 (en) | Manufacturing method of steel for rolling bearings | |
JPH01205063A (en) | Wear-resistant stainless steel parts | |
JP2549039B2 (en) | Carbonitriding heat treatment method for high strength gears with small strain | |
JPH02145759A (en) | Method for carburizing steel | |
US3795551A (en) | Case hardening steel | |
JPH0368753A (en) | Production of nitrided steel member | |
JP3395252B2 (en) | Manufacturing method of steel with excellent fatigue strength | |
JP2549038B2 (en) | Method for carburizing heat treatment of high-strength gear with small strain and its gear | |
CN105814230B (en) | The method for manufacturing ferrous metal part | |
KR100333199B1 (en) | Carburizing Treatment Method | |
JPH01201459A (en) | Parts combining high toughness with wear resistance | |
JPH01212748A (en) | Rapid carburizing treatment for steel | |
CA1300472C (en) | Carburized low silicon steel article and process |